Defects induced deep red luminescence of CaGdAlO₄-type layered perovskite: multi-cationic sites partial/full substitution and application in pc-LED and plant lighting

Bowen Wang,a Changshuai Gong,a Xuyan Xue,a Meiting Li,c Qi Zhu,d Xuejiao Wang,a* Ji-Guang Lib**

^aCollege of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121007, China

^bResearch Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

^cCAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China.

^dXiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021 China

^eSchool of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China

^fKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

*Corresponding author

Dr. Xuejiao Wang Bohai University Jianzhou, China Tel: +86-416-3400708 E-mail: wangxuejiao@bhu.edu.cn

Dr. Ji-Guang Li National Institute for Materials Science Ibaraki, Japan Tel: +81-29-860-4394 E-mail: <u>li.jiguang@nims.go.jp</u>

Fig. S1 XRD patterns of the CaGdAlO₄ samples synthesized in different atmospheres.

Table S1 A summary of $O_i:V_o$ ratios in intensity and in area of the XPS peaks for the CaGdAlO₄ samples calcined in different atmospheres.

	O _i :V _o	O _i :V _o
	(in intensity)	(in area)
Air	1.93	3.45
N_2	2.54	3.64
H_2+N_2	1.57	2.33

Table S2 A summary of the sub-peak position/intensity, trap depth (E_T) and trap density (N_0), which were obtained from the thermoluminescence spectra of the CaGdAlO₄ samples calcined in different atmospheres.

Atmosphere	$T_1/(^{\circ}C)$	Intensity ₁	$E_{T1}/(eV)$	N ₀₁	$T_2/(^{\circ}C)$	Intensity ₂	$E_{T2}/(eV)$	N ₀₂
Air	108.93	83.128	0.766	735.608	233.01	235.781	1.014	2086.451
N_2	113.85	84.953	0.776	810.075	261.63	450.009	1.072	4291.089
N_2 + H_2	-	-	-	-	240.36	510.338	1.029	3290.449

Ca:Gd	A_1	A_2	$ au_1(\mu s)$	$ au_2(\mu s)$	χ^2	$\tau_{av}(ms)$
0.990:1.010	12977.86	427.28	3.56	1775.63	1.399	1.652
0.995:1.005	13192.77	353.03	3.56	1865.95	1.112	1.764
1.000:1.000	14202.86	334.06	3.54	1741.39	1.178	1.603
1.005:0.995	12123.35	336.85	3.78	1751.51	1.106	1.626
1.010:0.990	11935.05	304.36	3.78	1721.49	1.204	1.585

Table S3 A summary of the results of fluorescence decay analysis for the samples synthesized with different Ca:Gd atomic ratios.

Table S4 A summary of the sub-peak position/intensity, trap depth (E_T) and trap density (N_0), which were obtained from the thermoluminescence spectra of the CaGdAlO₄ samples synthesized with varying Ca:Gd atomic ratio.

Ca:Gd	$T_1/(^{\circ}C)$	Intensity ₁	$E_{T1}/(eV)$	N ₀₁	$T_2/(^{\circ}C)$	Intensity ₂	$E_{T2}/(eV)$	N ₀₂
0.990:1.010	101.85	95.903	0.752	858.471	274.57	357.297	1.097	3198.327
0.995:1.005	109.10	134.508	0.767	1213.905	258.13	478.185	1.065	4315.512
					•••			
1.000:1.000	108.93	83.128	0.766	735.608	233.01	235.781	1.014	2086.451
1 005 0 005	100.52	49.225	07(7	420.02	204.00	10(102	0.050	044 707
1.005:0.995	109.53	48.225	0.767	429.02	204.89	106.192	0.958	944./0/
1 010.0 000	111 59	114 628	0 771	022 708	185 22	182 506	0.010	1402 758
1.010.0.990	111.30	114.030	0.//1	932.708	103.33	105.590	0.919	1473./30

Fig. S2 UV-vis absorption spectrum and $(\alpha hv)^2$ vs hv plot for CaGdAlO₄ (a), and a scheme for the proposed mechanism of luminescence (b).

Fig. S3 EDS spectra and the results of elemental mapping for samples partially substituted with $Mg^{2+}(a)$ and $Lu^{3+}(b)$.

Cation	R _{CN=9}	D _r
Ca ²⁺	1.180	-
Mg^{2+}	0.890	-24.6%
Sr^{2+}	1.310	9.9%
Ba ²⁺	1.470	19.7%
Gd^{3+}	1.107	-
La ³⁺	1.216	8.9%
Y ³⁺	1.075	-2.9%
Lu ³⁺	1.032	-6.8%

Table S5 A summary of ionic radius and the relative difference in ionic radius for Ca^{2+} , Gd^{3+} and the substituting ions.

Fig. S4 UV-vis absorption spectra (a, c) and the determination of bandgap energies (b, d) for Ca-site and Gd-site partially substituted products. The *A* in the Y-axis title of parts (b) and (d) represents absorbance, which is proportional to the absorption coefficient α .

Substituting ion	A ₁	A ₂	$ au_1(\mu s)$	$ au_2(\mu s)$	χ^2	$\tau_{av}(ms)$
Mg^{2+}	115.76	244.15	336.9	1792.64	1.049	1.673
Sr^{2+}	14058.08	241.78	3.48	1701.47	1.220	1.521
Ba^{2+}	14269.57	277.07	3.45	1768.34	1.298	1.607
La ³⁺	12125.22	204.46	3.71	1691.74	0.962	1.497
Y ³⁺	15487.45	242.78	3.36	1737.46	0.998	1.547
Lu^{3+}	881.37	1099.93	559.33	2043.01	1.791	1.776

Table S6 A summery of the results of fluorescence decay analysis for the samples with Ca and Gd sites partially substituted.

Fig. S5 Quantum yield analysis for the products partially substituted by Mg^{2+} and Lu^{3+} .

Fig. S6 The XRD patterns of CaGdAlO₄: $0.01Tb^{3+}$ and CaGdAlO₄: $0.01Eu^{3+}$ (a), and quantum yield analysis for CaGdAlO₄: $0.01Eu^{3+}$ (b) and CaGdAlO₄: $0.01Tb^{3+}$ (c).

Fig. S7 Photoluminescence spectra of the CaGdAlO₄ products, whose Ca and Gd sites were partially substituted.

Table S7 A summary of the results of fluorescence decay analysis for CaYAlO₄ and CaGdAlO₄.

Compound	A_1	A_2	$\tau_1(\mu s)$	$ au_2(\mu s)$	χ^2	$\tau_{av}(ms)$
CaGdAlO ₄	14202.86	334.06	3.54	1741.39	1.178	1.603
CaYAlO ₄	355.13	438.98	911.3	2758.42	1.691	2.369

Table S8 A summary of the sub-peak position/intensity, trap depth (E_T) and trap density (N_0), which were obtained from the thermoluminescence spectra of CaYAlO₄ and CaGdAlO₄.

Compound	$T_1/(^{\circ}C)$	Intensity ₁	$E_{T1}/(eV)$	N ₀₁	$T_2/(^{\circ}C)$	Intensity ₂	$E_{T2}/(eV)$	N ₀₂
CaGdAlO ₄	108.93	83.128	0.766	735.608	233.01	235.781	1.014	2086.451
CaYAlO ₄	110.75	268.534	0.770	2363.337	215.99	198.957	0.980	1750.998

Fig. S8 UV-vis absorption spectra (a) and the determination of bandgap energies (b) for CaGaAlO₄ and CaYAlO₄. The *A* in the Y-axis title of part (b) represents absorbance, which is proportional to the absorption coefficient α .