Supporting Information

Influence of Crystal Structure and Composition on Optical and Electronic Properties of Pyridinium-based Bismuth Iodide Complexes

Gisya Abdi,^{1*} Marlena Gryl,^{2*} Andrzej Sławek,¹ Ewelina Kowalewska,¹ Tomasz Mazur,¹ Agnieszka Podborska,¹ Krzysztof Mech,¹ Piotr Zawal,¹ Anurag Pritam,¹ Angelika Kmita,¹ Lulu Alluhaibi,³ Alexey Maximenko,³ Chakkooth Vijayakumar,⁴ Konrad Szaciłowski^{1*}

¹Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland

²Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland

³National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98, 30-392 Kraków, Poland

⁴Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, India

Keywords. Lead-free perovskite, pyridinium-based bismuth iodide complexes, crystal engineering, electrical conductivity, optical properties, Hirschfeld analysis.

^{*} Corresponding authors: agisya@agh.edu.pl, marlena.gryl@uj.edu.pl and szacilow@agh.edu.pl

Compound	Mass	Mole ratios (Experimental result) ¹	Mole ratios (Theoretical
	average1/C:H:N		result) ²
4-AmpyBiI ₃	9.14:3.73:0.98	5.71:7.24:2	5:7:2
4-MetpyBiI ₃	8.84: 0.96: 1.62	6.37:8.24: 1	6:8:1
4-DimetpyBiI ₃	14.49: 1.9: 4.68	7.2:11.25: 2	7:11:2
4-CNpyBiI ₃	9.46:3.21:0.861	6.88:7.4:6:2	6:5:2

 Table SI 1. Elemental analysis of obtained pyridinium iodibismuthates.

¹Elemental analysis ²Protonated organic moiety

Table SI2. Summary of TG-DTG results.

Compound	Δm [%]	T decomposition		
_		T _{start} , [°C]	T_{max} , [°C]	T_{end} [°C]
4-AmpyBiI ₃	99.98 %	236.4	400.2	405.7
	(24.00 500.00)			
	$(24^{\circ}C - 300^{\circ}C)$	001.1	0.51.0	250.2
4-MepyBil ₃	99.81%	231.1	371.8	378.3
	(24 °C – 500 °C)			
4-DmapyBiI ₃	93.93%	282.9	416.5	449.5
	$(24 ^{\circ}\text{C} - 500 ^{\circ}\text{C})$			
4-CNpyBiI ₃	23 %	93.3	239.7	245.7
	(24 °C – 246°C)			
	76.98 %	246	350	400
	(246 °C - 400 °C)			
pyBiI ₃	26.88%	78	141	159.03
	(24 °C – 159.03°C)			
	73.34%	159.03	233.89	274.98
	(159.03 °C – 274.98°C)			
1		1	1	1

Figure SI 1. TG-DTA of a) 4-AmpyBiI₃ b) 4-MetpyBiI₃ c) 4-DmapyBiI₃ d)4-CNpyBiI3 e) pyBiI₃.

Figure SI 2. (a) TGA-Mass spectrum of 4-DmapyBiI₃, (b) GC-Mass spectrum of 4-MepyBiI₃.

Figure SI 3. Packing of the structural components in a) 4-AmpyBiI₃ along [001], b) 4-DmapyBiI₃ along [001], c) 4-CNpyBiI₃ along [010], d) 4-MepyBiI₃ along [100].

Figure SI 4. a) $[BiI_4]_n$ in 4-AmpyBiI₃ along [001], b) Bi_2I_9 in 4-DmapyBiI₃ along [001], c) Bi_2I_{10} in 4-CNpyBiI₃ along [010], d) Bi_4I_{16} in 4-MepyBiI₃ along [100].

D-H…A	d(D-H)	d(H···A)	d(D···A)	<(DHA)		
N(8)-H(8)I(3)	0.88	3.06	3.715(3)	133.0		
N(8)-H(8)I(3)#1	0.88	3.06	3.715(3)	133.0		
N(4)-H(4A)I(3)#4	0.87(2)	2.93(5)	3.7242(18)	153(9)		
C(7)-H(7)I(2)#5	0.95	3.31	3.805(3)	114.5		
C(5)-H(5)I(2)#6	0.95	3.10	3.947(3)	149.7		
Symmetry transformations used to generate equivalent atoms:						
#1 - x + 1, y, -z + 3/2 #2 - x + 1, -y + 2, -z + 1 #3 x, -y + 2, z + 1/2						
#4 -x+1,-y+1,-z+2 #5 -x+1/2,-y+3/2,z+1/2 #6 -x+1/2,y-1/2,z						

Table SI3. Geometry of weak interactions in 4-AmpyBiI₃ (1) [Å/9]

Table SI4. Geometry of weak interactions in 4-DmapyBiI₃ [Å/?]

D-H…A	d(D-H)	d(H···A)	d(D···A)	<(DHA)		
C(3A)-H(3A)…I(8)#2	0.95	3.08	3.965(3)	155.8		
C(6A)-H(6A)…I(6)#3	0.95	3.06	3.723(3)	128.6		
C(6A)-H(6A)…I(8)	0.95	3.29	3.827(3)	118.0		
C(8A)-H(8A2)…I(1)#4	0.98	3.26	4.110(4)	146.6		
N(1A)-H(1A)…I(3)	0.88	2.92	3.702(3)	148.2		
N(1B)-H(1B)…I(4)	0.88	2.74	3.528(3)	149.2		
C(2B)-H(2B)…I(6)#3	0.95	3.12	3.853(3)	135.5		
C(2A)-H(2A)…I(2)#2	0.95	3.08	4.002(3)	164.2		
C(5B)-H(5B)…I(8)#5	0.95	3.22	4.090(3)	152.3		
C(7B)-H(7B1)…I(2)#6	0.98	3.26	3.774(4)	114.2		
C(7B)-H(7B2)…I(5)#7	0.98	3.33	3.966(4)	124.7		
C(7B)-H(7B3)…I(7)#3	0.98	3.22	3.796(5)	119.5		
C(5A)-H(5A)…I(6)#3	0.95	3.30	3.841(3)	118.3		

