Supporting Information

Isomer sensitive electrochemical HER of ruthenium(II)-hydrido complexes involving redox active azoheteroaromatics

Liton Seikh,^{*a*} Suman Dhara,^{*a*} Ajit Kumar Singh,^{*b*} Aditi Singh,^{*a*} Sanchaita Dey,^{**a*} Arindam Indra^{**b*} and Goutam Kumar Lahiri^{**a*}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

^bDepartment of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-

221005, India

Email: <u>lahiri@chem.iitb.ac.in(G.K.L)</u>

arindam.chy93@iitbhu.ac.in(A.I)

sanchaitadey93@gmail.com(S.D)

Fig. S1 Experimental and simulated ESI(+) mass of (a) $\{[1a]ClO_4-ClO_4\}^+$, (b) $\{[1b]ClO_4-ClO_4\}^+$, (c) $\{[2a]ClO_4-ClO_4\}^+$ and (d) $\{[2b]ClO_4-ClO_4\}^+$ in CH₃CN (red line, simulated and black line, experimental).

Fig. S2 Electronic spectra of [1a]ClO₄, [1b]ClO₄, [2a]ClO₄ and [2b]ClO₄ in CH₃CN.

Fig. S3 FT-IR spectra as KBr pellets.

Fig. S4 Non-planarity of the coordinated L1 and L2.

Fig. S5a DFT optimised structures of $1a^n$ (n = +1, 0, -1).

Fig. S5b DFT optimised structures of $\mathbf{1b}^n$ (n = +1, 0, -1).

Fig. S5c DFT optimised structures of $2a^n$ (n = +1, 0, -1).

Fig. S5d DFT optimised structures of $2\mathbf{b}^n$ (n = +1, 0, -1).

Fig. S6 DFT calculated Mulliken spin density plots for 1a, 1b, 2a and 2b.

Fig. S7 Controlled-potential electrolysis of the complexes $[1a]ClO_4$ and $[1b]ClO_4$ in 0.5 M H₂SO₄.

Fig. S8 Tafel slopes of the catalyst [**1a**]ClO₄ determined under controlled-potential chronoamperometric conditions at different pHs. The Tafel slope values are 59, 62 and 63 mV dec⁻¹ at pH values 1.5, 1.7, and 1.9, respectively. The Tafel slope has no significant change with variation of the pH of the solution.

Fig. S9 Cyclic voltammetry profiles of the catalysts@CC.

Fig. S10 Area integration of the oxidation peaks to find out the active catalytic sites of the catalysts.

Fig. S11 (a) Faradic efficiency of $[1a]ClO_4$ and (b) demonstration of the two compartment Hcell used for the Faradaic efficiency determination.

Fig. S12 Chronoamperometric stability test for the catalyst [1a]ClO₄.

Fig. S13 PCET during the electrocatalytic HER with [1a]ClO₄.

Fig. S14 PXRD of the catalyst [1a]ClO₄ after electrocatalytic HER.

Fig. S15 UV-vis spectra of the catalyst [1a]ClO₄ after electrocatalytic HER (in acetonitrile).

Fig. S16 ¹H-NMR spectrum of $[1a]ClO_4$ in $(CD_3)_2SO$ after electrocatalytic HER.

Equation 1 Determination of surface-active sites using area integration of the redox peaks.^{S1}

For complex [1a]ClO₄

Calculated area associated with the oxidation peak = $0.747 \times 10^{-3} \text{ V A}$

Hence the associated charge is = 0.747 x 10^{-3} V A / 0.005 V s⁻¹ = A s = 149.4 x 10^{-3} C

Now, the number of electron transferred is = 149.4 x 10^{-3} C / 1.602 × 10^{-19} C = 93.25 × 10^{16}

Since the oxidation of Ru^{2+} to Ru^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of surface-active sites. Hence, the surface-active site

that participated in HER is = 93.25×10^{16} .

For complex [1b]ClO₄

Calculated area associated with the oxidation peak = $0.283 \times 10^{-3} \text{ V A}$

Hence the associated charge is = $0.283 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = 56.6 \times 10^{-3} \text{ C}$

Now, the number of electron transferred is = 56 x 10^{-3} C / 1.602×10^{-19} C = 35.33×10^{16}

Since the oxidation of Ru^{2+} to Ru^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of surface-active sites. Hence, the surface-active site that participated in HER is = 35.33×10^{16}

For complex [2a]ClO₄

Calculated area associated with the oxidation peak = $0.400 \times 10^{-3} \text{ V A}$

Hence the associated charge is = $0.400 \times 10^{-3} / 0.005 \text{ V s}^{-1} = \text{A s} = 80.0 \times 10^{-3} \text{ C}$

Now, the number of electron transferred is = 80.0 x 10^{-3} C / 1.602×10^{-19} C = 49.94×10^{16}

Since the oxidation of Ru^{2+} to Ru^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of surface-active sites. Hence, the surface-active site that participated in HER is = 49.94×10^{16}

For complex [2b]ClO₄

Calculated area associated with the oxidation peak = $0.487 \times 10^{-3} \text{ V A}$

Hence the associated charge is = $0.487 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = \text{A s} = 97.4 \times 10^{-3} \text{ C}$ Now, the number of electron transferred is = $97.4 \times 10^{-3} \text{ C} / 1.602 \times 10^{-19} \text{ C} = 60.79 \times 10^{16}$ Since the oxidation of Ru²⁺ to Ru³⁺ is a single electron transfer reaction, the number of electrons calculated above is the same as the number of surface-active sites. Hence, the surface-active site that participated in HER is = 60.79×10^{16}

Electrochemical measurement

The Tafel analysis was carried out under semi-stationary conditions recording linear sweep voltammetry (LSV) with a scan rate of 2 mV s⁻¹. The value of Tafel slope was calculated to be $32 \text{ mV} \text{ dec}^{-1}$ for 1a-which was lower than that of the other catalysts. This value indicates the Volmer-Heyrovsky mechanism for hydrogen evolution in the acidic medium.

