$[Ba_4X][In_{19}S_{32}]$ (X = Cl, Br): two quaternary metal chalcohalides exhibiting remarkable photocurrent responses

Chunlan Tang^{ab⊥}, Wenhao Xing^{a⊥}, Fei Liang^c, Jian Tang^a, Jieyun Wu^{b*}, Wenlong Yin^{a*} and Bin Kang^a

^a Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, P. R. China.

^b School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

^c State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.

 $^{\perp}$ Chunlan Tang and Wenhao Xing contributed equally to this work.

*Corresponding author: Wenlong Yin; <u>wlyin@caep.cn</u> Jieyun Wu; jieyunwu@uestc.edu.cn

Fig. S1. The SEM pictures and EDS results of $[Ba_4Cl][In_{19}S_{32}]$.

Fig. S2. The SEM pictures and EDS results of $[Ba_4Br][In_{19}S_{32}]$.

Fig. S3. Simulated (black), original synthesized (blue) and immersed in water for one week (red) PXRD patterns of $[Ba_4X][In_{19}S_{32}]$ (X = Cl, Br).

Fig. S4. Mott-Schottky plot of the as-prepared $[Ba_4X][In_{19}S_{32}]$ (X = Cl, Br) sample.

Fig. S5. The calculated birefringence of (a) $[Ba_4C1][In_{19}S_{32}]$ and (b) $[Ba_4Br][In_{19}S_{32}]$.

Atom	Wyckoff position	x	у	Z	$U_{eq}({ m \AA}^2)^{a}$
Bal	16h	0	0.63499(2)	0.27935(3)	0.02049(9)
Inl	32i	0.15969(2)	0.66916(2)	0.49465(2)	0.01213(8)
In2	4b	0	0.75	0.625	0.0106(13)
In3	8c	0.25	0.75	0.25	0.01451(11)
In4	16f	0.15612(2)	0.5	0.5	0.01268(9)
In5	16g	0.16931(2)	0.41931(2)	0.875	0.01001(9)
S 1	16h	0.07802(5)	0.75	0.46454(10)	0.0121(2)
S2	32i	0.08358(4)	0.58594(3)	0.50463(7)	0.01075(17)
S 3	16h	0.23954(5)	0.75	0.48824(9)	0.0101(2)
S4	32i	0.16714(3)	0.50986(4)	0.74671(7)	0.01004(17)
S5	32i	0.1586(4)	0.32653(4)	0.75989(7)	0.01307(17)
C11	4a	0	0.75	0.125	0.0153(4)

Table S1 Atomic coordinates and equivalent isotropic displacement parameters for $[Ba_4C1][In_{19}S_{32}].$

 $^{\mathrm{a}}$ U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyckoff position	x	У	Z	$U_{eq}({ m \AA}^2)$ a
Ba1	16h	0.5	0.63128(2)	0.71854(2)	0.02263(8)
In1	32i	0.34055(2)	0.66911(2)	0.50579(2)	0.0133(6)
In2	4a	0.5	0.75	0.375	0.01119(12)
In3	8d	0.25	0.75	0.75	0.01534(10)
In4	16f	0.34323(2)	0.5	0.5	0.01383(8)
In5	16g	0.33057(2)	0.41943(2)	0.125	0.01109(7)
S 1	16h	0.42166(5)	0.75	0.53405(9)	0.0129(2)
S2	32i	0.41592(3)	0.58568(3)	0.49488(6)	0.01176(15)
S3	16h	0.261(4)	0.75	0.51192(8)	0.0105(2)
S4	32i	0.33296(3)	0.50974(3)	0.25337(6)	0.01094(15)
S5	32i	0.4232(3)	0.40907(3)	0.00981(7)	0.01406(16)
Br1	4b	0.5	0.75	0.875	0.01638(18)

