SUPPORTING INFORMATION

Gas-phase synthesis of [O=U-X]⁺ (X= Cl, Br and I) from a UO₂²⁺ precursor using ionmolecule reactions and an [O=U≡CH]⁺ intermediate

Justin Terhorst¹, Samuel Lenze¹, Luke Metzler^{1‡}, Allison N. Fry^{1†}, Amina Ihabi¹, Theodore Corcovilos² and Michael J. Van Stipdonk¹ ¹Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh PA 15282 USA ²Department of Physics, Duquesne University, Pittsburgh PA 15282 USA

Figure S1. Product ion spectra generated by isolation (MS⁶ stage) of $[OUI]^+$ (*m*/*z* 381) for reaction with H₂O: (a) 10 ms reaction time, (b) 100 ms reaction time and (c) 10 s reaction time. In the figure, precursor ion is indicated with bold font and reaction products identified with italicized font.

Figure S2. Comparison of product ion spectra generated by isolation (MS⁶ stage) of $[OUI]^+$ (*m*/*z* 381) for reaction with (a) H₂O and (b) CH₃OH. A 100 ms reaction time was used to generate each spectrum. In the figure, precursor ion is indicated with bold font and reaction products identified with italicized font.

Figure S3. Reaction energy diagram for the reaction of $[OUCH]^+$ with CH_3I via pathway 1, as outlined in the text. Data in blue represents structures (minima and transition states) in the singlet spin state. Species in the triplet spin state are indicated in red. Data generated by the B3LYP/SDD/6-311+G(d,p) level of theory.

Figure S4. Reaction energy diagram for the reaction of [OUCH]⁺ with CH₃I via pathway 2, as outlined in the text. Data in blue represents structures (minima and transition states) in the singlet spin state. Species in the triplet spin state are indicated in red. Data generated by the PBE0/SDD/6-311+G(d,p) level of theory.

Figure S5. Reaction energy diagram for the reaction of $[OUCH]^+$ with CH_3I via pathway 2, as outlined in the text. Data in blue represents structures (minima and transition states) in the singlet spin state. Species in the triplet spin state are indicated in red. Data generated by the B3LYP/SDD/6-311+G(d,p) level of theory.

Figure S6. Product ion spectra generated by isolation (MS^5 stage) of [OUCH]⁺ (m/z 267) for reaction with dichloromethane (CH_2Cl_2): (a) 1 ms reaction time, (b) 10 ms reaction time and (c) 100 ms reaction time. In the figure, precursor ion is indicated with bold font and reaction products identified with italicized font.

Figure S7. Product ion spectra generated by isolation (MS⁵ stage) of $[OUCH]^+$ (*m*/*z* 267) for reaction with allyl bromide (CH₂CH=CH₂Br): (a) 1 ms reaction time, (b) 10 ms reaction time and (c) 100 ms reaction time. In the figure, precursor ion is indicated with bold font and reaction products identified with italicized font.

Figure S8. Product ion spectra generated by isolation (MS⁵ stage) of $[OUCH]^+$ (*m*/*z* 267) for reaction with allyl bromide (CH₂CH=CH₂I): (a) 1 ms reaction time, (b) 10 ms reaction time and (c) 100 ms reaction time. In the figure, precursor ion is indicated with bold font and reaction products identified with italicized font.

Coordinated for relevant minima and transition state structures are available from the corresponding author upon request. <u>vanstipdonkm@duq.edu</u>

Figure S1.

Figure S2

Figure S3.

Reaction progress

Figure S4.

Reaction progress

Figure S5.

Figure S6.

Figure S7.

Figure S8.