In addition, we have carried out the Tafel analysis under stationary conditions. Interestingly, an increase in the Tafel slope (59-63 mV dec⁻¹) was observed. Moreover, the Tafel slope is independent of the pH of the electrolyte -which indicates a similar reaction mechanism is followed in the acidic medium

The pH-dependence of current density at a constant potential has been studied and from these data the reaction order is calculated by plotting the logarithmic current density against the pH of the electrolyte. Theoretically, the reaction order against pH for a concerted proton-coupled electron transfer pathway should be zero. A minimum deviation from zero indicates better PCET process for the catalytic hydrogen evolution reaction.

Equation 1 Calculation of turn over frequency (TOF) of different catalysts^{S1}

$$\mathbf{TOF} = (\mathbf{j} \times \mathbf{N}_{\mathbf{A}}) / (\mathbf{2} \times \mathbf{F} \times \mathbf{n})$$

Were,

j = current density at 399 mV

 $N_A = Avogadro number$

F = Faraday constant

n = number of active Ru-sites

For complex [1a]ClO₄

TOF = $[(24.73 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (2) (93.55 \times 10^{16})]$

 $= 8.27 \times 10^{-2} \, \mathrm{s}^{-1}$

For complex [1b]ClO₄

 $\text{TOF} = [(7.73 \times 10^{-3}) \ (6.023 \times 10^{23})] \ / \ [(96485) \ (2) \ (35.33 \times 10^{16})]$

 $= 6.83 \times 10^{-2} \, \mathrm{s}^{-1}$

For complex [2a]ClO4

 $TOF = [(7.94 \times 10^{-3}) \ (6.023 \times 10^{23})] \ / \ [(96485) \ (2) \ (49.94 \times 10^{16})]$

 $= 4.96 \times 10^{-2} \text{ s}^{-1}$

For complex [2b]ClO₄

$$\text{TOF} = [(7.27 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (2) (60.79 \times 10^{16})]$$

$$= 3.73 \times 10^{-2} \text{ s}^{-1}$$

Faradic efficiency calculation

Equation 2 Calculation of the faradic efficiency of [1a]ClO₄ and [1b]ClO₄.^{S2}

To find out how much hydrogen was produced in the hydrogen evolution reaction, the water displacement method was used in a two-compartment H-type cell. The chronoamperometric test was carried out for 30 minutes at a current density of 10 mA cm⁻² to determine the amount of H₂. First, we used the following equation derived from Faraday's law to get the theoretical amount of hydrogen.

$$nH_2$$
 (theoretical) = $\frac{Q}{nF} = \frac{i * t}{nF}$

Where nH_2 denotes the theoretically calculated amount of H_2 , Q is the amount of applied charge, n is the number of electrons participating in the HER reaction (2 electrons), F is the Faraday constant (96485.3 s A mol⁻¹), I is the applied current (0.01 A), and t is the reaction time (30 min).

At the time of chronoamperometric measurements, the amount of hydrogen generated during the experiment was measured and the theoretically calculated amount was compared with the actually generated amount of H_2 . Further, the faradaic efficiency was calculated using the following equation:

For 1a[ClO₄]

nH₂ (theoretical) = $\frac{Q}{nF} = \frac{i * t}{nF} = \frac{0.01 \text{ A} * 1800 \text{ sec}}{2 * 96485.3 \text{ mol}^{-1} \text{ sec}} = 0.093 \text{ mmole}$ Faradic efficiency = $\frac{\text{Expermental mmole of H}_2}{\text{Theoretical mmole of H}_2}$ Faradic efficiency = $\frac{0.0960 \text{ mmole}}{0.0930 \text{ mmole}} = 97.4 \%$

Complex	[1a]ClO ₄	[1b]ClO ₄
empirical formula	$C_{45}H_{41.5}ClN_6O_5P_2Ru$	$C_{45}H_{41}ClN_6O_5P_2Ru$
formula weight	944.80	944.30
crystal system	Orthorhombic	Triclinic
space group	$Pca2_1$	P-1
<i>a</i> (Å)	31.1410(10)	11.7897(2)
<i>b</i> (Å)	15.7359(5)	12.8924(3)
<i>c</i> (Å)	19.1556(5)	15.6424(2)
α (deg)	90	92.2110(10)
β (deg)	90	100.2750(10)
γ (deg)	90	114.235(2)
$V(\text{\AA}^3)$	9386.9(5)	2116.67(7)
Ζ	8	2
μ (mm ⁻¹)	0.508	0.563
<i>T</i> (K)	150.00(10)	150.00(10)
$D_{\text{calcd}}(\text{g cm}^{-3})$	1.337	1.482
F(000)	3876	968
θ range(deg)	1.685 to 27.499	1.746 to 25.000
data/restraints/param eters	21461/49/1092	7441/7/546
R1, wR2 [I>2σ(I)]	0.0657, 0.1453	0.0579, 0.1501
R1, wR2(all data)	0.1382, 0.1783	0.0714, 0.1612
GOF	0.997	1.035
largest diff. peak/hole [e Å ⁻³]	1.118/-0.737	2.154/-0.941

