Electronic Supporting Information

Hyphenation of lipophilic ruthenium(II)-diphosphine core with 5fluorouracil: an effective metallodrug against glioblastoma brain cancer cells

Abhijit Saha^a, Indranil Mondal^b, Anuj Kumari^b, Avinash Kumar Sonkar^a, Ramranjan Mishra^a, Ritu Kulshreshtha^b, Ashis K. Patra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.

E-mail: akpatra@iitk.ac.in

^bDepartment of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.

Table of Contents

Contents	Page	
	No.	
Fig. S1. FT-IR spectrum of 5-FU and Ru-DPPE-5FU in the solid state	3	
Fig. S2. ¹ H-NMR spectrum of complex Ru-DPPE-5FU	3	
Fig. S3. ¹³ C-NMR spectrum of complex Ru-DPPE-5FU	4	
Fig. S4. ¹ H- ¹ H COSY NMR of complex Ru-DPPE-5FU	5	
Fig. S5. ¹⁹ F-NMR spectrum of 5-FU and Ru-DPPE-5FU	5	
Fig. S6. ESI-MS(+) spectrum of the complex Ru-DPPE-5FU (Full-range)	6	
Fig. S7. 3-D perspective view for caging of hydrophilic drug 5-FU	7	
Fig. S8. Strong $\pi - \pi$ interaction and intramolecular non-classical H-bonding	7	
Fig. S9. Cyclic Voltammograms for Ru-DPPE-Cl and Ru-DPPE-5FU	8	
Table S1. Table for cyclic voltammogram data for Ru-DPPE-Cl and Ru-DPPE-5FU	8	
Fig. S10-S11. Time-dependent ³¹ P-NMR of Ru-DPPE-5FU showing stability in	9	
solution		
Fig. S12. ³¹ P-NMR spectrum of <i>cis</i> -[Ru(dppe) ₂ Cl ₂] (Ru-DPPE-Cl)	10	
Fig. S13. ¹ H-NMR spectrum of complex <i>cis</i> -[Ru(dppe) ₂ Cl ₂] (Ru-DPPE-Cl)	11	
Fig. S14. ¹³ C-NMR spectrum of complex <i>cis</i> -[Ru(dppe) ₂ Cl ₂] (Ru-DPPE-Cl)	12	
Fig. S15. ESI-MS(+) spectrum of complex <i>cis</i> -[Ru(dppe) ₂ Cl ₂] (Ru-DPPE-Cl)	13	
Table S2. Crystal data and structure refinement parameters obtained from the complex	14	
Ru-DPPE-5FU		
Table S3. Selected bond lengths (Å) and bond angles (°) for Ru-DPPE-5FU		
Table S4. Comparative table for bond length of 5-FU and Ru-DPPE-5FU	15	
Table S5. Selected UV-vis absorption energy transitions calculated from TD-DFT	16	
Table S6. Atomic coordinates for all the calculated species i.e., 5-FU, Ru-DPPE-Cl,	17-25	
and Ru-DPPE-5FU		

Fig. S1. The solid-state FT-IR spectrum of **5-FU** (a), and [Ru(dppe)₂(5-FU)]PF₆ (**Ru-DPPE-5FU**) (b) in KBr.

Fig. S2. ¹H-NMR (400 MHz) spectrum of Ru-DPPE-5FU in DMSO- d_6 at 298 K.

Fig. S3. ${}^{13}C{}^{1}H$ -NMR (101 MHz) spectrum of [Ru(dppe)₂(5-FU)]PF₆ (Ru-DPPE-5FU) in DMSO- d_6 at 298 K.

Fig. S4. ($^{1}H-^{1}H$) COSY NMR (500 MHz) spectrum of [Ru(dppe)₂(5-FU)]PF₆ (**Ru-DPPE-5FU**) in DMSO- d_6 .

Fig. S5. ${}^{19}F{}^{1}H$ -NMR (373 MHz) spectrum of 5-FU and [Ru(dppe)₂(5-FU)]PF₆ (Ru-DPPE-5FU) in DMSO- d_6 respectively at 298 K.

Fig. S6. ESI-MS(+) spectrum (full-range) of $[Ru(dppe)_2(5-FU)]PF_6$ (Ru-DPPE-5FU) in methanol.

