Supplementary Information

KRb₂(NO₃)₂Cl: a New Birefringent Crystal Exhibiting Perovskite-

Related Framework and Short Cutoff Edge

Zhiyuan Zhang,^a Die Xu,^a Zhencheng Wu,^a Mei Hu,^b Xin Su^{*a} and Yineng Huang^{*a}

[a] Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.

[b] Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & School of Chemical Engineering and Technology, Xinjiang University, 777 Huarui Street, Urumqi 830017, China.

*Corresponding author: Xin Su E-mail: <u>suxin_phy@sina.com</u> Yineng Huang E-mail:ynhuang@nju.edu.cn Reagents

Table S1. Crystal data and structure refinement for KRb₂(NO₃)₂Cl.

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for KRb₂(NO₃)₂Cl.

Table S3. Bond lengths [Å] and angles [°] for KRb₂(NO₃)₂Cl.

Figure S1. The photograph of the $KRb_2(NO_3)_2Cl$ crystal plate (the minimum scale is 1 mm).

Figure S2. EDS spectrum of KRb₂(NO₃)₂Cl.

Figure S3. (a) the N(1)O₃ triangle; (b) the N(2)O₃ triangle; (c) the KO_6F_2 polyhedra; (d) the Rb(1)O₈Cl₂ polyhedra ; (e) the Rb(2)O₈Cl₂ polyhedra; (f) the K₂Rb₄Cl octahedra.

Figure S4. TG-DSC curves of KRb₂(NO₃)₂Cl.

Figure S5. Experimental and calculated powder XRD patterns, for KRb₂(NO₃)₂Cl.

Figure S6. The IR spectrum for KRb₂(NO₃)₂Cl.

Figure S7. The HSE06 band structures for KRb₂(NO₃)₂Cl.

Figure S8. Bonding electron density difference ($\Delta \rho$) and contribution percent *w* (%) of different units in KRb₂(NO₃)₂Cl calculated by the REDA method.

Table S1. Crystal data and structure refinement for $KRb_2(NO_3)_2CI$.

Empirical formula	KRb ₂ (NO ₃) ₂ Cl
Formula weight	369.51
Temperature	273.15 К
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbam
	<i>a</i> = 12.1863(6) Å
Unit cell dimensions	<i>b</i> = 12.4072(7) Å
	<i>c</i> = 5.8203(3) Å
Volume	880.02(8) Å ³
Ζ	4
Density (calculated)	2.789 Mg/m ³
Absorption coefficient	11.892 mm ⁻¹
F(000)	688
Crystal size	0.17 × 0.16 × 0.15 mm ³
Theta range for data collection	2.343 to 27.492°
Index ranges	-14≤h≤15, -15≤k≤16, -7≤l≤7
Reflections collected	6869
Independent reflections	1092 [<i>R</i> _{int} = 0.0544]
Completeness to theta = 27.4920°	98.2 %
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	1092 / 0 / 68
Goodness-of-fit on F ²	1.111
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_c^2)]^a$	$R_1 = 0.0277, wR_2 = 0.0691$
<i>R</i> indices (all data) ^a	$R_1 = 0.0323, wR_2 = 0.0719$
Largest diff. peak and hole	0.843 and -0.426 e.Å ⁻³

 ${}^{a}R_{i}=\sum ||F_{o}| - |F_{c}||/\sum |F_{o}| \text{ and } wR_{2} = [\sum w (F_{o}^{2} - F_{c}^{2})^{2}/\sum w F_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atom	x	У	Z	U(eq)
K(1)	2682(1)	1927(1)	5000	27(1)
Rb(1)	1629(1)	4778(1)	0	27(1)
Rb(2)	4904(1)	3363(1)	0	30(1)
N(1)	3784(3)	4629(3)	5000	24(1)
N(2)	5313(4)	1216(3)	5000	29(1)
O(1)	3591(2)	5096(2)	3139(5)	38(1)
O(2)	4160(3)	3697(3)	5000	39(1)
O(3)	4804(2)	1278(2)	6870(5)	39(1)
O(4)	6329(3)	1074(4)	5000	48(1)
Cl(1)	2458(1)	2329(1)	0	24 (1)

 $\label{eq:tables} \textbf{Table S2.} Atomic coordinates (\times 10^4) \mbox{ and equivalent isotropic displacement parameters (Å $^2 \times 10^3$) for $KRb_2(NO_3)_2CL$.}$

Table S3. Bond lengths	[Å]	and angles	[°] foi	r KRb ₂ (NO ₃) ₂ Cl.
------------------------	-----	------------	---------	--