 Table S1a
 Selected crystallographic parameters

Complex	[2a]ClO ₄	[2b]ClO ₄	
empirical formula	$C_{45}H_{39}ClI_2N_6O_5P_2Ru$	$C_{45}H_{38.83}ClI_2N_6O_5P_2Ru$	
formula weight	1196.08	1195.91	
crystal system	Monoclinic	Monoclinic	
space group	$P12_1/n1$	<i>P</i> 12 ₁ / <i>n</i> 1	
<i>a</i> (Å)	11.94190(10)	17.0163(5)	
<i>b</i> (Å)	20.4204(2)	16.9641(4)	
<i>c</i> (Å)	18.68460(10)	17.1008(5)	
a (deg)	90	90	
β (deg)	93.6330(10)	111.826(3)	
γ (deg)	90	90	
$V(\text{\AA}^3)$	4547.24(6)	4582.6(2)	
Ζ	4	4	
μ (mm ⁻¹)	1.884	1.870	
<i>T</i> (K)	104.00(10)	150.15	
$D_{\rm calcd}({\rm g~cm^{-3}})$	1.747	1.733	
F(000)	2352	2351	
θ range(deg)	1.9630 to 33.1490	1.8610 to 21.9350	
data/restraints/ parameters	7989/1/565	8051/2/575	
R1, wR2 [I>2σ(I)]	0.0369, 0.0922	0.0490, 0.1125	
R1, wR2(all data)	0.0379, 0.0929	0.0502, 0.1131	
GOF	1.041	1.166	
largest diff. peak/hole [e Å ⁻³]	1.650/-1.536	2.162/-1.834	

 Table S1b
 Selected crystallographic parameters

Bond			[1a]ClO ₄			Bond	[1b]ClO	4
	X-ray	DFT		X-ray	DFT		X-ray	DFT
	(molecule			(molecule				
	A)			B)				
Ru1-N2	2.104(9)	2.154	Ru2-N8	2.098(9)	2.154	Ru1-N2	2.120(4)	2.224
Ru1-N4	2.162(9)	2.237	Ru2-N10	2.135(10)	2.237	Ru1-N4	2.126(4)	2.197
Ru1-P1	2.357(3)	2.454	Ru2-P3	2.370(3)	2.454	Ru1-P1	2.3640(12)	2.457
Ru1-P2	2.365(3)	2.461	Ru2-P4	2.360(3)	2.461	Ru1-P2	2.3634(12)	2.459
Ru1-HA	1.480(6)	1.605	Ru2-H	1.84(6)	1.605	Ru1-H	1.596(18)	1.586
Ru1-C9	1.862(14)	1.878	Ru2-C54	1.846(12)	1.878	Ru1-C9	1.884(7)	1.872
N3-N4	1.304(12)	1.281	N9-N10	1.298(12)	1.281	N3-N4	1.279(6)	1.280
N1-N2	1.320(12)	1.340	N7-N8	1.327(12)	1.340	N1-N2	1.340(6)	1.337
N5-N6	1.369(15)	1.337	N7-C46	1.482(14)	1.458	N5-N6	1.323(8)	1.336
N1-C1	1.440(14)	1.458	N7-C47	1.377(13)	1.362	N1-C1	1.439(8)	1.457
N1-C2	1.369(14)	1.362	C54-O6	1.169(12)	1.155	N1-C2	1.361(8)	1.365
N2-C4	1.391(15)	1.355	-	-	-	N2-C4	1.353(7)	1.352
N3-C4	1.399(17)	1.372	-	-	-	N3-C4	1.367(7)	1.372
N4-C5	1.407(15)	1.401	-	-	-	N4-C5	1.423(7)	1.402
N5-C5	1.342(17)	1.340	-	-	-	N5-C5	1.350(9)	1.340
C9-O1	1.105(13)	1.155	-	-	-	C9-O1	1.184(7)	1.159
C3-I1	-	-	-	-	-	C3-I1	-	-
C6-I2	-	-	-	-	-	C6-I2	-	-

Table S2a Selected experimental and DFT calculated bond lengths (Å)

Bond	[2 a]ClO	D ₄	[2b]ClO ₄		
	X-ray	DFT	X- ray	DFT	
Ru1-N2	2.116(3)	2.159	2.178(5)	2.232	
Ru1-N4	2.149(3)	2.244	2.129(5)	2.201	
Ru1-P1	2.3844(10)	2.453	2.3705(13)	2.461	
Ru1-P2	2.3633(10)	2.467	2.3580(13)	2.449	
Ru1-H	1.51(2)	1.596	1.49(2)	1.579	
Ru1-C9	1.839(4)	1.873	1.835(6)	1.869	
N3-N4	1.296(5)	1.280	1.298(6)	1.280	
N1-N2	1.342(5)	1.341	1.333(6)	1.336	
N5-N6	1.336(5)	1.332	1.326(6)	1.332	
N1-C1	1.460(5)	1.458	1.439(8)	1.457	
N1-C2	1.370(5)	1.361	1.375(8)	1.363	
N2-C4	1.343(5)	1.354	1.339(7)	1.355	
N3-C4	1.379(5)	1.371	1.369(7)	1.369	
N4-C5	1.396(5)	1.399	1.391(7)	1.399	
N5-C5	1.339(5)	1.342	1.326(7)	1.342	
C9-O1	1.159(5)	1.156	1.158(7)	1.160	
C3-I1	2.040(4)	2.089	2.096(6)	2.089	
C6-I2	2.057(4)	2.097	2.060(6)	2.096	

Table S2b Selected experimental and DFT calculated bond lengths (Å)

