Supporting Information

Efficient and Well-Controlled Ring Opening Polymerization of Biobased Ethylene Brassylate by α -Diimine FeCl₃ Catalysts via a Coordination-Insertion Mechanism

Lijia Liu,^a Chunyu Zhang,^a Xuequan Zhang,^a Heng Liu, *^a Feng Wang *^a

^a Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China;

Corresponding authors: hengliu@qust.edu.cn (H. Liu); fengwang@qust.edu.cn (F. Wang)

Table of contents

Table S1. ROP of EB by L1-supported late-transition metal complexes	32
Table S2. ROP of EB by Fe ^{III} 1 under different [M]/[Fe] radios	52
Table S3. ROP of EB using Fe ^{III} 1 under different [PhCH ₂ OH]/[Fe] radios	52
Table S4. ROP of EB using Fe ^{III} 1 under different [Ph ₂ CHOH]/[Fe] radios	53
Table S5. Crystallographic data of complex Fe ^{III} 1	53
Figure S1. GPC profiles of PEBs obtained from Table S3-S4	34
Figure S2. ¹ H NMR spectra (in CDCl ₃) of PEB initiated by Ph ₂ CHOH	54
Figure S3. ¹³ C NMR spectra of poly(EB- <i>co</i> -CL) random copolymerS	35
Figure S4. GPC profiles of random PEB-co-PCL copolymer and PEB and PCL	35
Figure S5. The 2D DOSY NMR spectrum (in CDCl ₃) of PEB- <i>co</i> -PCL	35
Figure S6. MALDI-TOF MS analysis of PEB obtained from Fe ^{III} 1/PhCH ₂ OH/	/Τ
MSCH ₂ LiS	6
ExperimentalS	6
ReferencesS	9

Entry ^a	Cat.	ROH	[EB]/[ROH]/	Yield	$M_{\rm n}^{\ b}(10^4$	$\lambda \Lambda / \lambda \Lambda$	
			[Li]/[Cat.]	(%)	g/mol)	$M_{\rm W}/M_{\rm n}$	
1	Fe ^{II} 1	Ph ₂ CHOH	100:3:3:1	26.0	1.22	1.70	
2	Fe ^{III} 1	Ph ₂ CHOH	100:3:3:1	97.2	3.06	1.52	
3	Co1	Ph ₂ CHOH	100:3:3:1	54.4	1.63	1.77	
4	Ni1	Ph ₂ CHOH	100:3:3:1	87.4	1.67	1.90	
5	Pd1	Ph ₂ CHOH	100:3:3:1	32.1	1.07	1.73	

Table S1. ROP of EB by L1-supported late-transition metal complexes.

^a Polymerization conditions: [EB] = 1.5 M, [Cat.] = 9.2×10^{-6} mol, in toluene, T = 110 °C, t = 30 min. ^b Determined via GPC against a polystyrene standard, M_w/M_n is polydispersity. Theoretical molecular weight of all polymers are 0.9×10^4 g/mol.

Table S2. ROP of EB by Fe^{III}1 under different [M]/[Fe] radios.

Entry ^a	Fe ^{III} 1× (10 ⁻⁶ mol)	[M]/[Ph ₂ CHOH] /[Li]/[Fe]	Yield (%)	$M_{ m n}$ $^{b}(10^{4}$ g/mol)	$M_{ m w}/M_{ m n}$	Theoretical $M_{\rm n} (10^4 { m g/mol})$
1	9.2	100:3:3:1	97.2	3.06	1.52	0.90
2	4.6	200:3:3:1	95.7	2.73	1.88	1.80
3	3.1	300:3:3:1	95.8	3.97	1.90	2.70
4	1.8	500:3:3:1	87.8	3.95	1.90	4.51
5	0.9	1000:3:3:1	62.3	7.32	1.60	9.01

^a Polymerization conditions: [EB] = 1.5 M, in toluene, T = 110 °C, t = 30 min. ^b Determined via GPC against a polystyrene standard, M_w/M_n is polydispersity.

[M]/[PhCH₂OH] Yield $M_{\rm n}^{\ b}(10^4$ Theoretical Entry a $M_{\rm w}/M_{\rm n}$ $M_{\rm n}(10^4 {\rm g/mol})$ /[Li]/[Fe] (%) g/mol) 1 100:3:3:1 97.6 2.08 0.90 1.78 2 100:5:3:1 80.1 1.25 1.86 0.54 3 100:10:3:1 88.4 0.57 1.79 0.27 4 100:15:3:1 90.1 0.33 1.71 0.18 5 100:20:3:1 85.8 0.29 1.76 0.13 6 100:25:3:1 82.3 0.25 1.50 0.10 7 100:30:3:1 82.4 0.09 0.21 1.47

Table S3. ROP of EB using Fe^{III}1 under different [PhCH₂OH]/[Fe] radios.