Fig. S7. 3-D perspective view indicative effective caging of hydrophilic **5-FU** within the hydrophobic pocket of lipophilic Ru(dppe)₂-core, generated from the SC-XRD structure.

Fig. S8. ORTEP diagram of **Ru-DPPE-5FU** showing π π stacking interactions through centroidcentroid distance (a), and *OLEX2* view of intra-molecular non-classical H-bonding between C6-H...O1 (b).

Fig. S9. Cyclic Voltammograms of (a) **Ru-DPPE-Cl** and (b) **Ru-DPPE-5FU** in dichloromethane (0.1M TBAPF₆) at 100 mV/sec scan rate.

Table S1. Electrochemical data of the ruthenium complexes.^a

Compounds	Ep _a (V)	Epc (V)	$\Delta E (\mathrm{mV})$	$E_{1/2}\left(\mathbf{V} ight)$
Ru-DPPE-Cl	0.823	0.744	79	0.783
Ru-DPPE-5FU	1.737	1.657	80	1.697

^{*a*}Condition: Supporting electrolyte, TBAPF₆ (0.1 M); CH₂Cl₂; Ag/AgCl reference electrode, scan rate of 100 mV/sec.

Fig. S10. ³¹P{¹H}-NMR (160 MHz) spectrum of $[Ru(dppe)_2(5-FU)]PF_6$ (**Ru-DPPE-5FU**) in DMSO-*d*₆ at different time intervals: 0 h, 24 h, 48 h, and 72 h.

Fig. S11. ³¹P{¹H}-NMR (160 MHz) spectrum of **Ru-DPPE-5FU** in 20% D₂O/DMSO- d_6 at different time intervals: 0 h, 5 h, 24 h, 30 h, and 42 h.

Fig. S12. ³¹P{¹H}-NMR (160 MHz) spectrum of **Ru-DPPE-Cl** i.e., *cis*-[Ru(dppe)₂Cl₂] in DMSO d_6 at 298 K.

Fig. S13. ¹H-NMR (400 MHz) spectrum of **Ru-DPPE-Cl** i.e., *cis*-[Ru(dppe)₂Cl₂] in DMSO-*d*₆ at 298 K.

Fig. S14. ¹³C{¹H}-NMR (101MHz) spectrum of **Ru-DPPE-Cl** i.e., *cis*-[Ru(dppe)₂Cl₂] in DMSO d_6 at 298 K.

Fig. S15. ESI-MS(+) spectrum (full-range) of cis-[Ru(dppe)₂Cl₂] (**Ru-DPPE-Cl**) in dichloromethane.

Table S2. Selected crystallographic data and structure refinement parameters for the complex **Ru-DPPE-5FU** with co-crystallized solvent molecule i.e. [Ru^{II}(dppe)₂(5-FU)]PF₆·DMSO

Identification code	CCDC No. 2294004
Empirical formula	$C_{58}H_{56}F_7N_2O_3P_5RuS$
Formula weight	1250.02
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	14.5354(4)
b/Å	20.8155(6)
c/Å	17.9751(5)
α/°	90
$\beta/^{\circ}$	93.6410(10)
γ/°	90
Volume/Å ³	5427.6(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.530
μ/mm^1	0.547
F(000)	2560.0
Crystal size/mm ³	0.2 imes 0.18 imes 0.16
Radiation	MoKa ($\lambda = 0.71073$)
2@ range for data collection/°	5.544 to 52.098
Index ranges	$-17 \le h \le 17, -25 \le k \le 25, -22 \le l \le 22$
Reflections collected	72419
Independent reflections	10709 [$R_{int} = 0.0548$, $R_{sigma} = 0.0344$]
Data/restraints/parameters	10709/49/697
Goodness-of-fit on F^2	1.038
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0581, wR_2 = 0.1537$
Final R indexes [all data]	$R_1 = 0.07\overline{40}, wR_2 = 0.1692$
Largest diff. peak/hole / e Å-3	1.22/-1.61

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}.$ Goodness-of-fit (GOF) = $\{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2} / (n-p)] \}^{1/2}$, where n = number of data and p = number of parameters refined.

