Fabrication of bimetallic-doped materials derived from a Cu-based

complex for enhanced dye adsorption and iodine capture

Ai-Ai Yang,^a Jian-Peng Cui,^a Yu Liu,^{a*} Xiao-Sa Zhang,^a Ze-Bang Sun,^a Nan Luo,^a

Wen-Ze Li,^{a*} and Jian Luan^{b*}

^a College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

^b College of Sciences, Northeastern University, Shenyang, 110819, P. R. China

E-mails: <u>wzli@syuct.edu.cn</u> (W. Z. Li); <u>2010044@stu.neu.edu.cn</u> (J. Luan)

Table S1 Selected bond distances (Å) and angles (°) for complex 1.

Cu(1)–O(3)#1	1.950(4)	O(11)–Cu(2)–O(6)	89.68(17)
Cu(1)–O(4)#2	1.957(4)	O(9)-Cu(2)-O(8)#1	88.62(16)
Cu(1)–O(2)#3	1.970(4)	O(11)-Cu(2)-O(8)#1	167.24(15)
Cu(1)–O(1)	1.976(3)	O(6)-Cu(2)-O(8)#1	90.47(17)
Cu(1)–N(1)	2.184(4)	O(9)–Cu(2)–N(2)	103.51(17)
Cu(1)–Cu(1)#3	2.5935(10)	O(11)–Cu(2)–N(2)	104.04(17)
O(1W)–Cu(3)	2.134(3)	O(6)–Cu(2)–N(2)	88.99(17)
Cu(2)–O(9)	1.964(4)	O(8)#1-Cu(2)-N(2)	88.72(17)
Cu(2)–O(11)	1.973(4)	O(9)–Cu(2)–Cu(3)	86.89(10)
Cu(2)–O(6)	1.981(4)	O(11)–Cu(2)–Cu(3)	86.35(10)
Cu(2)–O(8)#1	1.995(4)	O(6)–Cu(2)–Cu(3)	80.60(11)
Cu(2)–N(2)	2.180(4)	O(8)#1–Cu(2)–Cu(3)	81.09(10)
Cu(2)–Cu(3)	2.5933(8)	N(2)–Cu(2)–Cu(3)	165.31(14)
O(2)–Cu(1)#3	1.970(4)	C(19)–O(2)–Cu(1)#3	122.7(3)
Cu(3)–O(10)	1.932(4)	C(16)–N(2)–Cu(2)	119.8(4)
Cu(3)–O(12)	1.956(3)	C(17)–N(2)–Cu(2)	117.3(4)
Cu(3)–O(5)	1.976(4)	O(10)–Cu(3)–O(12)	92.19(15)
Cu(3)–O(7)#1	1.984(3)	O(10)–Cu(3)–O(5)	170.16(15)
O(3)–Cu(1)#4	1.950(4)	O(12)–Cu(3)–O(5)	88.20(15)
O(4)-Cu(1)#2	1.957(4)	O(10)-Cu(3)-O(7)#1	89.49(16)
O(7)–Cu(3)#4	1.984(3)	O(12)-Cu(3)-O(7)#1	169.78(14)