Bond angles			[1a]ClO ₄			Bond angles	[1b]Cl	O_4
	X-ray	DFT	X-ray	X- ray	DFT		X-ray	DFT
	(molecule		(molecule B)					
	A)							
N2-Ru1-N4	73.3(4)	72.2	N8-Ru2-N10	72.9(4)	72.2	N2-Ru1-N4	72.80(16)	72.4
N2-Ru1-P1	90.7(2)	91.9	N8-Ru2-P3	92.2(2)	91.9	N2-Ru1-P1	95.18(11)	94.9
N2-Ru1-P2	92.3(2)	91.4	N8-Ru2-P4	92.1(2)	91.4	N2-Ru1-P2	95.33(11)	94.3
N2-Ru1-C9	175.8(5)	173.8	N8-Ru2-C54	174.5(4)	173.8	N2-Ru1-C9	96.4(2)	101.3
N2-Ru1-HA	96.0(2)	96.1	N8-Ru2-H	92.4(19)	96.1	N2-Ru1-H	161.7(12)	167.0
N4-Ru1-P1	100.7(2)	98.7	N10-Ru2-P3	100.8(2)	98.7	N4-Ru1-P1	93.72(11)	93.2
N4-Ru1-P2	94.2(2)	98.6	N10-Ru2-P4	94.9(2)	98.6	N4-Ru1-P2	90.70(11)	93.7
N4-Ru1-C9	102.7(5)	101.5	N10-Ru2-C54	101.6(4)	101.5	N4-Ru1-C9	169.0(2)	173.8
N4-Ru1-HA	167(2)	168.3	N10-Ru2-H	165(2)	168.3	N4-Ru1-H	89.0(12)	94.5
P1-Ru1-P2	165.04(10)	162.5	-	-	-	P1-Ru1-P2	169.40(5)	169.6
P1-Ru1-C9	88.6(3)	89.0	-	-	-	P1-Ru1-C9	89.06(18)	86.8
P1-Ru1-HA	86(2)	81.5	-	-	-	P1-Ru1-H	84.1(13)	85.8
P2-Ru1-C9	89.5(3)	89.4	-	-	-	P2-Ru1-C9	88.41(18)	87.0
P2-Ru1-HA	79(2)	81.0	-	-	-	P2-Ru1-H	86.4(13)	86.0
C9-Ru1-HA	88(3)	90.0	-	-	-	C9-Ru1-H	101.9(12)	91.5

 Table S3a Selected experimental and DFT calculated bond angles (deg)

Bond	[2a]Cl	O ₄	[2b]ClO ₄		
angles	X-ray	DFT	X- ray	DFT	
N2-Ru1-N4	73.14(13)	71.8	73.31(17)	72.1	
N2-Ru1-P1	89.69(9)	91.7	97.52(12)	97.2	
N2-Ru1-P2	93.04(9)	90.4	96.90(12)	94.2	
N2-Ru1-C9	177.36(16)	174.3	99.9(2)	103.4	
N2-Ru1-H	99(2)	96.7	162(5)	166.3	
N4-Ru1-P1	92.80(9)	97.0	91.46(12)	92.5	
N4-Ru1-P2	90.90(9)	95.5	91.46(12)	93.0	
N4-Ru1-C9	104.63(15)	102.9	173.2(2)	175.4	
N4-Ru1-H	172(3)	168.6	88(5)	94.3	
P1-Ru1-P2	175.92(4)	167.2	165.54(5)	168.2	
P1-Ru1-C9	91.83(12)	86.5	89.72(16)	88.5	
P1-Ru1-H	91(3)	82.7	83(5)	84.8	
P2-Ru1-C9	85.56(12)	92.3	88.87(16)	86.7	
P2-Ru1-H	86(3)	84.5	83(5)	84.4	
C9-Ru1-H	83(2)	88.4	98(5)	90.1	

 Table S3b
 Selected experimental and DFT calculated bond angles (deg)

Table S4 Experimental and TD-DFT (M06L/CPCM/CH3CN) calculated electronic transitions

for 1^n and $2^n (n = +1, 0)$ in CH₃CN.

$\lambda_{\rm max} a/{\rm nm}$	λ^{c}/nm (DFT)	Transitions	Character							
(expt.) (ε /dm ³ (f)										
$mol^{-1}cm^{-1})^b$										
$\mathbf{1a}^+(S=0)$										
496(459)	2140(0.057)	$HOMO \rightarrow LUMO(0.68)$	$PPh_3(\pi)/Ru(d\pi) \rightarrow L1(\pi^*)$							
432(428)	3400(0.050)	HOMO-1 \rightarrow LUMO(0.59)	$L1(\pi)/Ru(d\pi) \rightarrow L1(\pi^*)$							
366(359)	8380(0.262)	HOMO-3 \rightarrow LUMO(0.48)	$PPh_3(\pi) \rightarrow L1(\pi^*)$							
		HOMO-1 \rightarrow LUMO(0.34)	$L1(\pi)/Ru(d\pi) \rightarrow L1(\pi^*)$							
274(264)	10580(0.231)	HOMO-3 \rightarrow LUMO+1(0.35)	$PPh_3(\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		1a $(S = 1/2)$								
320(314)	7220(0.067)	HOMO-2(α) \rightarrow LUMO(α)(0.57)	$\operatorname{Ru}(d\pi)/\operatorname{PPh}_3(\pi) \rightarrow \operatorname{PPh}_3(\pi^*)/\operatorname{Ru}_{(d\pi)}$							
234(244)	28740(0.014)	HOMO(α) \rightarrow LUMO-15(α)(0.32)	$L1(\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		$1b^+(S=0)$								
540(520)	1520(0.037)	HOMO→LUMO(0.68)	$Ru(d\pi)/PPh_3(\pi) \rightarrow L1(\pi^*)$							
382(374)	11420(0.264)	HOMO-2 \rightarrow LUMO(0.50)	$PPh_3(\pi) \rightarrow L1(\pi^*)$							
321(337)	8120(0.094)	HOMO \rightarrow LUMO+1(0.60)	$Ru(d\pi)/PPh_3(\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
233(260)	26240(0.210)	HOMO-2 \rightarrow LUMO+1(0.57)	$PPh_3(\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
	1b (S = 1/2)									
500(460)	2000(0.069)	HOMO(β) \rightarrow LUMO(β)(0.32)	$L1(\pi) \rightarrow L1(\pi^*)$							
378(389)	14160(0.069)	HOMO-1(β) \rightarrow LUMO(β)(0.81)	$Ru(d\pi)/L1(\pi) \rightarrow L1(\pi^*)$							
234(255)	30800(0.175)	HOMO-4(β) \rightarrow LUMO+1(β)(0.50)	$L1(\pi)/Ru(d\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		$2a^{+}(S=0)$								
507(492)	3560(0.059)	HOMO \rightarrow LUMO(0.68)	$PPh_3(\pi)/Ru(d\pi) \rightarrow L2(\pi^*)$							
385(406)	6740(0.166)	HOMO-2 \rightarrow LUMO(0.54)	$Ru(d\pi)/L2(\pi) \rightarrow L2(\pi^*)$							
278(300)	11100(0.120)	HOMO-1 \rightarrow LUMO+1(0.37)	$L_2(\pi)/Ru(d\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		HOMO-2 \rightarrow LUMO+1(0.32)	$Ru(d\pi)/L2(\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		2a ($S = 1/2$)								
380(377)	10560(0.076)	HOMO-1(β) \rightarrow LUMO(β)(0.78)	$L2(\pi)/Ru(d\pi) \rightarrow L2(\pi^*)$							
256(261)	26020(0.153)	HOMO-4(α) \rightarrow LUMO+1(α)(0.20)	$Ru(d\pi) \rightarrow PPh_3(\pi^*)/Ru(d\pi)$							
		$2b^{+}(S=0)$								
511(548)	12760(0.049)	$HOMO \rightarrow LUMO(0.68)$	$PPh_3(\pi)/Ru(d\pi) \rightarrow L2(\pi^*)$							
457(442)	19240(0.054)	HOMO-1 \rightarrow LUMO(0.56)	$L2(\pi)/PPh_3(\pi) \rightarrow L2(\pi^*)$							
397(393)	15280(0.108)	HOMO-3→LUMO(0.60)	$L2(\pi)/PPh_3(\pi) \rightarrow L2(\pi^*)$							
230(230)	24040(0.029)	HOMO-2→LUMO+6(0.25)	$PPh_3(\pi)/Ru(d\pi) \rightarrow PPh_3(\pi^*)/L2(\pi^*)$							
		2b $(S = 1/2)$								
367(363)	9420(0.012)	HOMO-2(β) \rightarrow LUMO(β)(0.12)	$L2(\pi) \rightarrow L2(\pi^*)/PPh_3(\pi^*)$							
242(252)	30480(0.019)	HOMO-4(β) \rightarrow LUMO+2(β)(0.12)	$PPh_3(\pi)/Ru(d\pi) \rightarrow PPh_3(\pi^*)$							

