Supporting Information

Cage compound Sc₅Pt₂₄B₁₂: a Pt-stuffed variant of filled skutterudite structure. Electronic and structural properties.

Leonid Salamakha^{1,4,*}, Oksana Sologub¹, Berthold Stöger², Herwig Michor¹, Ernst Bauer¹,

Peter F. Rogl³

¹Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria

²X-Ray Center, TU Wien, A-1060 Vienna, Austria

³Institute of Materials Chemistry, University of Vienna, A-1090 Vienna, Austria

⁴Department of Physics of Metals, L'viv National University, L'viv, Ukraine

Figure S1. Powder X-ray diffraction pattern of alloy $Sc_{10}Pt_{61}B_{29}$ (in at.%) annealed at 780 °C: upper row of *hkl* labels corresponds to $Sc_5Pt_{24}B_{12}$, space group *Im*-3, *a*=10.21112(9) Å; middle row stands for Pt_3B_2 , space group *Cmcm*, *a*=3.3671(1) Å, *b*=5.7962(2) Å, *c*=4.0565(2) Å; lower row represents the phase $ScPt_3B_x$, space group *Pm*-3*m*, *a*=4.0235(4) Å. The excluded region contains a small peak from sample holder.

Figure S2. Polyhedral representation of $Ce_4Pt_{12}Sn_{25}$ structure showing $[Sn_{12}]$ (gold) and $[Sn_{12}Pt_6]$ (blue) cages capturing Sn and Ce, respectively (a). Linkage of $[PtSn_6]$ trigonal prisms. For clarity, a half of the unit cell along *b* is shown (b).

Figure S3. Ellipsoidal model of the $Sc_5Pt_{24}B_{12}$ crystal structure (a) and coordination polyhedra of atoms: Sc1 (b), Sc2 (c), Pt1 (d), Pt2 (e) and B1 (f). Thermal ellipsoids represent 99.99% probability level.

Figure S4. Ellipsoidal model of the $Sc_{4.9}Pt_{24}B_{12}$ crystal structure (a) and coordination polyhedra of atoms: Sc1 (b), Sc2 (c), Pt1 (d), Pt2 (e) and B1 (f). Thermal ellipsoids represent 99.99% probability level.

Figure S5. Polyhedral representation of the Yb₃Rh₄Sn₁₃ structure showing [Sn₁₂] (gold) and [Sn₁₂Rh₄] (blue) cages capturing Sn and Yb, respectively. (a). Linkage of [RhSn₆] trigonal prisms in Yb₃Rh₄Sn₁₃. For clarity, a half of the unit cell along *b* is shown (b).

Figure S6. Arrangements of Sc-filled $[Pt_{12}]$ and Yb-filled $[Sn_{12}]$ cubooctahedra in Sc₅Pt₂₄B₁₂ (a) and Yb₃Rh₄Sn₁₃ (b) structures respectively.

Parameter	1.00 Sc1 in 2 <i>a</i>	0.91 Sc1 in 2 <i>a</i>
Formula from refinement	$Sc_5Pt_{24}B_{12}$	$Sc_{4.9}Pt_{24}B_{12}$
Composition (at.%)	$Sc_{12,2}Pt_{58,5}B_{29,3}$	$Sc_{12.0}Pt_{58.7}B_{29.3}$
GOF	1.146	1.165
Final R indices $[I>2\sigma(I)]$	R ₁ =0.0173	R ₁ =0.0173
,_	wR ₂ =0.0266	$wR_2 = 0.0254$
R indices (all data)	R ₁ =0.0227	R ₁ =0.0227
	wR ₂ =0.0273	wR ₂ =0.0261
Extinction (Zachariasen)	0.000147(8)	0.000148(8)
Sc1 in 2 <i>a</i> (0,0,0); Oc.	1.00	0.91
$U_{11}^{a} = U_{22} = U_{33};$	0.0106(9)	0.0068(9)
$U_{23}=U_{13}=U_{12}=0$		
Sc2 in 8 c (1/4,1/4,1/4); Oc.	1.00	1.00
$U_{11}=U_{22}=U_{33}; U_{23}=-U_{13}=-U_{12}$	0.0046(4), 0.0007(4)	0.0046(4), 0.0007(4)
Pt1 in $24g(0,y,z);$	<i>y</i> =0.23486(3), <i>z</i> =0.13162(3);	<i>y</i> =0.23485(3), <i>z</i> =0.13162(2);
Oc.	1.00	1.00
$U_{11}, U_{22}, U_{33},$	0.0050(1), 0.0055(1), 0.0037(1),	0.0050(1), 0.0055(1), 0.0037(1),
$U_{13}, U_{23}=U_{12}=0$	0.0001(1)	0.00004(8)
Pt2 in $24g(0,y,z);$	<i>y</i> =0.36478(3), <i>z</i> =0.37149(3);	<i>y</i> =0.36478(3), <i>z</i> =0.37149(3);
Oc.	1.00	1.00
$U_{11}, U_{22}, U_{33},$	0.0059(1), 0.0059(1), 0.0056(1),	0.0059(1), 0.0059(1), 0.0056(1),
$U_{13}, U_{23}=U_{12}=0$	0.0012(1)	0.0012(1)
B1 in $24g(0,y,z)$; Oc.	<i>y</i> =0.1522(9), <i>z</i> =0.3340(9); 1.00	<i>y</i> =0.1522(8), <i>z</i> =0.3343(8); 1.00
U _{iso} ^b	0.009(1)	0.009(1)
Residual density; max; min	1.789; -1.776	1.797; -1.759
$\left[el/Å^3 \right]$		

Table S1. Refinement details, atomic coordinates and displacement parameters for $Sc_5Pt_{24}B_{12}$ at different levels of 2a site occupation.

^{*a,b*}anisotropic (U_{ij}) and isotropic (U_{iso}) atomic displacement parameters are given in Å².

Figure S7. Arrangements of $[FeP_6]$ octahedra (a) and P_{12} icosahedra around La atom (b) in the $LaFe_4P_{12}$ structure.

Figure S8. Group-subgroup relationships for the $Yb_3Rh_4Sn_{13}$ and $Sc_5Rh_{24}B_{12}$ structures.

Figure S9. Distribution of electron localization function in $Sc_5Pt_{24}B_{12}$ in the plane (100) (a). Sections of calculated electron localization function in the planes within the [Sc2Pt₁₂B₆] polyhedron containing the chemical bonds: Sc2-Pt1, Sc2-Pt2 and the bonds between platinum atoms (b); Sc2-B1, Pt1-B1 and Pt2-B1 (c). Sections of calculated electron localization function visualizing platinum-boron interactions in [BPt₆] trigonal prism (d).