Table S2 Atomic coordinates and equivalent isotropic displacement parameters for $[Ba_4Br][In_{19}S_{32}].$

 a U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

In1–S4 ⁹	2.6691(8)	In4–S4	2.6096(7)
In1–S2	2.5521(8)	In4–S4 ²	2.6686(8)
In1-S2 ⁹	2.6327(8)	In4-S4 ¹⁰	2.6686(8)
In1–S3	2.5700(8)	In4–S2	2.5432(8)
In1–S1	2.6174(8)	In4–S2 ⁹	2.5431(8)
$In1-S5^{10}$	2.6721(8)	In5–S4	2.4506(8)
In2–S1	2.4384(10)	In5–S4 ⁶	2.4506(8)
In2–S1 ⁷	2.4384(10)	In5–S5	2.4326(8)
In2–S1 ⁸	2.4384(10)	In5–S5 ⁶	2.4326(8)
In2–S1 ³	2.4384(10)	Ba1–Cl1	3.0632(3)
In3–S3	2.5104(10)	Ba1-S2 ¹	3.2229(8)
In3-S3 ¹¹	2.5104(10)	Ba1–S2	3.2229(8)
In3-S5 ¹²	2.6973(8)	Ba1–S3 ²	3.3169(11)
In3-S5 ¹³	2.6973(8)	Ba1–S1 ³	3.6943(8)
In3-S5 ¹⁰	2.6973(8)	Ba1–S1	3.6944(8)
In3-S5 ¹⁴	2.6973(8)	Ba1-S5 ⁴	3.4578(8)
In4–S4 ⁹	2.6097(7)	Ba1-S5 ⁵	3.4578(8)
S4 ¹⁰ —In1—S5 ⁹	93.84(2)	S2—In4—S4 ⁹	98.38(3)
S2 ¹⁰ —In1—S4 ¹⁰	85.60(2)	S2—In4—S4	88.70(2)
S2—In1—S4 ¹⁰	85.36(3)	S29—In4—S49	88.70(2)
S2—In1—S2 ¹⁰	88.11(3)	S2 ⁹ —In4—S4 ¹⁰	174.76(2)
S2—In1—S3	177.64(3)	S29—In4—S2	99.69(4)
S2—In1—S1	92.53(3)	S4 ⁶ —In5—S4	109.57(4)
S2 ¹⁰ —In1—S5 ⁹	178.22(3)	S5—In5—S4	116.48(3)
S2—In1—S5 ⁹	93.54(3)	S56—In5—S46	116.48(3)

Table S3 Selected band distances (Å) and band angles (°) for $[Ba_4C1][In_{19}S_{32}]$.