^{*a*} Experimental absorption maximum in CH₃CN. ^{*b*} Molar Extinction coefficients in dm³ mol⁻¹

cm⁻¹. ^{*c*} Calculated oscillator strength.

Complex	E			$E_{(\text{HE-LE})}^{a}$
	(Hartrees)			
	S = 0	<i>S</i> = 1/2	<i>S</i> = 1	
1a ⁺	-2919.6889	_	-	-
1a	-	-2919.8370	-	-
1a-	-2919.8421	-	-2919.8331	0.009 Hartrees
				23.63 KJ mol ⁻¹
				1975.27 cm ⁻¹
1b ⁺	-2919.6794	-	-	-
1b	-	-2919.8308	-	-
1b ⁻	-2919.8367		-2919.8264	0.0103 Hartrees
				27.04 KJ mol ⁻¹
				2260.58 cm ⁻¹
2a ⁺	-2941.2188	-	-	-
2a	-	-2941.3745	-	-
2a-	-2941.3949	-	-2941.3760	0.0189 Hartrees
				49.62 KJ mol ⁻¹
				4148.07 cm ⁻¹
2 b ⁺	-2941.2173	_	-	-
2b		-2941.3751		-
2b ⁻	-2941.3949		-2941.3753	0.0196 Hartrees
				51.45 KJ mol ⁻¹
				4301.70 cm ⁻¹

Table S5 Energies of DFT (M06L/lanL2DZ/6-31G**) optimised structures

 a HE = Spin state in higher in energy and LE = Spin state in lower in energy

МО	Energy(eV)		% Composition					
		Ru	L1	PPh ₃	СО	Н		
HOMO-5	-9.003	39	20	29	08	05		
HOMO-4	-8.983	10	03	86	00	00		
HOMO-3	-8.880	06	04	90	00	00		
HOMO-2	-8.786	01	01	98	00	00		
HOMO-1	-8.703	28	53	17	02	00		
НОМО	-8.298	22	11	67	00	00		
LUMO	-5.133	11	78	10	00	00		
LUMO-1	-3.353	30	04	65	02	01		
LUMO-2	-2.899	08	09	81	01	00		
LUMO-3	-2.860	12	08	75	05	01		
LUMO-4	-2.807	03	04	91	02	01		
LUMO-5	-2.750	08	06	83	02	02		

Table S6 Composition and energies of selected molecular orbitals of $1a^+$ (S=0)

МО	Energy(eV)	% Composition							
		Ru	L1	PPh ₃	СО	Н			
α-spin									
HOMO-5	-5.964	55	34	03	05	03			
HOMO-4	-5.850	54	29	11	05	00			
HOMO-3	-5.638	34	51	04	07	05			
HOMO-2	-5.518	50	19	31	00	00			
HOMO-1	-5.252	19	75	04	01	00			
SOMO	-3.034	08	85	06	00	00			
LUMO	-0.726	24	04	71	01	00			
LUMO+1	-0.515	02	02	95	00	01			
LUMO+2	-0.442	04	00	95	00	00			
LUMO+3	-0.397	07	01	92	01	00			
LUMO+4	-0.377	05	04	91	00	00			
LUMO+5	-0.209	04	02	93	01	00			
	11		β-spin	I					
HOMO-5	-5.899	69	19	02	08	01			
HOMO-4	-5.884	02	94	04	00	00			
HOMO-3	-5.767	58	27	09	06	00			
HOMO-2	-5.493	20	66	04	05	06			
HOMO-1	-5.385	55	17	28	00	00			
НОМО	-4.783	11	86	03	01	00			
LUMO	-0.970	10	78	71	01	00			
LUMO+1	-0.719	23	04	78	01	00			
LUMO+2	-0.514	02	02	95	00	00			
LUMO+3	-0.438	03	01	96	00	00			
LUMO+4	-0.393	06	01	92	01	00			
LUMO+5	-0.370	05	03	91	00	00			