Rb(1)-Cl(1)	3.2020(13)	O(4)#6-Rb(1)-O(4)#7	137.96(18)
Rb(1)-Cl(1)#1	3.3551(13)	Cl(1)#8-Rb(2)-Cl(1)	141.310(18)
Rb(1)-O(1)	3.035(3)	Cl(1)#8-Rb(2)-O(1)#2	130.68(5)
Rb(1)-O(1)#2	3.035(3)	Cl(1)#8-Rb(2)-O(1)	130.68(5)
Rb(1)-O(3)#3	3.159(3)	O(1)#9-Rb(2)-Cl(1)	139.31(5)
Rb(1)-O(3)#4	3.136(3)	O(1)#2-Rb(2)-Cl(1)	78.98(5)
Rb(1)-O(3)#5	3.136(3)	O(1)#9-Rb(2)-Cl(1)#8	66.95(5)
Rb(1)-O(3)#6	3.159(3)	O(1)-Rb(2)-Cl(1)	78.98(6)
Rb(1)-O(4)#6	3.1176(18)	O(1)#10-Rb(2)-Cl(1)	139.31(5)
Rb(1)-O(4)#7	3.1176(18)	O(1)#10-Rb(2)-Cl(1)#8	66.95(5)
Rb(2)-Cl(1)	3.2460(12)	O(1)#9-Rb(2)-O(1)#2	101.94(7)
Rb(2)-Cl(1)#8	3.2275(12)	O(1)#10-Rb(2)-O(1)	101.94(7)
Rb(2)-O(1)#9	3.218(3)	O(1)#9-Rb(2)-O(1)	64.38(9)
Rb(2)-O(1)#2	3.244(3)	O(1)#10-Rb(2)-O(1)#2	64.38(9)
Rb(2)-O(1)	3.244(3)	O(1)-Rb(2)-O(1)#2	68.53(9)
Rb(2)-O(1)#10	3.218(3)	O(1)#9-Rb(2)-O(1)#10	69.17(10)
Rb(2)-O(3)#11	3.166(3)	O(3)#12-Rb(2)-Cl(1)	69.01(5)
Rb(2)-O(3)#12	3.166(3)	O(3)#11-Rb(2)-Cl(1)#8	79.63(5)
Rb(2)-O(2)	3.0763(13)	O(3)#11-Rb(2)-Cl(1)	69.01(5)
Rb(2)-O(2)#12	3.0764(13)	O(3)#12-Rb(2)-Cl(1)#8	79.63(5)
K(1)-Cl(1)#13	2.9653(3)	O(3)#11-Rb(2)-O(1)	101.45(7)
K(1)-Cl(1)	2.9653(3)	O(3)#11-Rb(2)-O(1)#2	147.85(7)
K(1)-O(1)#14	2.956(3)	O(3)#12-Rb(2)-O(1)#10	100.40(7)
K(1)-O(1)#15	2.956(3)	O(3)#12-Rb(2)-O(1)#2	101.45(7)
K(1)-O(3)	2.918(3)	O(3)#11-Rb(2)-O(1)#9	100.40(7)
K(1)-O(3)#11	2.918(3)	O(3)#11-Rb(2)-O(1)#10	146.51(8)
K(1)-O(2)	2.841(4)	O(3)#12-Rb(2)-O(1)	147.85(7)
K(1)-O(4)#7	2.979(5)	O(3)#12-Rb(2)-O(1)#9	146.51(8)
N(1)-O(1)	1.251(3)	O(3)#12-Rb(2)-O(3)#11	70.27(10)
N(1)-O(2)	1.251(3)	O(2)#12-Rb(2)-Cl(1)#8	108.67(7)
N(1)-O(1)#11	1.243(5)	O(2)#12-Rb(2)-Cl(1)	77.44(8)
N(2)-O(4)	1.250(6)	O(2)-Rb(2)-Cl(1)	77.44(8)
N(2)-O(3)	1.255(3)	O(2)-Rb(2)-Cl(1)#8	108.67(7)
N(2)-O(3)#11	1.255(3)	O(2)-Rb(2)-O(1)#9	63.31(9)
		O(2)#12-Rb(2)-O(1)#2	39.87(8)
CI(1)-Rb(1)-CI(1)#1	142.235(17)	O(2)#12-Rb(2)-O(1)#9	128.67(9)
O(1)#2-Rb(1)-Cl(1)	82.83(6)	O(2)-Rb(2)-O(1)#10	128.67(9)