S3—In1—S4 ¹⁰	92.41(3)	S5 ⁶ —In5—S4	109.79(3)
S3—In1—S2 ¹⁰	90.95(3)	S5—In5—S4 ⁶	109.78(3)
S3—In1—S1	89.76(3)	S5—In5—S5 ⁶	94.29(4)
S3—In1—S5 ⁹	87.39(3)	Ba1 ¹⁶ —Cl1—Ba1 ³	106.223(5)
S1—In1—S4 ¹⁰	174.51(3)	Ba1—Cl1—Ba1 ¹⁶	106.224(5)
S1—In1—S2 ¹⁰	99.41(3)	Ba1—Cl1—Ba1 ³	116.182(11)
S1—In1—S5 ⁹	81.22(3)	Ba1 ¹⁶ —Cl1—Ba1 ¹⁷	116.182(11)
S17—In2—S18	92.69(5)	Ba1 ³ —Cl1—Ba1 ¹⁷	106.223(5)
S1 ¹⁰ —In2—S1	92.69(5)	Ba1—Cl1—Ba1 ¹⁶	106.224(5)
S17—In2—S13	118.46(3)	Cl1—Ba1—S2	132.823(15)
S1 ⁸ —In2—S1	118.46(3)	Cl1—Ba1—S2 ¹	132.824(15)
S1 ⁷ —In2—S1	118.46(3)	Cl1—Ba1—S3 ²	140.621(19)
S1 ³ —In2—S1 ⁸	118.46(3)	Cl1—Ba1—S1	71.365(14)
S3—In3—S3 ¹¹	180.0	Cl1—Ba1—S1 ³	71.365(14)
S3 ¹¹ —In3—S5 ¹²	88.06(2)	Cl1—Ba1—S5 ⁴	79.039(15)
S3 ¹¹ —In3—S5 ⁹	91.94(2)	Cl1—Ba1—S5 ⁵	79.039(14)
S3—In3—S5 ¹³	88.06(2)	S2—Ba1—S2 ¹	71.80(3)
S3 ¹¹ —In3—S5 ¹⁴	88.06(2)	S2 ¹ —Ba1—S3 ²	75.76(2)
S3—In3—S5 ¹²	91.94(2)	S2—Ba1—S3 ²	75.76(2)
S3—In3—S5 ⁹	88.06(2)	S21—Ba1—S13	64.952(18)
S3 ¹¹ —In3—S5 ¹³	91.94(2)	S2—Ba1—S1	64.951(18)
S3—In3—S5 ¹⁴	91.94(2)	S2—Ba1—S1 ³	97.85(2)
S59—In3—S5 ¹⁴	100.19(4)	S2 ¹ —Ba1—S1	97.85(2)
S5 ¹⁴ —In3—S5 ¹³	180.00(3)	S21—Ba1—S54	102.00(2)
S59—In3—S5 ¹³	79.81(4)	S2 ¹ —Ba1—S5 ⁵	142.64(2)
S5 ¹² —In3—S5 ¹⁴	79.81(4)	S2—Ba1—S5 ⁵	102.00(2)
S5 ¹² —In3—S5 ¹³	100.19(4)	S2—Ba1—S5 ⁴ S10	142.64(2)

S5 ¹² —In3—S5 ⁹	180.0	S3 ² —Ba1—S1	140.019(17)
S4—In4—S4 ⁹	169.04(4)	S3 ² —Ba1—S1 ³	140.019(17)
S4 ¹⁰ —In4—S4 ²	89.21(3)	S3 ² —Ba1—S5 ⁴	67.113(19)
S4—In4—S4 ¹⁰	81.91(3)	S3 ² —Ba1—S5 ⁵	67.113(19)
S49—In4—S42	81.91(3)	S13—Ba1—S1	57.05(3)
S4—In4—S4 ²	90.28(2)	S54—Ba1—S13	113.05(2)
S49—In4—S4 ¹⁰	90.28(2)	S54—Ba1—S1	150.40(2)
S29—In4—S4	98.38(3)	S5 ⁵ —Ba1—S1	113.05(2)
S2 ⁹ —In4—S4 ²	85.55(2)	S5 ⁵ —Ba1—S1 ³	150.40(2)
S2—In4—S4 ¹⁰	85.55(2)	S54—Ba1—S5 ⁵	60.05(3)
S2—In4—S4 ²	174.75(2)		

Symmetry codes: ¹-X,+Y,+Z; ²3/4-Y,1/4+X,-1/4+Z; ³-X,3/2-Y,+Z; ⁴1/4-Y,3/4-X,-3/4+Z; ⁵-1/4+Y,3/4-X,-3/4+Z; ⁶-1/4+Y,1/4+X,7/4-Z; ⁷3/4-Y,3/4+X,5/4-Z; ⁸-3/4+Y,3/4-X,5/4-Z; ⁹+X,1-Y,1-Z; ¹⁰3/4-Y,3/4-X,5/4-Z; ¹¹1/2-X,3/2-Y,1/2-Z; ¹²1/2-X,1/2+Y,-1/2+Z; ¹³+X,1/2+Y,1-Z; ¹⁴1/2-X,1-Y,-1/2+Z; ¹⁵-1/4+Y,3/4-X,1/4+Z; ¹⁶-3/4+Y,3/4-X,1/4-Z; ¹⁷3/4-Y,3/4+X,1/4-Z