Bond Lengths (Å)		Bond Angle	es (degree)
Ru1-P1	2.3028(12)	P3-Ru1-P1	88.67(4)
Ru1-P2	2.3958(12)	P3-Ru1-P2	103.56(4)
Ru1-P3	2.3142(12)	P3-Ru1-P4	82.14(4)
Ru1-P4	2.3749(12)	P1-Ru1-P2	83.48(4)
Ru1-O1	2.203(3)	P1-Ru1-P4	103.64(4)
Ru1-N1	2.206(4)	O1-Ru1-N1	60.84(16)

Table S3. Selected bond lengths and bond angles obtained from the crystal structure of the complex Ru-DPPE-5FU.

Table S4. Comparative table of the specified bond length parameters in free **5-FU** ligand taken from the reference^{S1} and in the **Ru-DPPE-5FU** complex obtained from SC-XRD data.

Bond Lengths (Å)	5-FU	Ru-DPPE-5FU
C1-N1	1.40(3)	1.364(8)
C1-N2	1.40(2)	1.381(7)
C2-N2	1.39(3)	1.352(9)
C2-O2	1.24(2)	1.256(8)
C3-C4	1.35(2)	1.330(10)
C1-01	1.20(3)	1.245(7)
C4-N1	1.39(3)	1.363(8)
C3-F1	1.36(2)	1.361(8)

Table S5. Selected UV-vis absorption energy transitions at the TD-DFT/B3LYP level for 5-FU, Ru-DPPE-Cl and Ru-DPPE-5FU in dichloromethane.

Excited	$\lambda_{cal} (nm)/(eV)$	Oscillator	$\lambda_{exp}(nm)$	Key transitions
state		strength(f)		
			5-F	U
S_2	249/4.9748	0.1567	229	H-2-L (3%), H-L (93%)
			Ru-DPF	PE-Cl
S ₅	403/3.0725	0.0018	412	H-2-L (35%), H-1-L+1 (41%), H-1-L+2 (5%),
				H-1-L+3 (3%), H-1-L+17 (5%), H-L (4%)
S ₇	328/3.7796	0.0018	350	H-L+1 (21%), H-L+2 (75%), H-L+3 (2%)
S ₅₃	265/4.6768	0.0751	264	H-6-L+1 (3%), H-5-L (3%), H-4-L+1 (29%), H-
				3-L+3 (4%), H-2-L+12 (6%), H-1-L+13
				(37%), H-1-L+16 (4%), H-1-L+17 (9%),
S ₇₁	248/4.9840	0.0624	234	H-6-L+1 (7%), H-4-L+2 (33%), H-4-L+3
				(48%), H-4-L+4 (3%)
			Ru-DPP	E-5FU
S 9	311/3.9891	0.0751	310	H-2-L (87%), H-1-L(8%)
S ₃₈	255/4.8501	0.1087	260	H-10-L(3%), H-3- L+1(15%), H-3-L+2(18%),
				H-2-L+7(40%), H-2-L+9(5%), H-L+13(4%)
S ₆₆	243/5.0975	0.0720	229	H-11- L+1(5%), H-10- L+1(4%), H-9-
				L+1(10%), H-9-L+2(3%), H-8-L+1(4%), H-8-
				L+2(5%), H-7-L+2(9%), H-6-L+2(12%), H-4-
				L+2(8%), H-2-L+12(3%), H-1-L+12(8%)

Table S6. Atomic coordinates for all calculated species :

5-FU

С	-1.62730526	0.07776950	-0.00006683
С	0.75412571	0.87905251	0.00009301
С	1.13787376	-0.52781284	0.00007310
С	0.21871281	-1.51286325	0.00031892
Н	0.48847625	-2.56097343	0.00036193
0	1.52549329	1.82797474	0.00011424
Ν	-0.63591103	1.05198368	0.00043139
Н	-0.96747494	2.01000771	-0.00010034
0	-2.82120751	0.33415063	-0.00056574
Ν	-1.12489162	-1.21163137	0.00031080
Н	-1.81159559	-1.95320457	0.00032283
F	2.45349828	-0.79690826	-0.00051967

