SUPPLEMENTARY MATERIAL

Syntheses, characterizations, crystal structures and applications as sensitizers in solar cells of novel heteroleptic Cu(I) complexes containing nitrile-substituted 2,2'bipyridyl ligands

Tomás, Federico M.A.¹; Calvo, Natalia L.²; Vega, Nadia C.³; Morán Vieyra, Faustino E⁴.; Vega, Daniel R.⁵; Comedi, David³; Katz, Néstor E.¹; Fagalde, Florencia^{1*}

¹ INQUINOA (CONICET-UNT), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (T4000INI), San Miguel de Tucumán, Argentina.

² IQUIR (CONICET-UNR) Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.

³ INFINOA (CONICET-UNT) y Departamento de Física, Facultad de Ciencias Exactas y Tecnología, UNT, Av. Independencia 1800, (T4002BLR) S. M. de Tucumán, Argentina.

⁴ INBIONATEC (CONICET-UNSE), RN9, Km 1125, Villa El Zanjón, Santiago del Estero, Argentina.

⁵ Departamento Física de la Materia Condensada, GIyA, CAC, CNEA, Av. Gral. Paz 1499,

B1650KNA, San Martín, Buenos Aires, Argentina.

Table of Contents

Subject	Page N°
Figure S1. - ORTEP representation of (1) (Left) and (2) (Right) showing the numbering scheme used and displacement ellipsoids drawn at the 50% probability level.	S-2
Table S1 Crystal data and structure refinement at 298 K for (1) and (2).	S-2
Figure S2 Optimized structures and labels for (1, Left) and (2, Right) with B3LYP/6-311G(d,p) in CH ₂ Cl ₂ .	S-3
Table S2 Geometric description for hydrogen bond interactions for (1) and (2). [Å and °].	S-3
Table S3 Torsion angles [°] for (1).	S-4
Table S4 Torsion angles [°] for (2).	S-6
Figure S3. - ¹ H-NMR spectrum for 1 in CD ₃ OCD ₃ v= 400 MHz. Inset: Expansion to the region between $\delta \approx 9.0$ and 8.5 ppm.	S-9
Figure S4 ¹ H-NMR spectrum for 2 in $CD_3OCD_3 v = 400 \text{ mHz}$.	S-9
Figure S5 Alphabetical assignment of the protons of (1, Left) and (2, Right). The bond distances and angle values are arbitrary.	S-10
Figure S6- MLCT Band II of (1) fitted with two Gaussian functions. The curves corresponding to	
the LC transitions are not shown, since their contribution is negligible in this region	S-10
of the spectrum. Inset table: calculated fit parameters.	
Figure S7 Cyclic and square wave voltammograms for the first oxidation wave of (1) and (2) in	64.4
CH_2CI_2 0.1 M TBAH. WE: Glassy carbon, IRE: Ferrocene, CE: Pt wire, v= 100 mV s ⁻¹	511
Figure S8 Raman Spectrum of FTO/TiO ₂ . λ = 532 nm	S-12

Figure S1. ORTEP representation of (1) (Left) and (2) (Right) showing the numbering scheme used and displacement ellipsoids drawn at the 50% probability level.

Variable /Complex	(1)			(2)
Empirical formula	$C_{52}H_{47}CuF_6N_3O_2P_3$		$C_{52}H_{44}CuF_6N_4O_2P$	3
Formula weight	1016.37		1027.36	
Crystal system	Triclinic		Monoclinic	
Space group, Z	P-1, 2		P 21/c, 4	
Unit cell dimensions a, b, c (Å) α, β, γ (°)	$ \begin{array}{l} a = & & \alpha = \\ 10.9709(4) & & \beta = \\ b = 12.4043(5) & & \gamma = \\ c = 19.8431(8) & & \end{array} $	= 106.020(2) = 96.377(2) = 105.536(2)	a = 20.2471(8) b = 12.9760(5) c = 18.7049(7)	α= 90° β= 92.1830(10) γ = 90°
Cell volume (ų)	2450.27(17)		4910.7(3)	
Density (calcd., mg/m ³)	1.378		1.390	
Absorption coef. (mm ⁻¹)	0.610		0.610	
F(000)	1048		2112	
Crystal size (mm ³)	0.400 x 0.100 x 0.0	050	0.700 x 0.300 x 0	0.080
heta range for data collection (°)	1.780 to 26.405		1.864 to 26.377	
Reflections collected	126281		147602	
Independent reflections	10041 [R(int) = 0.1	1264]	10046 [R(int) = 0	0.1018]
Refinement method	Full-matrix least-squares on F ²			

 Table S1.- Crystal data and structure refinement at 298 K for (1) and (2).