O(8)–Cu(2)#4	1.995(4)	O(5)–Cu(3)–O(7)#1	88.43(15)
O(3)#1-Cu(1)-O(4)#2	169.33(14)	O(10)–Cu(3)–O(1W)	95.29(14)
O(3)#1–Cu(1)–O(2)#3	89.50(16)	O(12)–Cu(3)–O(1W)	96.88(13)
O(4)#2–Cu(1)–O(2)#3	89.83(16)	O(5)–Cu(3)–O(1W)	94.42(14)
O(3)#1-Cu(1)-O(1)	89.12(17)	O(7)#1-Cu(3)-O(1W)	93.00(14)
O(4)#2-Cu(1)-O(1)	89.59(17)	O(10)–Cu(3)–Cu(2)	82.19(10)
O(2)#3-Cu(1)-O(1)	169.44(14)	O(12)–Cu(3)–Cu(2)	82.21(10)
O(3)#1-Cu(1)-N(1)	94.59(15)	O(5)–Cu(3)–Cu(2)	88.13(10)
O(4)#2-Cu(1)-N(1)	96.07(15)	O(7)#1–Cu(3)–Cu(2)	88.03(10)
O(2)#3-Cu(1)-N(1)	96.51(14)	O(1W)-Cu(3)-Cu(2)	177.27(10)
O(1)–Cu(1)–N(1)	94.04(14)	C(26)–O(3)–Cu(1)#4	122.9(3)
O(3)#1-Cu(1)-Cu(1)#3	84.79(10)	C(26)–O(4)–Cu(1)#2	123.1(3)
O(4)#2-Cu(1)-Cu(1)#3	84.55(10)	C(27)–O(5)–Cu(3)	118.3(3)
O(2)#3-Cu(1)-Cu(1)#3	84.59(10)	C(27)–O(6)–Cu(2)	127.1(3)
O(1)–Cu(1)–Cu(1)#3	84.86(10)	C(32)–O(7)–Cu(3)#4	118.8(3)
N(1)-Cu(1)-Cu(1)#3	178.74(12)	C(32)–O(8)–Cu(2)#4	127.0(3)
C(5)–N(1)–Cu(1)	124.1(3)	C(35)–O(9)–Cu(2)	119.1(3)
C(1)–N(1)–Cu(1)	118.8(3)	C(35)–O(10)–Cu(3)	126.1(3)
C(19)–O(1)–Cu(1)	122.7(3)	C(42)–O(11)–Cu(2)	119.1(3)
O(9)–Cu(2)–O(11)	88.48(17)	C(42)–O(12)–Cu(3)	125.1(3)
O(9)–Cu(2)–O(6)	167.44(15)		

Symmetry codes: #1 x - 1, y, z; #2 -x + 2, -y - 1, -z + 1; #3 -x + 1, -y - 1, -z + 1; #4 x + 1, y, z.

Table S2 Hydrogen bonding geometries (Å, °) of complex 1.				
D–H···A	D–H	Н…А	D…A	D–H…A
O2W–H2WB…O11 ⁱ	0.85	2.37	3.1852	162
N3–H3A…O14 ⁱⁱ	0.86	2.08	2.9126	161
O3W–H3WA…O14 ⁱⁱ	0.85	1.99	2.7996	159
O3W-H3WB…O13 ⁱⁱⁱ	0.85	1.87	2.6848	161
N4–H4B…O2W ⁱⁱⁱ	0.86	2.08	2.9001	159
Symmetry codes: ${}^{i}x, -1 + y, z; {}^{ii}-x, 1 - y, -z; {}^{iii}1 - x, 1 - y, -z.$				

Materials	Material	C ₀	Adsorption capacity Adsorption		Pef
Materials	weigh (mg)	(mg g ⁻¹)	$(mg g^{-1})$	time (min)	Kei.
CS-VTM	80	100	62 20	2880	S 1
composite	00	100	02.20	2000	51
f-MWCNTs	20	400	148.00	150	S 2
MWCNTs	5	10	67.30	10	S 3
C-Mo-1	5	80	1304.00	240	S4
Fe _x Co _{3-x} O ₄	50	20	126.96	240	85
nanoparticle	50	20	120.80	240	35
BMC-0.05	50	100	290.48	60	S 6
C-N-1	10	80	1357.00	240	This work
C-V-1	10	80	1501.00	180	This work

 Table S3 Adsorption capacities of different adsorbents for CR.

 Table S4 Organic dyes with different charge types and sizes.

Due	Formula	Charge	Size (nm \times nm \times
Dye	Formula	type	nm)
Methylene	N.		
Blue	H ₃ C _N s CH ₃	Cationic	$0.40\times0.79\times1.63$
(MB)	CH ₃ CH ₃		
Rhodamine B (RhB)	H ₃ C N CH ₃ H ₃ C CH ₃	Cationic	0.68 × 1.18 × 1.57
Gentian Violet (GV)	H_3C^{-N} H_3C^{-N} H_3C^{-N} H_3C^{-N} CH_3 \oplus CH_3	Cationic	0.40 × 1.30 × 1.37
Congo Red (CR)	$\underset{SO_{3}}{\overset{NH_{2}}{\underset{N}{\overset{N}}}}_{N}$	Anionic	0.39 × 0.86 × 2.61

Kinetic model	Parameters	I ₂ , 5 mL, 0.01 mol L ⁻¹
	$q_e (mg g^{-1})$	0.0025
Pseudo-second-order model	k_2 (g mg ⁻¹ min ⁻¹)	$8.19 imes 10^{-4}$
	\mathbb{R}^2	0.9978
	$k_{id} (mg \ g^{-1} \ min^{-1/2})$	277.50
Intra-particle diffusion model	C (mg g ⁻¹)	160.95
	\mathbb{R}^2	0.8198
	β (g mg ⁻¹)	0.0013
Elovich	$\alpha (mg g^{-1} min^{-1})$	254.92
	\mathbb{R}^2	0.9716

Table S5 The parameters of pseudo-second-order, intra-particle diffusion and Elovichmodels in C-N-1.