Ru-DPPE-Cl

Ru	0.00001925	0.00027794	-0.62455404
Р	1.04742207	1.41408321	1.13528703
Р	-1.59932005	1.86705612	-0.76877277
С	2.35134173	2.78162120	0.82519906
С	-3.44102793	1.59475143	-0.44626076
С	1.72471917	0.75700848	2.77664826
С	-1.69514318	2.87899314	-2.36175216
С	-0.37904098	2.54497048	1.71562944
С	-1.07664276	3.18567962	0.50943558
Р	-1.04742500	-1.41510671	1.13412840
Р	1.59930455	-1.86631111	-0.77028064
С	-2.35118653	-2.78252580	0.82283476

С	3.44104193	-1.59423598	-0.44781314
С	-1.72477860	-0.75948191	2.77603545
С	1.69492596	-2.87682825	-2.36416453
С	0.37913876	-2.54630648	1.71358728
С	1.07681130	-3.18600004	0.50689389
Н	0.03806452	3.31974143	2.36763675
Н	-1.08145878	1.94005191	2.29472846
Н	-0.39909599	3.88030390	0.00472047
Н	-1.94859446	3.75880225	0.83546208
Н	1.08149620	-1.94176121	2.29315296
Н	-0.03787522	-3.32163883	2.36499106
Н	1.94884170	-3.75926226	0.83244977
Н	0.39935083	-3.88031934	0.00163554
С	-0.77737806	4.57558072	-3.87007298
Н	-0.00172550	5.30285436	-4.09711361
С	-1.84567461	4.37617216	-4.76627319
Н	-1.90429937	4.95254939	-5.68635160
С	-2.83269756	3.41835624	-4.46302635
Н	-3.65832858	3.24695476	-5.14935357
С	-2.75754777	2.67590714	-3.26900998
Н	-3.53228486	1.94716998	-3.05242932
С	-0.69829081	3.82595481	-2.68161519
Н	0.15168594	3.98319500	-2.02658513
С	-4.27680272	2.64980943	-0.01664925
Н	-3.87721505	3.64569008	0.15315031
С	-4.01044695	0.32864161	-0.69775058
Н	-3.38394141	-0.48052303	-1.05677578
С	-5.39003266	0.11554046	-0.50725010

Η	-5.81259165	-0.86568760	-0.70767278
С	-6.21559891	1.16500198	-0.06039556
Н	-7.27958280	1.00012928	0.09038058
С	-5.65389097	2.43517874	0.18271756
Н	-6.28310944	3.25602251	0.51759566
С	4.01041153	-0.32794401	-0.69846846
Н	3.38384748	0.48146406	-1.05686396
С	5.39001700	-0.11496295	-0.50798743
Н	5.81252682	0.86642898	-0.70771468
С	6.21566194	-1.16475474	-0.06205406
Н	7.27966450	-0.99998028	0.08869821
С	5.65400495	-2.43512910	0.18016242
Н	6.28328074	-3.25622718	0.51430676
С	4.27688612	-2.64961785	-0.01913955
Н	3.87733423	-3.64563115	0.14995851
С	-2.87178899	0.06564735	2.76175591
Н	-3.32203433	0.35731585	1.81988487
С	-3.45857923	0.50363972	3.96312828
Н	-4.34210678	1.13589607	3.92901527
С	-2.90821968	0.11774119	5.20216312
Н	-3.36285470	0.45017148	6.13197113
С	-1.76706488	-0.70532139	5.22430481
Н	-1.33208135	-1.01204727	6.17207329
С	-1.17930765	-1.13987975	4.02016813
Н	-0.30248137	-1.77521935	4.07531897
С	1.17929760	1.13640492	4.02111613
Η	0.30255552	1.77181755	4.07683479
С	1.76699038	0.70072065	5.22487847