Data / restraints / parameters	10041 / 4 / 605	10046 / 4 / 613
Goodness-of-fit on F ²	1.154	1.177
Final R indices [I >2sigma(I)]	R1 = 0.0882, wR ² = 0.2077	R1 = 0.0632, wR ² = 0.1455
R indices (all data)	R1 = 0.1261, wR ² = 0.2343	R1 = 0.0932, wR ² = 0.1686
CCDC deposition number:	2287810	2287809

Figure S2.- Optimized structures and labels for (1, left) and (2, right) with B3LYP/6-311G(d,p) in CH₂Cl₂.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Complex (1)				
C(52)-H(52C)N(3)#1	0.96	2.49	3.42(2)	163.0
C(46)-H(46)N(3)#2	0.93	2.75	3.432(15)	131.05
Complex (2)				
C(14)-H(14)N(4)#3	0.93	2.75	3.467(15)	135.55
C(1)-H(1)F(1)#4	0.93	2.60	3.506(6)	165.9
C(2)-H(2)F(4)#4	0.93	2.52	3.207(6)	131.0
C(11)-H(11)O(1)	0.93	2.45	3.175(5)	134.8
C(24)-H(24)F(3)#4	0.93	2.64	3.366(6)	135.6
C(48)-H(48)F(5)	0.93	2.39	3.075(6)	130.5

Table S2. Geometric description for hydrogen bond interactions for (1) and (2). [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 1-x, 2-y, 2-z #2 x,1+y, z #3 1-x,-1/2+y, 1/2 +z #4 x,-y+1/2,z-1/2

Table S3. Torsion angles [°] for (1).

C(5)-N(1)-C(1)-C(2)	1.2(10)
Cu(01)-N(1)-C(1)-C(2)	-167.8(5)
N(1)-C(1)-C(2)-C(3)	-1.6(11)
C(1)-C(2)-C(3)-C(4)	0.7(10)
C(1)-C(2)-C(3)-C(6)	178.7(7)
C(2)-C(3)-C(4)-C(5)	0.6(9)
C(6)-C(3)-C(4)-C(5)	-177.5(6)
C(1)-N(1)-C(5)-C(4)	0.2(9)
Cu(01)-N(1)-C(5)-C(4)	170.7(4)
C(1)-N(1)-C(5)-C(7)	-179.0(5)
Cu(01)-N(1)-C(5)-C(7)	-8.5(6)
C(3)-C(4)-C(5)-N(1)	-1.1(9)
C(3)-C(4)-C(5)-C(7)	178.1(6)
C(11)-N(2)-C(7)-C(8)	-1.6(8)
Cu(01)-N(2)-C(7)-C(8)	-176.7(5)
C(11)-N(2)-C(7)-C(5)	177.3(5)
Cu(01)-N(2)-C(7)-C(5)	2.2(6)
N(1)-C(5)-C(7)-N(2)	4.2(7)
C(4)-C(5)-C(7)-N(2)	-175.0(5)
N(1)-C(5)-C(7)-C(8)	-176.9(6)
C(4)-C(5)-C(7)-C(8)	3.9(9)
N(2)-C(7)-C(8)-C(9)	-0.4(9)
C(5)-C(7)-C(8)-C(9)	-179.2(6)
C(7)-C(8)-C(9)-C(10)	1.7(10)
C(7)-C(8)-C(9)-C(12)	-177.9(7)
C(8)-C(9)-C(10)-C(11)	-1 0(11)
C(12)-C(9)-C(10)-C(11)	178.5(7)
C(7)-N(2)-C(11)-C(10)	2.3(9)
$C_{\rm U}(01) - N(2) - C(11) - C(10)$	176.6(5)
C(9)-C(10)-C(11)-N(2)	-1 0(11)
C(25)-P(1)-C(13)-C(18)	-77.8(5)
C(19)-P(1)-C(13)-C(18)	32,4(6)
Cu(01)-P(1)-C(13)-C(18)	154.8(4)
C(25)-P(1)-C(13)-C(14)	99.7(5)
C(19)-P(1)-C(13)-C(14)	-150.1(5)
$C_{\rm U}(01)-P(1)-C(13)-C(14)$	-27 8(5)
C(18)-C(13)-C(14)-C(15)	0 4(9)
P(1)-C(13)-C(14)-C(15)	-177.1(5)
C(13)-C(14)-C(15)-C(16)	0.8(10)
C(14)-C(15)-C(16)-C(17)	-1.4(11)
C(15)-C(16)-C(17)-C(18)	0.8(11)
C(14)-C(13)-C(18)-C(17)	-1.0(9)
P(1)-C(13)-C(18)-C(17)	176 5(5)
C(16)-C(17)-C(18)-C(13)	0.4(10)
C(25)-P(1)-C(19)-C(20)	174 1(4)
C(13)-P(1)-C(19)-C(20)	65.8(5)
$C_{\mu}(01)-P(1)-C(19)-C(20)$	-65 2(5)
C(25)-P(1)-C(19)-C(24)	-13 7(6)
C(13)-P(1)-C(19)-C(24)	-122.0(5)
Cu(01)-P(1)-C(19)-C(24)	107.0(5)
C(24)-C(19)-C(20)-C(21)	1.8(9)
P(1)-C(19)-C(20)-C(21)	174.4(5)
	· /