^a Polymerization conditions: [EB] = 1.5 M, [Cat.] = 9.2×10^{-6} mol, in toluene, T = 110 °C, t = 30 min. ^b Determined via GPC against a polystyrene standard, M_w/M_n is polydispersity.

Entry <i>a</i>	[M]/[Ph ₂ CHOH]	Yield	$M_{\rm n}^{\ b}(10^4$		Theoretical
	/[Li]/[Fe]	(%)	g/mol)	$M_{\rm W}/M_{\rm n}$	$M_{\rm n}(10^4{ m g/mol})$
1	100:3:3:1	97.2	3.06	1.52	0.90
2	100:5:3:1	92.8	1.74	1.68	0.54
3	100:10:3:1	96.5	0.88	1.65	0.27
4	100:15:3:1	88.3	0.52	1.73	0.18
5	100:20:3:1	90.6	0.44	1.61	0.13
6	100:25:3:1	82.5	0.40	1.58	0.10
7	100:30:3:1	88.4	0.37	1.56	0.09

 Table S4. ROP of EB using Fe^{III}1 under different [Ph₂CHOH]/[Fe] radios.

^a Polymerization conditions: [EB] = 1.5 M, [Cat.] = 9.2×10^{-6} mol, in toluene, T = 110 °C, t = 30 min. ^b Determined via GPC against a polystyrene standard, M_w/M_n is polydispersity.

	Fe ^{III} 1
formula	Cs4H44Cl3FeN2
$Fw/g mol^{-1}$	883.11
crystal System	Monoclinic
space group	D2./c
space group	121/C
a/A	9.0615(2)
b/Å	18.6688(6)
$c/{ m \AA}$	28.0754(6)
$\alpha / ^{\circ}$	90
$eta / ^{\circ}$	92.536(2)
$\gamma/^{\circ}$	90
$V/Å^3$	4744.8(2)
Z	4
T/K	300
$\rho_{calc}g/cm^3$	1.236
µ/mm⁻¹	4.379
F(000)	1836.0
Crystal size/mm ³	$0.1\times0.03\times0.03$
2θ range for data collection/°	5.686 to 153.042
Index ranges	$-11 \le h \le 10, -23 \le k \le 19, -35 \le l \le 33$
Reflections collected	31028
Independent reflections	9435 [$R_{int} = 0.0639, R_{sigma} = 0.0610$]
Data/restraints/parameters	9435/113/582
Goodness-of-fit on F ²	1.108

Table S5. Crystallographic data of complex Fe^{III}1.

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0909, wR_2 = 0.2760$
Final R indexes [all data]	$R_1 = 0.1144, wR_2 = 0.2994$
Largest diff. peak/hole / e Å ⁻³	1.38/-1.76

Figure S1. GPC profiles of PEBs obtained from Table S3 (left) and Table S4 (right).

Figure S2. ¹H NMR spectra (in CDCl₃) of PEB initiated by Ph₂CHOH (Table 1, Run 2).

Figure S3. ¹³C NMR spectra of poly(EB-co-CL) random copolymer.

Figure S4. GPC profiles of random PEB-*co*-PCL copolymer and PEB and PCL (Table 2, Run 1, 5 and 8).

Figure S5. The 2D DOSY NMR spectrum (in CDCl₃) of PEB-*co*-PCL (Table 2, Run 2)

Figure from Fe^{III}1/PhCH₂OH/TMSCH₂Li (table S3 entry 3)

Experimental

Materials and methods

All operations involving water-oxygen sensitive complexes are performed in the glove box in a dry nitrogen atmosphere. The solvents in the experiment, including toluene, dichloromethane, tetrahydrofuran and hexane were stirred on sodium filament and benzophenone or CaH₂ for reflux distillation overnight at atmospheric pressure to use. Monomer, EB were dried on the CaH₂ overnight and distilled under reduced pressure, with degassed by three freeze-pump-thaw cycles prior to use. Ph₃COH and Ph₂CHOH were dried under vacuum before use. PhCH₂OH was distilled under reduced pressure in the presence of CaH₂. (Trimethylsilyl)methyllithium were synthesized in previous work. The FTIR spectra of complexes were determined by Fourier transform infrared spectrometer through KBr was pressed. The weight-average molecular weight (M_n) and molecular weight distribution (PDI) values of the polymers were determined by GPC in THF according to PS standards. Differential scanning calorimetry (DSC) analyses of the polymeric samples were conducted under a nitrogen atmosphere by a PerkinElmer DSC 204F1 at a heating/cooling rate of 10 °C min⁻¹. Single crystals were obtained via recrystallization from saturated dichloromethane solutions. Single crystal grains obtained by solution diffusion were coated with liquid butadiene and placed on a Rigaku HyPix X-ray single crystal diffractometer. CCD detector, Cu-Kα ray as light source, wavelength 1.54184 Å. CCDC number for the ferric complex is 2246579.