Table S7 Composition and energies of selected molecular orbitals of 1a (S = 1/2)

МО	Energy(eV)	% Composition					
		Ru	L1	PPh ₃	СО	Н	
HOMO-5	-2.690	52	33	09	06	00	
HOMO-4	-2.663	74	12	03	11	00	
НОМО-3	-2.191	43	22	35	01	00	
НОМО-2	-1.920	12	75	05	02	06	
HOMO-1	-1.606	18	72	08	01	01	
НОМО	1.469	16	60	23	01	00	
LUMO	1.990	10	01	88	00	00	
LUMO+1	2.048	17	02	80	01	00	
LUMO+2	2.272	04	06	89	00	00	
LUMO+3	2.280	04	02	93	01	00	
LUMO+4	2.330	05	03	92	00	00	
LUMO+5	2.471	06	02	91	01	00	

Table S8 Composition and Energies of Selected Molecular Orbitals of $1a^{-}$ (S = 0)

МО	Energy(eV)	% Composition					
		Ru	L1	PPh ₃	СО	Н	
HOMO-5	-8.949	39	02	54	05	00	
HOMO-4	-8.911	18	20	62	00	00	
HOMO-3	-8.852	02	34	64	00	00	
HOMO-2	-8.778	01	01	97	00	06	
HOMO-1	-8.570	24	21	55	00	01	
НОМО	-8.185	50	11	38	00	00	
LUMO	-5.125	07	85	06	01	00	
LUMO+1	-3.346	33	03	61	03	00	
LUMO+2	-3.005	11	09	76	03	01	
LUMO+3	-2.875	05	01	91	03	00	
LUMO+4	-2.837	02	03	94	00	00	
LUMO+5	-2.773	02	00	97	01	00	

Table S9 Composition and energies of selected molecular orbitals of $\mathbf{1b}^+$ (S = 0)

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy(eV)		% Composition							
		Ru	L1	PPh ₃	СО	Н				
α-spin										
HOMO-5	-6.072	09	78	09	04	00				
HOMO-4	-6.034	36	18	43	03	00				
HOMO-3	-5.883	80	03	03	14	00				
HOMO-2	-5.470	32	51	17	00	00				
HOMO-1	-5.192	39	52	08	01	00				
SOMO	-3.104	07	86	06	01	00				
LUMO	-0.720	23	03	72	02	00				
LUMO+1	-0.537	06	01	92	00	00				
LUMO+2	-0.531	04	01	95	01	00				
LUMO+3	-0.419	06	06	87	01	00				
LUMO+4	-0.338	04	00	95	00	00				
LUMO+5	-0.192	03	00	95	02	00				
	11		β-spin		1					
HOMO-5	-6.024	42	09	46	03	00				
HOMO-4	-5.889	20	71	05	04	00				
НОМО-3	-5.875	62	23	03	11	00				
HOMO-2	-5.845	14	76	03	07	00				
HOMO-1	-5.268	59	22	19	00	00				
НОМО	-4.805	09	87	03	01	00				
LUMO	-1.011	09	79	10	03	00				
LUMO+1	-0.715	22	03	73	02	00				
LUMO+2	-0.535	06	01	92	00	00				
LUMO+3	-0.527	04	01	95	00	00				
LUMO+4	-0.412	06	06	87	01	00				
LUMO+5	-0.334	04	01	95	01	00				

Table S10 Composition and energies of selected molecular orbitals of **1b** (S = 1/2)

МО	Energy(eV)		% Composition					
		Ru	L1	PPh ₃	СО	Н		
HOMO-5	-2.835	78	05	02	14	00		
HOMO-4	-2.727	01	92	07	00	00		
HOMO-3	-2.302	21	68	05	05	00		
HOMO-2	-2.259	42	46	10	01	00		
HOMO-1	-1.417	06	89	04	01	00		
НОМО	0.690	09	78	11	02	00		
LUMO	1.760	04	02	94	01	00		
LUMO+1	1.796	03	00	96	00	00		
LUMO+2	1.906	18	03	78	01	00		
LUMO+3	2.040	07	03	89	01	00		
LUMO+4	2.114	03	01	96	01	00		
LUMO+5	2.235	02	01	97	00	00		

Table S11 Composition and energies of selected molecular orbitals of $1b^{-}$ (S = 0)

МО	Energy(eV)		% Composition					
		Ru	L2	PPh ₃	СО	Н		
HOMO-5	-8.895	24	34	37	04	00		
HOMO-4	-8.865	18	27	52	03	01		
НОМО-3	-8.831	35	38	21	05	01		
HOMO-2	-8.739	38	32	30	01	00		
HOMO-1	-8.616	19	67	12	01	00		
НОМО	-8.261	34	11	55	00	00		
LUMO	-5.139	07	85	07	00	00		
LUMO+1	-3.429	29	12	56	02	01		
LUMO+2	-3.255	04	86	09	01	00		
LUMO+3	-2.992	00	95	04	00	00		
LUMO+4	-2.958	02	30	67	01	00		
LUMO+5	-2.893	04	03	92	01	00		

Table S12 Composition and energies of selected molecular orbitals of $2a^+$ (S = 0)

