Supporting information for

Copper tetrathiovanadate (Cu₃VS₄): a new emerging electrode for rechargeable aqueous aluminum-ion battery

Sunny Nandi^{a,b*}, Hirdoyjit Phukon^{c,d}, Dipul Kalita^d, Shyamal K. Das^a

 ^{a*}Department of Physics, Tezpur University, Assam 784028, India
^bNew Technologies – Research Centre (NTC), University of West Bohemia, Pilsen 30100, Czech Republic
^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
^dAgro-technology and Rural Development Division(ARRD), North East Institute of Science and Technology, Jorhat-785006, Assam, India

Experimental details:

Cu₃VS₄ was prepared by a simple hydrothermal method, as reported in ref [6f]. Briefly, to describe, 1.39 g of vanadium acetylacetonate ($C_{15}H_{21}O_6V$), 0.301 g thioacetamide (CH₃CSNH₂), and 0.161 g copper nitrate trihydrate (Cu (NO₃)₂.3H₂O) were dissolved in 35 ml of methanol solution and stirred for 30 min to form a homogenous solution. The solution was then transferred to a Teflon-lined stainlesssteel autoclave and heated at 160 °C for 12 hr and then allowed to cool naturally to room temperature. The final product was collected by centrifugation, and repeatedly washed with ethanol and deionized water for several times, and dried at 80 °C overnight.

Electrode slurry was prepared by mixing Cu_3VS_4 powder, carbon black, and polyvinylidene fluoride in a weight ratio of 7:2:1 using N-methyl-2-pyrrolidone solvent. The slurry was cast on pristine graphite (breadth = 1.5 cm, length = 1 cm) and dried at 80 °C for 12 hr. For the electrochemical measurements, cyclic voltammetry (CV) and galvanostatic charge/discharge experiments were performed in a conventional three-electrode electrochemical glass cell where Pt electrode and Ag/AgCl electrode were used as the counter and reference electrodes, respectively. The used electrolyte were 1 M AlCl₃, 1 M Al(ClO₄)₃, 0.5 M Al₂(SO₄)₃, 1 M Al(NO₃)₃ unless otherwise specially stated. The discharge/charge and CV experiments were performed in a voltage range of -0.8 to 1 V (vs. Ag/AgCl). Electrochemical

impedance spectra (EIS) were recorded in the frequency range of 1 mHz-200 kHz at 10 mV signal amplitude. All the electrochemical tests were performed at room temperature (25 °C).

The composition of the as-prepared samples was evaluated using powder X-ray diffraction (BRUKER AXS D8 FOCUS; Cu-K_a radiation, $\lambda = 1.5406$ Å). The morphology of the as-prepared samples was examined by field emission scanning electron microscope (FESEM, JEOL JSM 7200F). X-ray photoelectron spectroscopy (XPS, Thermo-Scientific ESCALAB Xi⁺) was used to analyze the chemical composition and valence states of the constituent elements.

Supplementary figures

Figure S1: (a-b) FESEM images of Cu₃VS₄.

Figure S2: CV profiles of Cu_3VS_4 in (a) 1 M LiCl and (b) 1 M NaCl aqueous electrolytes at a scan rate of 2.5 mVs⁻¹.

Figure S3: EIS spectra of Cu₃VS₄ in three different aqueous electrolytes.

Figure S4: (a) Ex-situ XRD patterns of Cu_3VS_4 before and after 1st discharge/1st charge state, and (b-c) enlargement of degree from 10° to 30° respectively.

Figure S5: Ex-situ XRD patterns of Cu_3VS_4 before and after 1st discharge/1st charge state. The dotted line indicates the AlCu peaks.

Figure S6: Ex-situ XPS spectra of (a) S 2p, and (b) V 2p before and after 1st discharge/1st charge states.

Figure S7: CV profiles of Cu₃VS₄ at different scan rates in 1 M AlCl₃ aqueous electrolyte, and (b) the corresponding linear dependence plots between peak current versus square root of scan rates using the equation $I = k\gamma^{0.5}$ (k is a constant).

Discharge capacity (mAh g ⁻¹) /current density (mA g ⁻¹)	Cycle number	Type of electrolyte	Reference
50/100	50	Chloroaluminate	01
50/100		electrolyte	51
80/100	100	Chloroaluminate electrolyte	S2
129.24/400	120	Chloroaluminate electrolyte	S3
322.2/200	120	Chloroaluminate electrolyte	S4
116.5/300	500	Chloroaluminate electrolyte	S5
77/2000	300	Aqueous electrolyte	This work
	Discharge capacity (mAh g ⁻¹) /current density (mA g ⁻¹) 50/100 80/100 129.24/400 322.2/200 116.5/300 77/2000	Discharge capacity Cycle number (mAh g ⁻¹) Cycle number /current density (mA g ⁻¹) 50 50/100 50 80/100 100 129.24/400 120 322.2/200 120 116.5/300 500 77/2000 300	Discharge capacityCycle numberType of electrolyte(mAh g ⁻¹)Cycle numberType of electrolyte/current density (mA g ⁻¹)50Chloroaluminate electrolyte50/10050Chloroaluminate electrolyte80/100100Chloroaluminate electrolyte129.24/400120Chloroaluminate electrolyte322.2/200120Chloroaluminate electrolyte116.5/300500Chloroaluminate electrolyte77/2000300Aqueous electrolyte

Table S1: The electrochemical performances of vanadium sulfides-based cathode materials

S1: L. Wu, R. Sun, F. Xiong, C. Pei, K. Han, C. Peng, Y. Fan, W. Yang, Q. An, L. Mai, *Phys. Chem. Chem. Phys.*, 2018, **20**, 22563-22568.

- S2: X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian, S. Jiao, ChemSusChem, 2018, 11, 709-715.
- S3: L. Xing, K. A. Owusu, X. Liu, J. Meng, K. Wang, Q. An, L. Mai, Nano Energy, 2021, 79, 105384.
- S4: X. Han, F. Wu, R. Zhao, Y. Bai, C. Wu, ACS Appl. Mater. Interfaces, 2023, 15, 6888-6901.
- S5: Y. Wang, Z. Shen, X. Lin, Q. Ding, X. Huang, T. Han, H. Zhang, J. Liu, *Chem. Commun.*, 2022, **58**, 11677-11680