O(1)#2-Rb(1)-Cl(1)#1	67.40(5)	O(2)#12-Rb(2)-O(1)#10	63.31(9)
O(1)-Rb(1)-Cl(1)	82.83(6)	O(2)-Rb(2)-O(1)#2	107.32(8)
O(1)-Rb(1)-Cl(1)#1	67.40(5)	O(2)-Rb(2)-O(1)	39.86(8)
O(1)#2-Rb(1)-O(1)	74.02(11)	O(2)#12-Rb(2)-O(1)	107.32(8)
O(1)#2-Rb(1)-O(3)#4	135.32(7)	O(2)-Rb(2)-O(3)#12	130.04(9)
O(1)#2-Rb(1)-O(3)#6	105.15(8)	O(2)#12-Rb(2)-O(3)#11	130.04(9)
O(1)-Rb(1)-O(3)#6	162.88(8)	O(2)#12-Rb(2)-O(3)#12	63.54(9)
O(1)#2-Rb(1)-O(3)#5	90.67(8)	O(2)-Rb(2)-O(3)#11	63.54(9)
O(1)-Rb(1)-O(3)#5	135.32(7)	O(2)-Rb(2)-O(2)#12	142.16(14)
O(1)#2-Rb(1)-O(3)#3	162.88(8)	Cl(1)#13-K(1)-Cl(1)	157.87(6)
O(1)-Rb(1)-O(3)#3	105.15(8)	Cl(1)#13-K(1)-O(4)#7	78.97(3)
O(1)-Rb(1)-O(3)#4	90.67(8)	Cl(1)-K(1)-O(4)#7	78.97(3)
O(1)-Rb(1)-O(4)#6	134.30(9)	O(1)#14-K(1)-Rb(1)#14	48.49(6)
O(1)#2-Rb(1)-O(4)#6	64.83(9)	O(1)#15-K(1)-Rb(1)#14	82.30(6)
O(1)#2-Rb(1)-O(4)#7	134.30(9)	O(1)#14-K(1)-Rb(1)#16	82.30(6)
O(1)-Rb(1)-O(4)#7	64.83(9)	O(1)#15-K(1)-Rb(1)#16	48.49(6)
O(3)#4-Rb(1)-Cl(1)	137.64(5)	O(1)#14-K(1)-Cl(1)	116.13(6)
O(3)#6-Rb(1)-Cl(1)#1	128.66(6)	O(1)#15-K(1)-Cl(1)	73.80(6)
O(3)#3-Rb(1)-Cl(1)	80.12(6)	O(1)#14-K(1)-Cl(1)#13	73.80(6)
O(3)#5-Rb(1)-Cl(1)	137.64(5)	O(1)#15-K(1)-Cl(1)#13	116.13(6)
O(3)#3-Rb(1)-Cl(1)#1	128.66(6)	O(1)#15-K(1)-O(1)#14	43.00(10)
O(3)#4-Rb(1)-Cl(1)#1	67.96(5)	O(1)#15-K(1)-O(4)#7	110.43(10)
O(3)#6-Rb(1)-Cl(1)	80.12(6)	K(1)#8-O(4)-Rb(1)#17	102.56(8)
O(3)#5-Rb(1)-Cl(1)#1	67.96(5)	K(1)#8-O(4)-Rb(1)#8	102.56(8)
O(3)#4-Rb(1)-O(3)#3	61.26(10)	N(2)#11-O(4)-Rb(1)#17	99.42(12)
O(3)#4-Rb(1)-O(3)#5	71.04(11)	N(2)-O(4)-Rb(1)#17	99.42(12)
O(4)#7-Rb(1)-O(3)#4	66.02(10)	N(2)-O(4)-Rb(1)#8	99.42(12)
O(4)#7-Rb(1)-O(3)#6	108.38(9)	N(2)#11-O(4)-Rb(1)#8	99.42(12)
O(4)#6-Rb(1)-O(3)#5	66.02(10)	N(2)#11-O(4)-K(1)#8	115.5(4)
O(4)#6-Rb(1)-O(3)#4	132.71(9)	N(2)-O(4)-K(1)#8	115.5(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y+1/2,-z	#2 x,y,-z	#3 x-1/2,-y+1/2,-z+1	
#4 -x+1/2,y+1/2,-z+1			
#6 x-1/2,-y+1/2,z-1			
#8 x+1/2,-y+1/2,z	#9 -x+1,-y	+1,z #10 -x+1,-y+1,-z	
#11 x,y,-z+1 #12 x	k,y,z-1	#13 x,y,z+1	
#14 -x+1/2,y-1/2,z	#15 -x+1/	′2,γ-1/2,-z+1	
#16 -x+1/2,y-1/2,-z	#17 x+1/	′2,-γ+1/2,z+1	

Figure S1. The photograph of the $KRb_2(NO_3)_2CI$ crystal plate (the minimum scale is 1 mm).

Figure S2. EDS spectrum of KRb₂(NO₃)₂Cl.

Figure S3. (a) the $N(1)O_3$ triangle; (b) the $N(2)O_3$ triangle; (c) the KO_6F_2 polyhedra; (d) the $Rb(1)O_8Cl_2$ polyhedra; (e) the $Rb(2)O_8Cl_2$ polyhedra; (f) the CIK_2R_4 octahedra.

KRb₂(NO₃)₂Cl.

of

Figure S5. Experimental and calculated powder XRD patterns, for $KRb_2(NO_3)_2CI$.

Figure S6. The IR spectrum for KRb₂(NO₃)₂Cl.

Figure S7. The HSE06 band structures for KRb₂(NO₃)₂Cl.

Figure S8. Bonding electron density difference ($\Delta \rho$) and contribution percent w (%) of different units in KRb₂(NO₃)₂Cl calculated by the REDA

method.