Synthesis of complexes Fe^{III}1–Fe^{III}8

General procedure. A typical procedure was shown in the following: into a flask was loaded a mixture of anhydrous FeCl₃ (0.25 mmol), ligand (0.25 mmol) and 20 mL of DCM, the resultant reaction mixture was stirred for 24 h at room temperature. Part of the solvent was removed under vacuum and the complex was precipitated by addition of hexane. The precipitate was collected by filtration and washed with hexane three times (3×10 mL) to afford a dark black solid.

Complex Fe^{III}1. Yield: 64.9%. FT-IR (KBr, cm⁻¹): 3059 (w), 3022 (w), 2918 (w), 1626 (w), 1585 (m), 1492 (m), 1446 (m), 1290 (w), 1032 (w), 859 (w), 833 (w), 775 (m), 741 (m), 701 (s), 629 (w), 534 (w). ESI-MS (m/z): calcd. for: $C_{54}H_{44}Cl_3FeN_2$: 881.19, found 721.35 [M – FeCl₃ + H]⁺. Anal. Calcd. for $C_{54}H_{44}Cl_3FeN_2$: C, 73.44; H, 5.02; N, 3.17. Found: C, 73.24; H, 5.16; N, 3.19.

Complex Fe^{III}2. Yield: 67.4%. FT-IR (KBr, cm⁻¹): 3058 (w), 3023 (w), 1732 (w), 1650 (w), 1602 (m), 1489 (s), 1447 (s), 1277 (w), 1072 (w), 1030 (m), 1032 (s), 909 (w), 827 (w), 768 (m), 746 (m), 700 (s), 605 (m), 558 (w). ESI-MS (m/z): calcd. for: $C_{78}H_{60}Cl_3FeN_2$: 1185.31, found 1025.48 [M - FeCl₃ + H] ⁺. Anal. Calcd. for $C_{78}H_{60}Cl_3FeN_2$: C, 78.89; H, 5.09; N, 2.36. Found: C, 78.98; H, 5.23; N, 2.49.

Complex Fe^{III}3. Yield: 91.3%. FT-IR (KBr, cm⁻¹): 2999 (w), 2833 (w), 1606 (m), 1580 (m), 1511 (s), 1458 (m), 1303 (w), 1252 (s), 1177 (s), 1111 (w), 1032 (s), 833 (m), 777 (w), 581 (w). ESI-MS (m/z): calcd. for: $C_{86}H_{76}Cl_3FeN_2O_8$: 1425.40, found 1265.55 [M – FeCl₃ + H]⁺. Anal. Calcd. for $C_{86}H_{76}Cl_3FeN_2O_8$: C, 72.35; H, 5.37; N, 1.96. Found: C, 72.46; H, 5.27; N, 2.08.

Complex Fe^{III}4. Yield: 83.4%. FT-IR (KBr, cm⁻¹): 3059 (w), 3025 (w), 1657 (m), 1632 (m), 1601 (m), 1580 (m), 1493 (s), 1450(s), 1293 (w), 1219 (w), 1174 (w), 1077 (w), 1028 (w), 891 (w), 830 (w), 766 (m), 739 (m), 699 (s), 602 (m), 554 (w). ESI-MS (m/z): calcd. for: $C_{78}H_{52}Cl_3F_8FeN_2$: 1329.24, found 1169.41 [M – FeCl₃ + H] ⁺. Anal. Calcd. for $C_{78}H_{52}Cl_3F_8FeN_2$: C, 70.36; H, 3.94; N, 2.10. Found: C, 70.49; H, 3.83; N, 2.18.

Complex Fe^{III}5. Yield: 53.9%. FT-IR (KBr, cm⁻¹): 3060 (w), 3027 (w), 2959 (m), 2866 (w), 1630 (m), 1596 (m), 1493 (m), 1446 (m), 1364 (w), 1184 (w), 1077 (w), 1029 (w), 761 (m), 735 (m), 699 (s), 605 (m) 475 (w). ESI-MS (m/z): calcd. for $C_{84}H_{72}Cl_3FeN_2$: 1269.41, found 1109.58 [M - FeCl₃ + H] ⁺. Anal. Calcd. for $C_{84}H_{72}Cl_3FeN_2$: C, 79.34; H, 5.71; N, 2.20. Found: C, 79.43; H, 5.60; N, 2.11.