Н	1.33203103	1.00667425	6.17290664
С	2.90803055	-0.12248450	5.20202943
Н	3.36261891	-0.45579123	6.13154741
С	3.45834906	-0.50737095	3.96266121
Н	4.34179078	-1.13971634	3.92800409
С	2.87162669	-0.06825608	2.76166872
Н	3.32186290	-0.35918220	1.81955462
С	2.99671933	3.38229263	1.93270315
Н	2.81495656	3.02391418	2.94068130
С	3.89163147	4.45255268	1.74917135
Н	4.37742726	4.89849980	2.61373398
С	4.15828868	4.94215364	0.45469847
Н	4.85171180	5.76747056	0.31240076
С	3.51959068	4.34899040	-0.64951415
Н	3.71741907	4.71132736	-1.65557378
С	2.62040549	3.27794116	-0.46716724
Η	2.15423428	2.81705329	-1.32993857
С	-2.62022199	-3.27770634	-0.46997424
Н	-2.15415453	-2.81596970	-1.33233837
С	-3.51931662	-4.34866456	-0.65328456
Н	-3.71714491	-4.71008270	-1.65967452
С	-4.15793765	-4.94289375	0.45039801
Η	-4.85129281	-5.76814087	0.30736443
С	-3.89129203	-4.45444993	1.74531080
Η	-4.37702199	-4.90123888	2.60947569
С	-2.99649632	-3.38425554	1.92979790
Н	-2.81475011	-3.02675546	2.93809354
С	0.69800191	-3.82344987	-2.68482550

Н	-0.15190864	-3.98127965	-2.02985204
С	2.75727439	-2.67297307	-3.27131706
Н	3.53207967	-1.94450034	-3.05411247
С	2.83226168	-3.41426519	-4.46606041
Н	3.65783298	-3.24223971	-5.15230370
С	1.84515897	-4.37173785	-4.77012511
Н	1.90365155	-4.94722389	-5.69077044
С	0.77695187	-4.57196369	-3.87399743
Н	0.00125221	-5.29899422	-4.10165234
Cl	1.30209787	1.01322972	-2.55344910
Cl	-1.30180091	-1.01104691	-2.55423299

Ru-DPPE-5FU

Ru	0.02742772	-0.13417449	0.04971964
Р	-2.02636097	0.53338449	1.20580476
Р	-0.22036660	1.73484524	-1.49779003
Р	-0.93424776	-1.43400236	-1.82026015
Р	1.10191506	0.96570262	1.96830354
0	0.40697690	-2.05296204	1.03587160
С	-3.94563829	-0.28592495	3.16226448
Н	-4.50239991	0.59366642	2.85090882
С	-2.72565135	-0.62341987	2.53248892
Ν	1.95260909	-1.09924447	-0.27463717
С	-2.45946479	-2.50081426	-1.54276084
С	-4.45703910	0.18821841	-0.24229182
Н	-4.19501684	-0.86432886	-0.24212203
С	-4.46151801	-1.09402178	4.19158624
Н	-5.40191327	-0.82576846	4.66615492

С	-3.61174879	1.13409515	0.38226127
С	-3.36947604	-2.78912300	-2.58192097
Н	-3.23908198	-2.37247793	-3.57624372
С	-1.36179241	-0.23586576	-3.23283773
Н	-0.53755602	-0.23819398	-3.94849617
Н	-2.25060421	-0.58669204	-3.76285188
С	1.20988915	2.06011667	-2.69645991
С	-5.65895795	0.59331430	-0.84869070
Н	-6.29765070	-0.14849071	-1.32069203
С	-2.02660494	-1.77460541	2.94838282
Н	-1.09035457	-2.04876536	2.47617154
С	-3.73064822	-3.95580805	-0.04543572
Н	-3.85988115	-4.40477102	0.93574035
С	-3.99680603	2.49143779	0.39602269
Н	-3.38309770	3.24548581	0.87568547
С	-6.03593911	1.95186651	-0.83704041
Н	-6.96631966	2.26617383	-1.30277589
С	-1.59027802	1.18881328	-2.71330582
Н	-2.54107848	1.26324278	-2.17744808
Н	-1.60611302	1.88487288	-3.55777978
С	-2.64074257	-3.09587093	-0.27758267
Н	-1.93628763	-2.89519636	0.52075281
С	2.38684685	2.31775783	1.72687775
С	-5.20253305	2.89652888	-0.21012550
Н	-5.48497325	3.94574745	-0.18802685
С	-0.76464587	3.49071313	-1.06897905
С	-4.46328880	-3.64402582	-2.34749676
Н	-5.16067387	-3.85715813	-3.15339798