Table S6 The parameters of pseudo-second-order, intra-particle diffusion and Elovich

Kinetic model	Parameters	I ₂ , 5 mL, 0.01 mol L ⁻¹
	$q_e (mg g^{-1})$	0.0016
Pseudo-second-order model	$k_2 (g mg^{-1} min^{-1})$	8.12×10^{-4}
	\mathbb{R}^2	0.9985
	$k_{id} \ (mg \ g^{-1} \ min^{-1/2})$	367.83
Intra-particle diffusion model	C (mg g ⁻¹)	160.77
	\mathbb{R}^2	0.7254
	β (g mg ⁻¹)	0.0011
Elovich	$\alpha (mg g^{-1} min^{-1})$	333.64
	\mathbb{R}^2	0.9552

Fig. S1 The 2D supermolecule layer of complex 1.

Fig. S1 The 3D supermolecule network of complex 1.

Fig. S3 The IR spectrum of complex 1.

Fig. S4 The PXRD patterns of complex 1.

Fig. S5 The TGA curve of complex 1.

Fig. S6 (a) FT-IR spectra of **C-N-1** and **C-V-1**. (b) Survey XPS spectra of **C-N-1** and **C-V-1**. High-resolution spectra of Cu 2p (c), and O 1s (d) for **C-N-1** and **C-V-1**.

Fig. S7 UV-Vis spectra of blank experiment for dye adsorption (performed in the

absence of any catalyst).

Fig. S8 UV-Vis spectra of MB (a), RhB (b), GV (c) and CR (d) solutions recorded after different adsorption times with complex **1**.

Fig. S9 UV-Vis spectra of MB (a), RhB (b), GV (c) and CR (d) solutions recorded

Fig. S10 The Zeta potential of complex 1 (a), C-N-1 (b), and C-V-1 (c).

Fig. S12 UV–vis spectra of different concentrations of CR solutions after 240 min with **C-V-1** at different temperatures.

Fig. S13 (a) The equilibrium plots for the adsorption CR on to the **C-V-1** at 298, 303, 313, 323 K: Langmuir model equilibrium; (b) The equilibrium plots for the adsorption CR on to the **C-V-1** at 298, 303, 313, 323 K: Freundlich model equilibrium plots.

Fig. S14 The plot of lnK_a-1/T for adsorption of CR on C-V-1.

Fig. S15 The cycling stability of the adsorption/desorption of CR on C-V-1.

Fig. S16 (a) The UV-Vis absorption spectra of C-N-1 for the adsorption of I_2 /cyclohexane solution (5 mL, 0.005 mol L⁻¹) at 521 nm; (b) Gradual color change from dark purple to colorless by immersing C-N-1 in I_2 /cyclohexane solution (5 mL, 0.005 mol L⁻¹).

Fig. S17 (a) The UV-Vis absorption spectra of C-N-1 for the adsorption of I_2 /cyclohexane solution (5 mL, 0.01 mol L⁻¹) at 521 nm; (b) Gradual color change from dark purple to light pink by immersing C-N-1 in I_2 /cyclohexane solution (5 mL, 0.01 mol L⁻¹).

Fig. S18 (a) The UV-Vis absorption spectra of C-V-1 for the adsorption of I_2 /cyclohexane solution (5 mL, 0.01 mol L⁻¹) at 521 nm; (b) Gradual color change from dark purple to light pink by immersing C-V-1 in I_2 /cyclohexane solution (5 mL, 0.01 mol L⁻¹).

Fig. S19 The intra-particle diffusion model of iodine on C-N-1 (a) and C-V-1 (b).

Fig. S20 (a) The iodine adsorption during four consecutive runs over adsorbent C-V-1 and C-N-1.

Fig. S21 (a) SEM image of C-N-1; (b) EDS-mapping of C-N-1; (c) PXRD patterns of C-N-1 before and after Iodine adsorption; (d) XPS survey spectra after iodine for C-N-1; (e) XPS survey spectra of I 3d for C-N-1; (f) XPS survey spectra of N 1s for C-N-1.