Complex Fe^{III}6. Yield: 59.5%. FT-IR (KBr, cm⁻¹): 3021 (w), 2959 (m), 2920 (w), 2866 (w), 1626 (m), 1585 (s), 1509 (s), 1447 (m), 1418 (w), 1361 (w), 1275 (w), 1187 (m), 1111 (m), 1018 (m), 816 (s), 772 (s), 725 (w), 665 (w), 575 (m), 484 (w). ESI-MS (m/z): calcd. for: $C_{92}H_{88}Cl_3FeN_2$: 1381.53, found 1221.70 [M - FeCl₃ + H] ⁺. Anal. Calcd. for $C_{92}H_{88}Cl_3FeN_2$: C, 79.85; H, 6.41; N, 2.02. Found: C, 79.80; H, 6.33; N, 2.10.

Complex Fe^{III}7. Yield: 77.2%. FT-IR (KBr, cm⁻¹): 3059 (w), 3023 (w), 2835 (w), 1598 (s), 1494 (s), 1453 (s), 1302 (m), 1222 (w), 1193 (m), 1135 (m), 1051 (m), 955 (w), 857 (w), 827 (w), 767 (m), 740 (m), 699 (s), 600 (m), 575 (w), 530 (w). ESI-MS (m/z): calcd. for: $C_{78}H_{60}Cl_3FeN_2O_2$: 1217.30, found 1057.47 [M – FeCl₃ + H]⁺. Anal. Calcd. for $C_{78}H_{60}Cl_3FeN_2O_2$: C, 76.82; H, 4.96; N, 2.30. Found: C, 76.72; H, 5.08; N, 2.21.

Complex Fe^{III}8. Yield: 71.4%. FT-IR (KBr, cm⁻¹): 3020 (w), 2918 (w), 2863 (w), 1632 (m), 1884 (m), 1512 (s), 1426 (m), 1275 (w), 1216 (w), 1182 (m), 1110 (m), 1018 (m), 954 (w), 904 (m), 815 (s), 775 (s), 721 (m), 661 (w), 573 (m), 487 (m). ESI-MS (m/z): calcd. for: $C_{84}H_{70}Cl_5FeN_2$: 1340.59, found 1179.50 [M – FeCl₃ + H] ⁺. Anal. Calcd. for $C_{84}H_{70}Cl_5FeN_2$: C, 75.26; H, 5.26; N, 2.09. Found: C, 75.35; H, 5.21; N, 2.18.

Synthesis of complexes Fe^{II}1, Co1, Ni1 and Pd1

General procedure. L1 ligand (0.25 mmol) were mixed with anhydrous $FeCl_2$ (0.25 mmol) and anhydrous $NiCl_2$ (0.25 mmol) in 20 mL of THF and DCM, respectively, the resultant reaction mixture was stirred for 48 h and 24 h at room temperature. Part of the solvent was removed under vacuum and the complex was precipitated by addition of hexane. The precipitate was collected by filtration and

washed with hexane three times ($3 \times 10 \text{ mL}$) to afford a dark solid. **Co1** and **Pd1** were synthesized according to the literature procedures. ^{1,2}

Typical procedure for EB polymerization

In a typical homopolymerization, ROH, TMSCH₂Li and required amount of toluene were added into the 20 ml vial in a ratio of 3:3, and the reaction system was shaken for a couple of minutes until the white precipitate appeared, indicating the formation of lithium alkoxide species. Afterwards, the ferrous precatalyst and EB monomer were to added sequentially, and the reaction system was left to be stirring for a given time at 110 °C. The reaction was quenched by excessive ethanol, and the resulting mixture was washed repeatedly with ethanol until white powder was obtained. Then the white powder was collected and dried under vacuum.

In a typical random copolymerization reaction, ROH, TMSCH₂Li and required amount of toluene were added into the 20 ml vial in a ratio of 3:3, and the reaction system was shaken for a couple of minutes until the white precipitate appeared, indicating the formation of lithium alkoxide species. Afterwards, the ferrous precatalyst and EB/CL mixed monomer were to added sequentially, and the reaction system was left to be stirring for a given time at 110 °C. The reaction was quenched by excessive ethanol, and the resulting mixture was washed repeatedly with ethanol until white powder was obtained. Then the white powder was collected and dried under vacuum. The conversion of two components in a mixture was determined from ¹³C NMR analysis in CDCl₃.

References

- L. Liu, F. Wang, C. Zhang, H. Liu, G. Wu and X. Zhang, *Molecular Catalysis*, 2022, 517, 112044.
- J. S. Ouyang, Y. F. Li, D. S. Shen, Z. Ke and F. S. Liu, *Dalton Trans*, 2016, 45, 14919-14927.