С	-1.84843018	4.10834944	-1.73126908
Н	-2.42953841	3.57678705	-2.47534729
С	-0.04143167	4.23704459	-0.11215017
Н	0.80867517	3.80043239	0.39843136
С	2.05276613	-0.18573862	3.12714939
С	-4.64847197	-4.22841818	-1.07795481
Н	-5.49293927	-4.88905118	-0.89989486
С	1.54665382	3.36193949	-3.12502912
Н	1.01054863	4.22437493	-2.74365664
С	-3.76305432	-2.24777147	4.60328492
Н	-4.16354275	-2.87403768	5.39644174
С	-2.20345994	5.43908956	-1.43870270
Н	-3.04069886	5.89490480	-1.96043923
С	-0.39478504	5.56707044	0.18117467
Н	0.17777387	6.12308449	0.91866600
С	0.20006130	-2.73476513	-2.60418014
С	0.82287480	-2.56843420	-3.85915156
Н	0.66893328	-1.67749875	-4.45883870
С	3.29616015	2.45832559	-4.57376221
Η	4.09685102	2.61240976	-5.29219372
С	1.65036922	-3.58007627	-4.38733195
Н	2.11331177	-3.43691478	-5.36020358
С	-1.53172765	2.02127016	2.29439155
Η	-1.38778847	2.88473587	1.64155264
Η	-2.35930569	2.23677901	2.97867294
С	-1.47960160	6.17429504	-0.48123749
Н	-1.75309587	7.20208976	-0.25785586
С	2.96105057	1.15644071	-4.15328488

Н	3.49983414	0.29822968	-4.54688780
С	3.04145122	2.45838811	0.48717796
Н	2.76605174	1.82594203	-0.34916596
С	1.92789208	0.96176311	-3.21787556
Н	1.68874239	-0.04825772	-2.90383814
С	3.45555659	-0.29833079	3.00389563
Η	3.99455010	0.29852505	2.27421210
С	2.58591159	3.55860099	-4.05559911
Н	2.83556103	4.56733331	-4.37422116
С	0.42493478	-3.93170531	-1.88488410
Η	-0.04899197	-4.09396093	-0.92131904
С	-2.54702669	-2.58278694	3.97928324
Н	-2.00102596	-3.47069369	4.28850481
С	-0.24846082	1.72781275	3.08368660
Н	-0.44567909	1.02316819	3.89602148
Η	0.13817453	2.64798412	3.53080559
С	1.87190976	-4.76713754	-3.66536883
Η	2.51012430	-5.54617107	-4.07370932
С	2.75642421	3.15501876	2.80303240
Η	2.29070135	3.04570450	3.77901469
С	1.25473052	-4.93809058	-2.41006574
Η	1.41395988	-5.85051461	-1.84152716
С	1.38609679	-0.97035242	4.09203144
Н	0.30744977	-0.92972141	4.20151316
С	4.04652907	3.42961476	0.31632265
Н	4.54212258	3.52762263	-0.64570874
Ν	2.47477052	-3.17986483	0.85149700
С	4.17972732	-1.16793488	3.84065613

Н	5.25903044	-1.23867749	3.73409447
С	1.62790473	-2.16199867	0.56045559
С	2.11124077	-1.83316985	4.93491291
Н	1.58220700	-2.42454707	5.67767304
С	3.75465188	4.13152773	2.63143177
Н	4.02912904	4.77248449	3.46493840
С	3.51061903	-1.93584359	4.81317543
Н	4.06917368	-2.60329617	5.46422717
С	4.40321892	4.27120225	1.38686773
Н	5.17687469	5.02329475	1.25688744
С	4.10151139	-2.08458373	-0.53289305
С	3.70116424	-3.14691583	0.30976430
С	3.19822928	-1.06564023	-0.80860306
Н	3.47940226	-0.23936171	-1.44849770
0	4.58361065	-4.15314336	0.57961845
Н	4.18339358	-4.82273855	1.17988555
F	5.38364904	-2.05545580	-1.08445937

References:

S1 L. Fallon III, Acta Cryst., 1973, **B29**, 2549.