HOMO	HOMO-1	HOMO-2	HOMO-3
the second	a second	the same	the second
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	Energy(eV)		% Composition							
		Ru	L2	PPh ₃	CO	Н				
α-spin										
HOMO-5	-5.967	16	71	11	01	00				
HOMO-4	-5.831	49	38	09	05	00				
HOMO-3	-5.687	26	59	10	03	03				
HOMO-2	-5.650	22	58	18	01	01				
HOMO-1	-5.409	22	70	07	01	00				
SOMO	-3.351	07	85	07	00	00				
LUMO	-0.859	23	06	69	02	01				
LUMO+1	-0.645	05	04	91	01	00				
LUMO+2	-0.494	09	02	88	00	00				
LUMO+3	-0.415	03	01	94	01	00				
LUMO+4	-0.394	05	33	61	00	00				
LUMO+5	-0.321	09	04	87	00	00				
	11		β-spin							
HOMO-5	-5.970	76	12	02	10	00				
HOMO-4	-5.770	43	48	06	03	00				
HOMO-3	-5.741	14	78	07	02	00				
HOMO-2	-5.555	37	43	18	01	01				
HOMO-1	-5.522	15	71	10	02	02				
НОМО	-5.040	14	81	05	00	00				
LUMO	-1.314	08	80	11	01	00				
LUMO+1	-0.849	22	06	70	02	01				
LUMO+2	-0.641	05	03	91	01	00				
LUMO+3	-0.491	10	02	88	00	00				
LUMO+4	-0.411	03	01	95	01	00				
LUMO+5	-0.384	05	23	70	00	00				

Table S13 Composition and energies of selected molecular orbitals of 2a (S = 1/2)

МО	Energy(eV)		% Composition					
		Ru	L2	PPh ₃	СО	Н		
HOMO-5	-2.839	77	10	02	11	00		
HOMO-4	-2.762	48	41	05	05	00		
HOMO-3	-2.461	49	24	26	01	00		
НОМО-2	-2.114	22	70	07	01	00		
HOMO-1	-1.911	08	82	04	01	01		
НОМО	1.116	13	63	23	01	00		
LUMO	1.662	03	03	94	00	00		
LUMO+1	1.691	17	09	73	01	00		
LUMO+2	1.825	04	01	94	01	00		
LUMO+3	2.021	04	04	92	00	00		
LUMO+4	2.033	09	02	89	00	00		
LUMO+5	2.063	04	02	93	00	00		

Table S14 Composition and energies of selected molecular orbitals of $2a^{-}$ (S = 0)

МО	Energy(eV)		% Composition					
		Ru	L2	PPh ₃	СО	Н		
HOMO-5	-8.947	09	12	77	01	00		
HOMO-4	-8.893	10	10	79	00	00		
HOMO-3	-8.842	13	50	35	02	00		
HOMO-2	-8.727	28	24	48	00	00		
HOMO-1	-8.529	05	74	20	00	00		
НОМО	-8.140	43	13	43	01	00		
LUMO	-5.202	07	85	07	01	00		
LUMO+1	-3.386	32	08	57	02	00		
LUMO+2	-3.261	05	82	12	01	01		
LUMO+3	-3.027	06	33	60	01	00		
LUMO+4	-2.895	01	92	07	00	00		
LUMO+5	-2.889	03	02	92	03	00		

Table S15 Composition and energies of selected molecular orbitals of $2b^+$ (S = 0)

МО	Energy(eV)		% Composition							
		Ru	L2	PPh ₃	СО	Н				
α-spin										
HOMO-5	-5.908	79	04	03	14	00				
HOMO-4	-5.769	11	82	06	01	00				
HOMO-3	-5.572	06	84	06	04	00				
HOMO-2	-5.433	06	79	15	00	00				
HOMO-1	-5.221	57	23	20	00	00				
SOMO	-2.879	06	86	07	01	00				
LUMO	-0.813	26	03	70	01	00				
LUMO+1	-0.665	05	02	92	01	00				
LUMO+2	-0.608	02	01	96	01	00				
LUMO+3	-0.479	07	12	81	00	00				
LUMO+4	-0.407	02	03	95	00	00				
LUMO+5	-0.334	09	04	86	01	00				
	11		β-spin							
HOMO-5	-5.974	33	17	48	02	00				
HOMO-4	-5.900	80	04	03	14	00				
HOMO-3	-5.619	02	95	03	00	00				
HOMO-2	-5.400	07	83	06	04	00				
HOMO-1	-5.190	41	35	24	00	00				
НОМО	-5.067	23	65	11	01	00				
LUMO	-0.867	16	46	36	03	00				
LUMO+1	-0.782	22	16	60	01	00				
LUMO+2	-0.661	05	02	92	01	00				
LUMO+3	-0.596	02	04	93	00	00				
LUMO+4	-0.469	06	12	81	00	00				
LUMO+5	-0.404	02	03	95	00	00				

Table S16 Composition and energies of selected molecular orbitals of **2b** (S = 1/2)

МО	Energy(eV)	% Composition					
		Ru	L2	PPh ₃	СО	Н	
HOMO-5	-2.943	78	06	02	14	00	
HOMO-4	-2.901	05	91	03	01	00	
HOMO-3	-2.350	42	37	21	00	00	
HOMO-2	-2.125	22	67	10	01	00	
HOMO-1	-2.074	10	78	07	04	00	
НОМО	1.040	10	64	23	02	00	
LUMO	1.633	05	03	92	00	00	
LUMO+1	1.707	20	02	77	01	00	
LUMO+2	1.795	03	03	94	00	00	
LUMO+3	1.918	05	05	89	01	00	
LUMO+4	2.031	05	03	91	00	00	
LUMO+5	2.141	02	03	94	00	00	

Table S17 Composition and energies of selected molecular orbitals of $2b^{-}(S = 0)$