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z; #2 x-1/2,y,-z+3/2; #3 -x+1,-y+1,-z+1; #4 -x+1/2,-y+1,z-1/2; #5 x+1/2,y,-z+3/2; #6 - x+3/2,-y+1,z-1/2; #7 -x+3/2,-y+1,z+1/2

D-H…A	d(D-H)	d(H···A)	d(D···A)	<(DHA)	
C(6A)-H(6A)I(2)#2	0.93	3.33	4.170(8)	151.7	
C(3A)-H(3A)I(6)	0.93	3.25	4.012(8)	140.1	
C(2A)-H(2A)I(4)	0.93	3.23	4.100(8)	157.0	
C(2A)-H(2A)I(5)	0.93	3.31	3.774(7)	113.0	
O(1)-H(1)I(7)	0.82	2.91	3.597(10)	142.8	
C(6B)-H(6B)N(2B)#3	0.93	2.45	3.079(16)	125.2	
N(1B)-H(1B)O(1)	0.86	1.85	2.631(15)	149.5	
C(2B)-H(2B)I(6)#4	0.93	3.14	3.966(13)	149.2	
C(3B)-H(3B)I(7)#4	0.93	3.13	4.058(13)	175.4	
C(1)-H(1D)I(1)#5	0.96	2.94	3.843(14)	157.1	
C(7A)-H(7AB)I(4)	0.96	3.17	4.082(10)	158.3	
Symmetry transformations used to generate equivalent atoms:					

Table SI5. Geometry of weak interactions in 4-CNpyBiI₃ [Å/9]

#1 #2 x-1/2,-y+1/2,z-1/2 #3 -x+3/2,y+1/2,-z+1/2

#4 -x+2,-y,-z+1 #5 x+1,y,z

Table SI6. Geometry of weak interactions in (3) [.	Å/]
--	------

D-H···A	d(D-H)	d(H····A)	d(D····A)	<(DHA)
N(1A)-H(1A)…I(9)#1	0.88	2.70	3.560(10)	166.0
C(6A)-H(6A)…I(6)#2	0.95	3.25	4.085(11)	147.9
C(2C)-H(2C)…I(4)#3	0.95	3.24	3.991(12)	137.2
C(2C)-H(2C)…I(1)#3	0.95	3.22	3.710(11)	114.0
N(1B)-H(1B) …I(5)	0.88	2.75	3.604(11)	163.6
N(1C)-H(1C)…I(3)	0.88	2.71	3.545(11)	159.0
C(2A)-H(2A)…I(9)#4	0.95	3.15	3.946(12)	143.0
C(3A)-H(3A)…I(5)#4	0.95	3.30	4.187(11)	157.1
C(6B)-H(6B)…I(4)	0.95	3.07	3.797(13)	134.0
C(6C)-H(6C)…I(8)#5	0.95	3.22	4.118(13)	158.9
C(5A)-H(5A)…I(1)#2	0.95	3.14	4.051(12)	160.3
C(5B)-H(5B)…I(1)#2	0.95	3.03	3.791(11)	138.7
C(5B)-H(5B)…I(2)#6	0.95	3.27	3.941(12)	129.2
C(5C)-H(5C)…I(7)#7	0.95	3.13	4.073(13)	170.1

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+3/2,-z+1; #2 x,y+1,z; #3 x+1,y,z; #4 x-1,y,z; #5 x,y-1,z; #6 -x,y+1/2,-z+1/2; #7 x+1/2,-y+1/2,-

z+1

Figure SI 5. (i) 3D d_{norm} surface of (a) 4-AmpyBiI₃ in the range -0.4527 to 1.1099, (b) 4-MetpyBiI₃ ranging from -0.3428 to 1.2451 (c) 4-DmetpyBiI₃ in the range -0.3012 to 1.1518, (d) 4-CNpyBiI₃ in the range of -0.3383 a.u. (red) to 1.3823a.u. (blue), (ii) curvedness in the range of (-4.0000 to 0.4000), (iii) shape index in the range of (-1.0000 to 1.0000).

(a)

Figure SI 6. Fingerprint plots of (a) 4-AmpyBiI₃, (b) 4-MetpyBiI₃ (c) 4-DmetpyBiI₃, (d) 4-CNpyBiI₃.

Table SI 7. Percentage contributions of the various intermolecular contacts contributing to Hirshfeld's surfaces of the structures.

Percentage of	of	4-AmpyBiI ₃	4-MepyBil ₃	4-DMepyBiI ₃	4-CNpyBiI ₃
interaction					
I…I		12.5	4.5	2	8.7
I…H		82.5	81	98	59.9
I…N		0.3	2	-	6.5
I…C		0.8	9.5	-	16.9
Bi…I		3.9	3	-	7.7
Bi-O		-	-	-	0.3

Figure SI 7. *Minimum conduction band and maximum valence band structure and the dashed rectangular shows the region for calculation of the effective mass by the second derivative of the region.*

Figure SI 8. Experimental (black) and DFT-calculated (red) XAS spectra for 4-AmpyBiI₃ (a), 4-MepyBiI₃ (b), 4-DmapyBiI₃ (c) and 4-CNpyBiI₃ (d) at L3-edge are plotted on the left axis. The partial densities of the states projected on the absorbing Bi atom are also presented on the right axis.

Figure SI 9. Current-voltage dependencies (linear scale) for all studied bismuth complexes recorded at 298 K.