In1–S4 ⁹	2.6783(7)	In4–S4 ⁴	2.6089(7)
In1–S3	2.5718(7)	In4–S4	2.6090(7)
In1-S2 ⁹	2.6349(7)	In4–S4 ⁹	2.6675(8)
In1–S2	2.5505(7)	In4–S4 ¹	2.6675(8)
In1–S1	2.6129(8)	In4–S2 ⁴	2.5467(8)
In1-S5 ¹⁰	2.6683(7)	In4–S2	2.5468(8)
In2–S1 ⁶	2.4372(10)	In5–S4	2.4509(7)
In2-S1 ⁷	2.4372(10)	In5–S4 ⁵	2.4509(7)
In2-S1 ⁸	2.4372(10)	In5–S5 ⁵	2.4339(8)
In2–S1	2.4372(10)	In5–S5	2.4338(8)
In3–S3 ¹¹	2.5118(9)	Ba1–Br1	3.1521(3)
In3–S3	2.5117(9)	Ba1-S31	3.2563(11)
In3–S5 ⁹	2.6991(8)	Ba1–S2	3.1954(7)
In3-S5 ⁶	2.6991(8)	Ba1-S2 ²	3.1955(7)
In3-S5 ¹⁰	2.6991(8)	Ba1–S5 ³	3.4638(8)
In3-S5 ¹²	2.6991(8)	Ba1-S5 ⁴	3.4638(8)
S3—In1—S4 ⁹	92.36(2)	S2 ³ —In4—S4	98.23(2)
S3—In1—S2 ⁹	90.87(3)	S2—In4—S4 ¹	175.11(2)
S3—In1—S1	89.43(2)	S2—In4—S4 ⁹	85.48(2)
S3—In1—S5 ¹⁰	87.28(3)	S23—In4—S4 ³	88.41(2)
S2—In1—S4 ⁹	85.18(2)	S2—In4—S4	88.41(2)
S29—In1—S49	85.16(2)	S5 ¹² —In3—S5 ⁶	99.70(3)
S2—In1—S3	177.33(3)	S5 ⁹ —In3—S5 ¹⁰	99.70(3)
S2—In1—S2 ⁹	87.87(2)	S5 ¹² —In3—S5 ¹⁰	80.30(3)
S2—In1—S1	93.10(2)	S5 ¹⁰ —In3—S5 ⁶	180.0
S29—In1—S5 ¹⁰	177.75(2)	S2 ³ —In4—S4 ¹	85.48(2)

Table S4 Selected band distances (Å) and band angles (°) for $[Ba_4Br][In_{19}S_{32}]$.

