Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplemental Materials

Dielectric, Pyroelectric, and Ferroelectric Studies in (1-x)AgNbO₃-xFeNbO₄ Lead-free Ceramics

Parastoo Moradi^a, Ehsan Taheri-Nassaj^a, *, Amin Yourdkhani^a, Vasyl Mykhailovych^{b,c,d}, Andrei Diaconu^b, Aurelian Rotaru^b

- ^a Department of Materials Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran
- ^b Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, 13 Universitatii St., 720229, Suceava, Romania
- ^c Department of General Chemistry and Chemistry of Materials, Yuriy Fedkovych Chernivtsi National University, 2, Kotsiubynskyi St., 58002 Chernivtsi, Ukraine
- ^d Physical, Technical and Computer Science Institute, Yuriy Fedkovych Chernivtsi National University, 2, Kotsiubynskyi St., 58002, Chernivtsi, Ukraine

Sample	AN		
Chemical formula	AgNbO ₃		
Formula weight (g/mol)	248.773		
Crystal system	Orthorhombic		
Space group	$Pmc2_1$		
	a=15.66065(38)		
Unit cell dimensions (Å)	b= 5.55063(14)		
	c = 5.60524(14)		
Volume (Å ³)	487.244(19)		
Density (calculated) (g/cm ³)	6.920		
AgNbO ₃ (Wt. Frac)	0.99805(1)		
FeNbO ₄ (Wt. Frac)	0		
Ag (Wt. Frac)	0.00195(9)		
Chi ²	2.110		
Eitted P feature $R_{wp}(\%)$	16.03		
Filled K-factors $R_p(\%)$	11.57		

Table S1. Refinement parameters for AN ceramic at 25 °C

Sampl	ANF005	
Chemical formula		AgNbO ₃
Formula weigh	nt (g/mol)	248.773
Crystal sy	stem	Orthorhombic
Space gr	oup	$Pmc2_1$
Unit cell dimensions (Å)		a= 15.64172(68) b= 5.54700(25) c= 5.60189(26)
Volume (Å ³) AN		486.046(37)
Density (calculated) (g/cm ³) AN		6.755
Density (calculated) (g/cm ³) FN		5.622
AgNbO ₃ (Wt. Frac)		0.92239(39)
FeNbO ₄ (Wt. Frac)		0.07446(226)
Ag (Wt. Frac)		0.00315(17)
Chi ²		4.196
Fitted R- factors	R_{wp} (%)	23.75
	$R_p(\%)$	17.28

Table S2. Refinement parameters for ANF005 ceramic at 25 $^{\circ}\mathrm{C}$

Table S3. Refinement parameters for ANF01 ceramic at 25 $^{\circ}\mathrm{C}$

Sample	ANF01	
Chemical formula	Chemical formula	
Formula weight (g/m	ol)	248.773
Crystal system		Orthorhombic
Space group		$Pmc2_1$
Unit cell dimensions (Å)		a= 15.64202(59)
		b=5.54572(22)
		c = 5.60104(24)
Volume (Å ³) AN		485.869(33)
Density (calculated) (g/cm ³) AN		6.973
Density (calculated) (g/cm ³) FN		5.497
AgNbO ₃ (Wt. Frac	0.93596(28)	
FeNbO ₄ (Wt. Frac)		0.06158(202)
Ag (Wt. Frac)		0.00246(16)
Chi ²		3.689
Eitted D. frateur	R_{wp} (%)	22.18
Filled K- factors	$R_{p}(\%)$	15.52

Sample	ANF025	
Chemical formula		AgNbO ₃
Formula weigh	t (g/mol)	248.773
Crystal sys	stem	Orthorhombic
Space gro	oup	$Pmc2_1$
		a= 15.64173(59)
Unit cell dimen	sions (Å)	b= 5.54641(22)
		c = 5.60207(24)
Volume (Å ²	³) AN	486.010(33)
Density (calculated) (g/cm ³) AN		6.844
Density (calculated) (g/cm ³) FN		5.449
AgNbO ₃ (Wt. Frac)		0.92628(30)
FeNbO ₄ (Wt. Frac)		0.06956(176)
Ag (Wt. Frac)		0.00417(16)
Chi ²		3.475
Eitted D. fasters	R_{wp} (%)	20.15
Filled K- factors	$R_{p}(\%)$	13.54

Table S4. Refinement parameters for ANF025 ceramic at 25 $^{\circ}\mathrm{C}$

Table S5. Refinement parameters for ANF05 ceramic at 25 $^{\circ}\mathrm{C}$

Sample	ANF05		
Chemical formula	AgNbO ₃		
Formula weight (g/mol)	248.773		
Crystal system	Orthorhombic		
Space group	$Pmc2_1$		
	a= 15.64416(64)		
Unit cell dimensions (Å)	b= 5.54718(23)		
	c = 5.60014(25)		
Volume (Å ³) AN	485.986(36)		
Density (calculated) (g/cm ³) AN	6.848		
Density (calculated) (g/cm ³) FN	5.470		
AgNbO ₃ (Wt. Frac)	0.89411(46)		
FeNbO ₄ (Wt. Frac)	0.09788(223)		
Ag (Wt. Frac)	0.00800(24)		
Chi ²	3.939		
Eitted P feators $R_{wp}(\%)$	21.71		
$\frac{1}{R_{p}}(\%)$	14.03		