C(19)-C(20)-C(21)-C(22)	-2 6(10)
C(20) - C(21) - C(22)	2.0(10) 1 $A(12)$
C(21) - C(22) - C(23)	1.4(12)
C(22) - C(22) - C(23) - C(24)	0.3(12)
C(22) - C(23) - C(24) - C(13)	-1.5(11)
C(20)-C(19)-C(24)-C(23)	0.1(9)
P(1)-C(19)-C(24)-C(23)	-1/2.0(5)
C(13)-P(1)-C(25)-C(30)	-0.1(5)
C(19)-P(1)-C(25)-C(30)	-109.3(5)
Cu(01)-P(1)-C(25)-C(30)	133.0(4)
C(13)-P(1)-C(25)-C(26)	-172.7(4)
C(19)-P(1)-C(25)-C(26)	78.1(4)
Cu(01)-P(1)-C(25)-C(26)	-39.6(4)
C(31)-O(1)-C(26)-C(27)	-27.8(7)
C(31)-O(1)-C(26)-C(25)	153.2(5)
C(30)-C(25)-C(26)-C(27)	-1.5(8)
P(1)-C(25)-C(26)-C(27)	171.7(4)
C(30)-C(25)-C(26)-O(1)	177.4(5)
P(1)-C(25)-C(26)-O(1)	-9.4(6)
O(1)-C(26)-C(27)-C(28)	-177.6(5)
C(25)-C(26)-C(27)-C(28)	1.3(9)
C(26)-C(27)-C(28)-C(29)	-0.7(9)
C(27)-C(28)-C(29)-C(30)	0.5(10)
C(28)-C(29)-C(30)-C(25)	-0.8(10)
C(26)-C(25)-C(30)-C(29)	1.3(8)
P(1)-C(25)-C(30)-C(29)	-171.3(5)
C(26)-O(1)-C(31)-C(36)	95.4(6)
C(26)-O(1)-C(31)-C(32)	-88.0(6)
C(36)-C(31)-C(32)-C(33)	-3.4(9)
O(1)-C(31)-C(32)-C(33)	-179.9(5)
C(36)-C(31)-C(32)-P(2)	173.5(5)
O(1)-C(31)-C(32)-P(2)	-2.9(7)
C(37)-P(2)-C(32)-C(33)	-92.3(6)
C(43)-P(2)-C(32)-C(33)	16.2(6)
Cu(01)-P(2)-C(32)-C(33)	143.3(5)
C(37)-P(2)-C(32)-C(31)	91.0(5)
C(43)-P(2)-C(32)-C(31)	-160.5(5)
Cu(01)-P(2)-C(32)-C(31)	-33.4(5)
C(31)-C(32)-C(33)-C(34)	0.9(9)
P(2)-C(32)-C(33)-C(34)	-175.8(5)
C(32)-C(33)-C(34)-C(35)	1.7(11)
C(33)-C(34)-C(35)-C(36)	-2.0(12)
C(34)-C(35)-C(36)-C(31)	-0.4(11)
C(32)-C(31)-C(36)-C(35)	3.2(10)
O(1)-C(31)-C(36)-C(35)	179.7(6)
C(43)-P(2)-C(37)-C(38)	92.1(5)
C(32)-P(2)-C(37)-C(38)	-160.9(5)
Cu(01)-P(2)-C(37)-C(38)	-36.6(5)
C(43)-P(2)-C(37)-C(42)	-86.5(6)
C(32)-P(2)-C(37)-C(42)	20.5(7)
Cu(01)-P(2)-C(37)-C(42)	144.8(6)
C(42)-C(37)-C(38)-C(39)	-1.0(10)
P(2)-C(37)-C(38)-C(39)	-179.7(6)
	- \-/