S2—In1—S5 ¹⁰	93.93(2)	S2 ³ —In4—S4 ⁹	175.11(2)
S1—In1—S4 ⁹	175.15(3)	S2 ³ —In4—S2	99.40(3)
S1—In1—S2 ⁹	99.33(3)	S4—In5—S4 ⁵	109.83(4)
S1—In1—S5 ¹⁰	81.94(3)	S5 ⁵ —In5—S4	116.41(2)
S5 ¹⁰ —In1—S4 ⁹	93.64(2)	S5—In5—S4	109.55(2)
S1 ⁶ —In2—S1	117.99(3)	S5—In5—S4 ⁵	116.41(2)
S17—In2—S18	117.99(3)	S5 ⁵ —In5—S4 ⁵	109.55(2)
S1 ⁷ —In2—S1	93.51(5)	S5—In5—S5 ⁵	94.62(4)
S1 ⁸ —In2—S16	117.99(3)	Ba1—Br1—Ba1 ¹³	105.756(5)
S1 ⁷ —In2—S1	117.99(3)	Ba1 ¹⁴ —Br1—Ba1 ¹³	117.188(10)
S1 ⁷ —In2—S1 ⁶	93.51(5)	Ba1—Br1—Ba1 ¹⁴	105.756(5)
S3—In3—S3 ¹¹	180.00(5)	Ba1 ⁸ —Br1—Ba1 ¹³	105.756(5)
S3 ¹¹ —In3—S5 ⁹	87.83(2)	Ba1 ¹⁴ —Br1—Ba1 ⁸	105.756(5)
S3 ¹¹ —In3—S5 ⁶	87.83(2)	Bal—Brl—Bal ⁸	117.188(10)
S3—In3—S5 ⁹	92.17(2)	Br1—Ba1—S31	140.554(18)
S3—In3—S5 ⁶	92.17(2)	Br1—Ba1—S2	131.217(15)
S3—In3—S5 ¹²	87.83(2)	Br1—Ba1—S2 ²	131.217(15)
S3 ¹¹ —In3—S5 ¹⁰	92.17(2)	Br1—Ba1—S5 ³	78.247(14)
S3 ¹¹ —In3—S5 ¹²	92.17(2)	Br1—Ba1—S5 ⁴	78.247(14)
S3—In3—S5 ¹⁰	87.83(2)	S31—Ba1—S5 ⁴	67.879(19)
S5 ¹² —In3—S5 ⁹	180.0	S31—Ba1—S53	67.879(19)
S59—In3—S56	80.30(3)	S2 ² —Ba1—S3 ¹	77.440(19)
S4 ³ —In4—S4	169.76(3)	S2—Ba1—S31	77.441(19)
S4 ³ —In4—S4 ⁹	90.54(2)	S2—Ba1—S2 ²	73.20(3)
S4 ³ —In4—S4 ¹	82.18(2)	S2—Ba1—S5 ³	102.709(18)
S4 ¹ —In4—S4 ⁹	89.64(3)	S2 ² —Ba1—S5 ³	145.00(2)
S4—In4—S4 ⁹	82.18(2)	S2—Ba1—S5 ⁴	145.00(2)

$S4$ —In4— $S4^1$	90.54(2)	S2 ² —Ba1—S5 ⁴	102.708(18)
S2—In4—S4 ³	98.23(2)	S54—Ba1—S53	60.32(2)

Symmetry codes: ¹-1/4+Y,3/4-X,1/4+Z; ²1-X,+Y,+Z; ³+X,1-Y,1-Z; ⁴1-X,1-Y,1-Z; ⁵3/4-Y,3/4-X,1/4-Z; ⁶-1/4+Y,5/4-X,3/4-Z; ⁷5/4-Y,1/4+X,3/4-Z; ⁸1-X,3/2-Y,+Z; ⁹-1/4+Y,1/4+X,3/4-Z; ¹⁰3/4-Y,1/4+X,3/4+Z; ¹¹1/2-X,3/2-Y,3/2-Z; ¹²3/4-Y,5/4-X,3/4+Z; ¹³-1/4+Y,5/4-X,7/4-Z; ¹⁴5/4-Y,1/4+X,7/4-Z