Sample		ANF1		
Chemical formula		AgNbO ₃		
Formula weight	t (g/mol)	248.773		
Crystal sys	tem	Orthorhombic		
Space gro	oup	$Pmc2_1$		
		a= 15.62553(71)		
Unit cell dimensions (Å)		b= 5.54072(25)		
		c= 5.59481(26)		
Volume (Å ³) AN		484.380(38)		
Density (calculated) (g/cm ³) AN		6.844		
Density (calculated) (g/cm ³) FN		5.459		
AgNbO ₃ (Wt. Frac)		0.83871(71)		
FeNbO ₄ (Wt. Frac)		0.14298(244)		
Ag (Wt. Frac)		0.01830(32)		
Chi ²		4.274		
Fitted D fasters	R_{wp} (%)	22.63		
Filled K- factors	$R_{p}(\%)$	15.62		

Table S6. Refinement parameters for ANF1 ceramic at 25 °C

Table S7. The relative density with standard error of ANF(x) ceramics

x (%)	D _{relative} (%)
0	97.96 ± 0.01
0.5	97.37 ± 0.02
1	97.16 ± 0.03
2.5	96.36 ± 0.02
5	96.86 ± 0.03
10	96.75 ± 0.03

x (%)	Т _{м1-м2} (°С)	Т _{м2-м3} (°С)	T _{M3-0} (°C)	$T_f(^{\circ}C)$
0	71.807	262.74	324.5	184.6
0.5	100.45	307.11	350.85	192.98
1	102.84	306.13	349.14	193.63
2.5	78.178	287.15	325.92	191.02
5	107	326.81	342.79	197.52
10	101.58	-	351.62	193.29

Table S8. The temperature of the phase transitions of ANF(x) ceramics is based on the real parts of the dielectric permittivity-temperature spectrum during heating at 10 kHz

The value of ϵ_0 , e, and A for use in the Mott–Schottky equation is 8.8541 × 10⁻¹² F.m⁻¹, 1.602 × 10⁻¹⁹ C and A = 3.142 10⁻⁶ m², respectively. The value of permittivity and N_D is listed in Table S9.

Table S9. The value of the slope from the line fit in the Mott–Schottky plot, the permittivity and the calculated N_D .

x (%)	Slope (F ⁻² V ⁻¹)	3	N _D (× 10 ²⁰ m ⁻³)
0	2.75×10^{18}	256.803	2.02
0.5	1.31×10^{18}	389.198	2.80
1	6.64×10 ¹⁷	399.094	5.39
2.5	5.91×10^{17}	399.248	6.06
5	4.82×10 ¹⁵	526.01	563.48

Fig. S1. The EDS spectral analysis of (a) AN and (b) ANF1 ceramics.

Fig. S2. The EDS maps and spectral analysis of the cross-sectional of ANF1 ceramic.

Fig. S3. Temperature dependence of the real (ϵ') part of the dielectric permittivity of ANF(x) ceramics at 10 kHz in a heating and cooling cycle.

Fig. S4 shows the Olsen cycle scheme by the black arrows for calculating the energy harvesting of the (1-x)AgNbO₃-xFeNbO₄ ceramics. As shown, there are four processes in the Olsen cycle: (1) the isothermal process $1 \rightarrow 2$ from a low electric field (E_L) to a high electric field (E_H) at low temperature (T_L), (2) the process $2 \rightarrow 3$ heating the sample from T_L to a high temperature (T_H) at E_H, (3) the isothermal process $3 \rightarrow 4$ involves decreasing from E_H to E_L at T_H, and (4) the process $4 \rightarrow 1$ involves cooling the sample from T_H to T_L at E_L and completes acycle. The area of the closed cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ corresponds to the harvested pyroelectric energy density (W) obtained and can be calculated as follows¹⁻⁴:

$$W = \oint EdP$$
 Eq. 5

The W of (1-x)AgNbO₃-xFeNbO₄ ceramics was measured between T_L (30 °C) and T_H (100 °C), and electrical fields of 15-20 kV/cm².

Fig. S4. Olsen cycle diagram of the pyroelectric energy harvesting for the (1-x)AgNbO₃xFeNbO₄ ceramics.

- 1. S. Li, H. Nie, G. Wang, N. Liu, M. Zhou, F. Cao and X. Dong, *Journal of Materials Chemistry* C, 2019, 7, 4403-4414.
- 2. R. A. Kishore and S. Priya, *Materials*, 2018, 11, 1433.
- 3. A. K. Batra and M. D. Aggarwal, 2013.
- H. Maiwa, in Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications, eds. H. Kimura, Z. Cheng and T. Jia, Elsevier, 2019, DOI: https://doi.org/10.1016/B978-0-12-814499-2.00012-8, pp. 217-229.