C(37)-C(38)-C(39)-C(40)	-0.4(12)
C(38)-C(39)-C(40)-C(41)	1.9(14)
C(39)-C(40)-C(41)-C(42)	-1.9(16)
C(38)-C(37)-C(42)-C(41)	1.0(12)
P(2)-C(37)-C(42)-C(41)	179.6(7)
C(40)-C(41)-C(42)-C(37)	0.4(15)
C(37)-P(2)-C(43)-C(48)	23.0(6)
C(32)-P(2)-C(43)-C(48)	-85.8(6)
Cu(01)-P(2)-C(43)-C(48)	149.5(5)
C(37)-P(2)-C(43)-C(44)	-158.3(5)
C(32)-P(2)-C(43)-C(44)	92.9(5)
Cu(01)-P(2)-C(43)-C(44)	-31.8(6)
C(48)-C(43)-C(44)-C(45)	-0.6(11)
P(2)-C(43)-C(44)-C(45)	-179.4(6)
C(43)-C(44)-C(45)-C(46)	-0.2(12)
C(44)-C(45)-C(46)-C(47)	1.4(14)
C(45)-C(46)-C(47)-C(48)	-1.7(14)
C(44)-C(43)-C(48)-C(47)	0.2(11)
P(2)-C(43)-C(48)-C(47)	179.0(6)
C(46)-C(47)-C(48)-C(43)	0.9(12)
C(51)-O(2)-C(50)-C(49)	-177(4)
C(50)-O(2)-C(51)-C(52)	134(5)

 Table S4.
 Torsion angles [°] for (2).

C(5)-N(2)-C(1)-C(2)	-1.2(6)
Cu(01)-N(2)-C(1)-C(2)	163.9(4)
N(2)-C(1)-C(2)-C(3)	0.2(7)
C(1)-C(2)-C(3)-C(4)	1.2(7)
C(1)-C(2)-C(3)-C(6)	-178.0(5)
C(2)-C(3)-C(4)-C(5)	-1.6(7)
C(6)-C(3)-C(4)-C(5)	177.7(5)
C(1)-N(2)-C(5)-C(4)	0.8(6)
Cu(01)-N(2)-C(5)-C(4)	-165.9(3)
C(1)-N(2)-C(5)-C(7)	178.5(3)
Cu(01)-N(2)-C(5)-C(7)	11.7(4)
C(3)-C(4)-C(5)-N(2)	0.5(6)
C(3)-C(4)-C(5)-C(7)	-177.0(4)
C(11)-N(1)-C(7)-C(8)	0.0(5)
Cu(01)-N(1)-C(7)-C(8)	-177.3(3)
C(11)-N(1)-C(7)-C(5)	179.8(3)
Cu(01)-N(1)-C(7)-C(5)	2.5(4)
N(2)-C(5)-C(7)-N(1)	-9.5(5)
C(4)-C(5)-C(7)-N(1)	168.2(4)
N(2)-C(5)-C(7)-C(8)	170.3(3)
C(4)-C(5)-C(7)-C(8)	-12.1(6)
N(1)-C(7)-C(8)-C(9)	-0.8(6)
C(5)-C(7)-C(8)-C(9)	179.4(3)

