Supporting Information

Effective disproportionation of SiO induced by Na₂CO₃ and improved cycling stability via PDA-based carbon coating as anode materials for Li-ion batteries

Fig. S1 XRD patterns of d-SiO-G@C materials.

Fig. S2 FTIR spectra of d-SiO-G@C-3 composite.

Fig. S3 XPS spectra of Na 1s before and after washing.

Fig. S4 TG-DTG analysis curves of (a) d-SiO-G@C-1, (b) d-SiO-G@C-2, (c) d-SiO-G@C-3 and (d) d-SiO-G@C-4 composites in air.

Fig. S5 First charge/discharge curves of SiO materials with different amounts of Na_2CO_3

Fig. S6 Electrochemical performances of SiO-G composites with different amounts of Na₂CO₃ composites. (a) Charge and discharge curves of the first cycle, (b) Rate performance, (c) Cycling performance.

Fig. S7 dQ/dV curves of d-SiO-G@C composites during the second cycles.

Table S1 Peak areas of different	nt oxidation states o	of Si from the Si	i 2p XPS of d-SiO-
	G-x composites		

sample	Si ⁰	Si ¹⁺	Si ²⁺	Si ³⁺	Si ⁴⁺
d-SiO-G-2.5%	7%	10.8%	17.5%	37.2%	27.5%
d-SiO-G-5%	9.2%	9%	16.6%	27.1%	38.1%
d-SiO-G-10%	4.7%	7.3%	15.7%	25.8%	46.5%

 Table S2 Determination of silicon ions content in different solutions by ICP-OES

 method

method		
sample	The Si ion content in the supernatant $(mg L^{-1})$	
DI Water	<0.1	
d-SiO-G-5%	0.69	
d-SiO-G-10%	1.19	

material and d-SiOx composites				
	Specific	Specific		
sample	capacity of first	capacity of the first	ICE	
	charge (mAh g ⁻¹)	discharge (mAh g ⁻¹)		
SiO	1105.8	1646.2	63.1%	
d-SiO-2.5%	1096.7	1541.7	71.1%	
d-SiO-5%	1076.5	1404.5	76.6%	
d-SiO-10%	605.8	1106.0	54.8%	

 Table S3 Initial specific charge/discharge capacities and ICE of commercial SiO material and d-SiOx composites

 Table S4 Initial specific charge/discharge capacities and ICE of SiO-G and d-SiO-G composites

	comp	051105	
	Initial specific	Initial specific	
sample	charge capacity	discharge capacity	ICE
	(mAh g ⁻¹)	(mAh g ⁻¹)	
SiO-G	695.2	1033.9	67.2%
d-SiO-G-2.5%	614.1	822.3	74.7%
d-SiO-G-5%	606.3	781.6	77.6%
d-SiO-G-10%	512.9	710.4	72.2%

Table S5 Initial specific charge/discharge capacities and ICE of d-SiO-G-5% and d-SiO-G@C composites

	310-0160 0	omposites	
Sample	Initial specific	Initial specific	ICE
	charging	discharge	
	capacity (mAh g ⁻	capacity (mAh g-	
	1)	1)	
d-SiO-G-5%	610.3	810.6	75.3%
d-SiO-G@C-1	581.9	807.8	72.0%
d-SiO-G@C-2	575.6	795.0	72.2%
d-SiO-G@C-3	563.4	775.9	72.6%

d-SiO-G@C-4	548.3	774.3	70.8%

cycle.				
	G@C-3			
Cycle	3rd	300th	3rd	300th
$ m R_{f} / \Omega$	5.23	7.98	5.44	6.36
R_{ct}/Ω	32.05	58.87	30.18	45.42
R _s	3.18	7.03	0.45	5.8
R _W	3.18	2.94	2.93	2.69

Table S6 EIS curves of d-SiO-G-5% and d-SiO-G@C-3 at the 3rd and 300th