Compound	Photocurrent response	Bias voltage	Substrate
Cs ₃ CuAs ₄ S ₈ ¹	$5 \ \mu A \ cm^{-2}$	-	ITO
Cs ₃ CuAs ₄ Se ₈ ¹	$5 \ \mu A \ cm^{-2}$	-	ITO
$Rb_2Ba_3Cu_2Sb_2S_{10}{}^2$	6 nA cm^{-2}	0.174 V	ITO
SrCuSbS ₃ ³	$0.54 \ \mu A \ cm^{-2}$	1.0 V	FTO
BaCuSbS ₃ ⁴	55 nA cm^{-2}	-	ITO
$Ba_5Bi_2Co_2S_{10}{}^5$	4 mA cm^{-2}	1.0 V	-
$Rb_2CuSb_7S_{12}{}^6$	$10 \ \mu A \ cm^{-2}$	0.18 V	ITO
$Pb_3P_2S_8{}^7$	$45 \ \mu A \ cm^{-2}$	-	FTO
Ba ₃ HgGa ₂ S ₇ ⁸	$12.2 \ \mu A \ cm^{-2}$	1.0 V	ITO
Lu5GaS99	150 nA cm^{-2}	-	ITO
$Zn_4B_6O_{12}S^{10}\\$	$2.1 \ \mu A \ cm^{-2}$	0.6 V	ITO
$[(Ba_{19}Cl_4)(Ga_6Si_{12}O_{42}S_8)]^1$	150 nA cm^{-2}	-	ITO
1			
$Sr_6Cd_2Sb_6S_{10}O_7{}^{12}$	$2 \ \mu A \ cm^{-2}$	0.4 V	ITO
RbIn ₄ S ₆ Cl ¹³	28.75 nA cm ⁻²	5 V	-
$CsIn_4S_6Cl^{13}$	55.12 nA cm ⁻²	5 V	-
$Pb_{5}Sn_{3}S_{10}Cl_{2}{}^{13}$	19.58 mA cm ⁻²	5 V	-
$Pb_5Sn_3Se_{10}Cl_2^{13}$	$36.12 \ \mu A \ cm^{-2}$	5 V	

 Table S5 Photocurrent responses of some crystalline compounds.

"-" indicates no available data.

References

- 1. C. Liu, H. D. Yang, P. P. Hou, Y. Xiao, Y. Liu and H. Lin, *Dalton Trans.*, 2022, **51**, 904-909.
- C. Liu, Y. Xiao, H. Wang, W. X. Chai, X. F. Liu, D. M. Yan, H. Lin and Y. Liu, *Inorg. Chem.*, 2020, 59, 1577-1581.
- X. Zhang, J. Q. He, R. Q. Wang, K. J. Bu, J. C. Li, C. Zheng, J. H. Lin and F. Q. Huang, *Solar Rrl*, 2018, 2, 1800021.
- C. Liu, P. P. Hou, W. X. Chai, J. W. Tian, X. R. Zheng, Y. Y. Shen, M. J. Zhi, C. M. Zhou and Y. Liu, *J Alloy Compd*, 2016, 679, 420-425.
- K. J. Bu, X. Zhang, J. Huang, M. J. Luo, C. Zheng, R. Q. Wang, D. Wang, J. Q. He, W. Zhao, X. L. Che and F. Q. Huang, *Chem Commun*, 2019, 55, 4809-4812.
- Y. Xiao, S. H. Zhou, R. Yu, Y. Y. Shen, Z. J. Ma, H. Lin and Y. Liu, *Inorg. Chem.*, 2021, 60, 9263-9267.
- 7. B. H. Ji, E. Guderjahn, K. Wu, T. H. Syed, W. Wei, B. B. Zhang and J. Wang, *Phys. Chem. Chem. Phys.*, 2021, **23**, 23696-23702.
- 8. X. Huang, S. H. Yang, W. L. Liu and S. P. Guo, *Inorg. Chem.*, 2022, **61**, 12954-12958.
- 9. H. Lin, J. N. Shen, W. W. Zhu, Y. Liu, X. T. Wu, Q. L. Zhu and L. M. Wu, *Dalton Trans.*, 2017, **46**, 13731-13738.
- 10. W. F. Zhou, W. D. Yao, R. L. Tang, H. G. Xue and S. P. Guo, *J Alloy Compd*, 2021, **867**.
- Y. F. Shi, X. F. Li, Y. X. Zhang, H. Lin, Z. J. Ma, L. M. Wu, X. T. Wu and Q. L. Zhu, *Inorg. Chem.*, 2019, **58**, 6588-6592.
- S. Al Bacha, S. Saitzek, E. E. McCabe and H. Kabbour, *Inorg. Chem.*, 2022, 61, 18611-18621.
- 13. L. T. Jiang, M. Z. Li, X. M. Jiang, B. W. Liu and G. C. Guo, *Dalton Trans.*, 2022, **51**, 6638-6645.