C(7)-C(8)-C(9)-C(10)	0.9(6)
C(7)-C(8)-C(9)-C(12)	179.3(4)
C(8)-C(9)-C(10)-C(11)	-0.1(6)
C(12)-C(9)-C(10)-C(11)	-178.6(4)
C(7)-N(1)-C(11)-C(10)	0.7(6)
Cu(01)-N(1)-C(11)-C(10)	177.7(3)
C(9)-C(10)-C(11)-N(1)	-0.7(7)
C(19)-P(2)-C(13)-C(18)	9.7(5)
C(25)-P(2)-C(13)-C(18)	-99.3(4)
Cu(01)-P(2)-C(13)-C(18)	138.8(4)
C(19)-P(2)-C(13)-C(14)	-172.8(4)
C(25)-P(2)-C(13)-C(14)	78 2(4)
$C_{U}(01)-P(2)-C(13)-C(14)$	-43 8(4)
C(18)-C(13)-C(14)-C(15)	1 6(8)
P(2)-C(13)-C(14)-C(15)	-176 0(4)
C(13)-C(14)-C(15)-C(16)	-0.9(10)
C(14)-C(15)-C(16)-C(17)	-0.7(12)
C(15)-C(16)-C(17)	-0.7(12) 1 7(12)
C(13) - C(10) - C(17) - C(18)	1.7(12)
C(14)-C(15)-C(16)-C(17)	
P(2)-U(13)-U(18)-U(17)	1 0(11)
C(10)-C(17)-C(18)-C(13)	-1.0(11)
C(13)-P(2)-C(19)-C(20)	-103.9(4)
C(25)-P(2)-C(19)-C(20)	2.6(4)
CU(01)-P(2)-C(19)-C(20)	125.2(3)
C(13)-P(2)-C(19)-C(24)	/5.8(3)
C(25)-P(2)-C(19)-C(24)	-1//./(3)
Cu(01)-P(2)-C(19)-C(24)	-55.1(3)
C(24)-C(19)-C(20)-C(21)	-0.4(6)
P(2)-C(19)-C(20)-C(21)	179.3(3)
C(19)-C(20)-C(21)-C(22)	0.1(7)
C(20)-C(21)-C(22)-C(23)	0.3(8)
C(21)-C(22)-C(23)-C(24)	-0.3(8)
C(22)-C(23)-C(24)-C(19)	0.0(7)
C(20)-C(19)-C(24)-C(23)	0.4(6)
P(2)-C(19)-C(24)-C(23)	-179.4(3)
C(19)-P(2)-C(25)-C(30)	91.8(4)
C(13)-P(2)-C(25)-C(30)	-161.5(3)
Cu(01)-P(2)-C(25)-C(30)	-34.1(4)
C(19)-P(2)-C(25)-C(26)	-93.9(4)
C(13)-P(2)-C(25)-C(26)	12.8(4)
Cu(01)-P(2)-C(25)-C(26)	140.3(3)
C(30)-C(25)-C(26)-C(27)	1.9(7)
P(2)-C(25)-C(26)-C(27)	-172.6(4)
C(25)-C(26)-C(27)-C(28)	-0.3(8)
C(26)-C(27)-C(28)-C(29)	-0.8(10)
C(27)-C(28)-C(29)-C(30)	0.2(10)
C(28)-C(29)-C(30)-C(25)	1.6(8)
C(28)-C(29)-C(30)-O(1)	179.2(5)
C(26)-C(25)-C(30)-C(29)	-2.6(7)
P(2)-C(25)-C(30)-C(29)	172.1(4)
C(26)-C(25)-C(30)-O(1)	179.7(4)
P(2)-C(25)-C(30)-O(1)	-5.6(5)