HOMO	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

Complex	Ru	L1/L2	PPh ₃	СО	H/Cl
1a (<i>S</i> = 1/2)	0.014	0.981	0.013	0.002	-0.005
1b ($S = 1/2$)	0.001	0.974	0.012	0.012	-0.002
2a ($S = 1/2$)	0.018	0.972	0.013	0.002	-0.005
2b ($S = 1/2$)	0.003	0.971	0.018	0.011	-0.002

 Table S18 Mulliken spin density distributions

 Table S19 Comparison of the electrocatalytic HER

Catalysts	Electrolyte	Overpotential	TOF	FE	Ref.
Co(4,4"-trifluoromethyl-4'-	TBAP/acetic acid	250 mV vs	1445 s ⁻¹	-	S3
dimethylamino-2,2':6',2"-		Fc*/Fc			
terpyridine) ₂]·2 PF ₆					
[{Ni(,2-bis(2-thiabutyl-3,3-dimethyl-4-	TBAPF ₆	640 mV vs	-	64%	S4
selenol)benzene) $_2$ Ru(phen) $_2$](PF $_6$) $_2$		Fc*/Fc			
[{Ni(,2-bis(2-thiabutyl-3,3-dimethyl-4-	TBAPF ₆	650 mV vs	-	63 %	S4
selenol)benzene) ₂ Ru(phen) ₂](PF ₆) ₂		Fc*/Fc			
$[cis-RuCl_2(PPh_3)_2(\kappa_2-TL)] (TL = 2-$	TFA	-	395 s ⁻¹	-	S5
thiophenyl benzimidazole) CH ₃ CN/0.1					
M ⁿ Bu ₄ NPF ₆					
Cobalt(II)PY ₄	Bu ₄ NPF ₆ ,	-	$0.011 \ s^{-1}$		S6
	CH ₃ CN, TFA				
[Co(HBMIMPh ₂) ₂](BF ₄)	Et ₃ NHBF ₄ in	-	555 s ⁻¹	>99%	S7
	DMF				
[Co(bapbpy)Cl] ⁺	ⁿ Bu ₄ NBF ₄ in	890 (±50) mV	$110\pm20\ s^{-1}$	93 (±10) %	S8
	DMF				
[Co ^{II} ₂ N,N'-bis(salicylidene)-	DMF/acetic	470 mV	$50 \ s^{-1}$	85–95%	S9
phenylmethanediamine]	acid/TBATFB				
[Co ^{II} Co ^{III} N,N'-bis(salicylidene)-	DMF/acetic	-	$1600 \ s^{-1}$		S9
phenylmethanediamine (pyr) ₂] ⁺	acid/TBATFB				
$[\mathrm{Co^{II}_{2}(NN'_{2}O_{2})(bpy)_{2}]ClO_{4}}$	CH ₃ CN/HOAc	-		94 % -1.6	S10
				V vs.	
				Ag/AgCl)	
[Co ₂ 4-{bis[4-(p-	DMF/Et ₃ NHBF ₄	-	$130 \ s^{-1}$	65%	S11
methoxyphenyl)thiosemicarbazone]}-				-1.60 V	
2,3-butane (NCS) ₂]				versus Fc+/0	
$Co^{III}_2(trpy)_2(\mu\text{-bpp})(OH)(OH_2)]^{4+}$	ⁿ Bu ₄ NPF ₆ in	-	-	79%	S12
	MeCN/HOAc			E= -1.1 V	
				vs SCE	
[1a]ClO ₄	$0.5 H_2 SO_4$	263 mV vs	8.27 x 10 ⁻²	97.4%	This
		RHE	s^{-1}		work

References

- S1 A. K. Singh, S. Ji, B. Singh, C. Das, H. Choi, P. W. Menezes and A. Indra, *Mater. Today Chem.*, 2022, 23, 100668.
- S2 B. Singh, A. K. Singh, A. Priyadarsini, Y.-C. Huang, S. Dey, T. Ansari, S. Shen, G. K. Lahiri,
 C.-L. Dong, B. S. Mallik and A. Indra, *Chem. Commun.*, 2023, 59, 6084-6087.
- S3 S. Aroua, T. K. Todorova, V. Mougel, P. Hommes, H.-U. Reissig and M. Fontecave, *Chem. Cat. Chem.*, 2017, 9, 2099-2105.
- S4 G. Gezer, D. Durán Jiménez, M. A. Siegler and E. Bouwman, *Eur. J. Inorg. Chem.*, 2017, 2017, 5027-5032.
- S5 V. Kaim, M. Joshi, M. Stein and S. Kaur-Ghumaan, Int. J. Hydrogen Energy, 2023, 48, 30718-30731.
- S6 J. P. Bigi, T. E. Hanna, W. H. Harman, A. Chang and C. J. Chang, *Chem. Commun.*, 2010, 46, 958-960.
- S7 S. D. de Vos, M. Otten, T. Wissink, D. L. J. Broere, E. J. M. Hensen and R. J. M. K. Gebbink, *Chem. Sus. Chem.*, 2022, **15**, e202201308.
- S8 N. Queyriaux, D. Sun, J. Fize, J. Pécaut, M. J. Field, M. Chavarot-Kerlidou and V. Artero, J. Am. Chem. Soc., 2020, 142, 274-282.
- S9 T. H. To, D. B. Tran, V. Thi Thu Ha and P. D. Tran, RSC Adv., 2022, 12, 26428-26434.
- K. K. Kpogo, S. Mazumder, D. Wang, H. B. Schlegel, A. T. Fiedler and C. N. Verani, *Chem. A Eur. J.*, 2017, 23, 9272-9279.
- S11 T. Straistari, R. Hardré, J. Fize, S. Shova, M. Giorgi, M. Réglier, V. Artero and M. Orio, *Chem. – A Eur. J.*, 2018, 24, 8779-8786.
- S12 S. Mandal, S. Shikano, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet and S. Fukuzumi, J. Am. Chem. Soc., 2013, 135, 15294-15297.