C(31)-O(1)-C(30)-C(29)	99.5(5)
C(31)-O(1)-C(30)-C(25)	-82.8(4)
C(30)-O(1)-C(31)-C(32)	-40.8(5)
C(30)-O(1)-C(31)-C(36)	141.8(4)
C(36)-C(31)-C(32)-C(33)	-1.7(7)
O(1)-C(31)-C(32)-C(33)	-179.1(4)
C(31)-C(32)-C(33)-C(34)	-0.1(8)
C(32)-C(33)-C(34)-C(35)	0.8(9)
C(33)-C(34)-C(35)-C(36)	0.1(8)
C(34)-C(35)-C(36)-C(31)	-1.8(7)
C(34)-C(35)-C(36)-P(1)	179 7(4)
C(32)-C(31)-C(36)-C(35)	2 6(6)
$\Omega(1)-\Gamma(31)-\Gamma(36)-\Gamma(35)$	-179 9(4)
C(32)-C(31)-C(36)-D(1)	-178 Q(3)
$O(1)_{C(31)_{C(36)_{P(1)}}}$	-170.5(5)
$C(A3)_P(1)_C(36)_C(35)$	-97 6(4)
$C(43) - \Gamma(1) - C(36) - C(35)$	-57.0(4) 8 2(4)
$C_{1}(01) P_{1}(1) C_{2}(2) C_{2}(2)$	0.3(4) 120.0/2)
C(1) - C(2) - C(2) - C(2)	150.0(5)
C(43)-P(1)-C(30)-C(31)	84.0(3)
C(37)-P(1)-C(30)-C(31)	-1/0.1(3)
C(1) - C(3) - C(3) - C(3)	-39.6(4)
C(43)-P(1)-C(37)-C(38)	21.1(4)
C(36)-P(1)-C(37)-C(38)	-84.9(4)
Cu(01)-P(1)-C(37)-C(38)	150.9(3)
C(43)-P(1)-C(37)-C(42)	-160.0(4)
C(36)-P(1)-C(37)-C(42)	94.1(4)
Cu(01)-P(1)-C(37)-C(42)	-30.1(4)
C(42)-C(37)-C(38)-C(39)	-3.8(8)
P(1)-C(37)-C(38)-C(39)	175.2(4)
C(37)-C(38)-C(39)-C(40)	1.3(10)
C(38)-C(39)-C(40)-C(41)	1.4(11)
C(39)-C(40)-C(41)-C(42)	-1.5(11)
C(40)-C(41)-C(42)-C(37)	-1.1(10)
C(38)-C(37)-C(42)-C(41)	3.8(8)
P(1)-C(37)-C(42)-C(41)	-175.3(5)
C(37)-P(1)-C(43)-C(48)	89.4(3)
C(36)-P(1)-C(43)-C(48)	-164.7(3)
Cu(01)-P(1)-C(43)-C(48)	-43.8(3)
C(37)-P(1)-C(43)-C(44)	-87.5(4)
C(36)-P(1)-C(43)-C(44)	18.3(4)
Cu(01)-P(1)-C(43)-C(44)	139.2(3)
C(48)-C(43)-C(44)-C(45)	-0.1(6)
P(1)-C(43)-C(44)-C(45)	176.8(3)
C(43)-C(44)-C(45)-C(46)	-1.1(7)
C(44)-C(45)-C(46)-C(47)	1.5(8)
C(45)-C(46)-C(47)-C(48)	-0.7(8)
C(44)-C(43)-C(48)-C(47)	0.9(6)
P(1)-C(43)-C(48)-C(47)	-176.2(4)
C(46)-C(47)-C(48)-C(43)	-0.5(7)
C(51)-O(2)-C(50)-C(49)	162.3(13)
C(50)-O(2)-C(51)-C(52)	-173.7(12)
, . , . ,	· /

Figure S3.- ¹H-NMR spectrum for **1** in CD₃OCD₃ v= 400 MHz. Inset: Expansion to the region between $\delta \approx$ 9.0 and 8.5 ppm.

Figure S4.- ¹H-NMR spectrum for **2** in $CD_3OCD_3 v = 400 \text{ mHz}$.

Figure S5.- Alphabetical assignment of the protons of (1, Left) and (2, Right). The bond distances and angle values are arbitrary.

Figure S6.- MLCT Band II of (1) fitted with two Gaussian functions. The curves corresponding to the LC transitions are not shown, since their contribution is negligible in this region of the spectrum. Inset table: calculated fit parameters.

Figure S7.- Cyclic and square wave voltammograms for the first oxidation wave of (1) and (2) in CH₂Cl₂
0.1 M TBAH. WE: Glassy carbon, IRE: Ferrocene, CE: Pt wire, v= 100 mV s⁻¹. In blue and red are showing the cyclic voltammograms of (1) and (2), respectively, while in dark cyan and orange the square wave voltammograms of (1) and (2) are presented. The Cyclic voltammogram of ferrocene is showed in dashed-dot black line.

Figure S8.- Raman Spectrum of FTO/TiO₂. λ = 532 nm.