# A Convenient Synthesis of Ferrocene(Ethynylphenyl)Thioacetates

Troy L. R. Bennett<sup>a</sup> and Nicholas J. Long<sup>a,\*</sup>

<sup>a</sup>Department of Chemistry, Imperial College London, MSRH, White City, London, W12 0BZ, UK.

# Contents

| 1. Experimental                      | 2  |
|--------------------------------------|----|
| 1.1 Materials and Methods            | 2  |
| 1.2 Instrumentation                  | 2  |
| 1.3 Synthesis                        | 2  |
| 2. Cyclic Voltammetry                |    |
| 2.1 Experimental                     |    |
| 3. Ultraviolet-Visible Spectroscopy  |    |
| 4. Infrared Spectroscopy             |    |
| 5. High-Resolution Mass Spectrometry | 81 |
| 6. References                        | 96 |

## 1. Experimental

## **1.1 Materials and Methods**

1,1'-Diiodoferrocene  $(Fcl_2)^1$ , 1,1'''-diiodobiferrocene<sup>1</sup>, 4-(cyanoethylthio)ethynylbenzene<sup>2</sup>, 3ethynylpyridine<sup>3</sup>, 6-ethynyl-2,2'-bipyridine<sup>4</sup>, 4-(ethynylphenyl)-2-phenyldiazene<sup>5</sup> and 1,3,5triethynylbenzene<sup>6</sup> were synthesised according to previously published literature procedures. All other reagents were obtained from commercial sources and used as received. Diisopropylamine was distilled, sparged with nitrogen and stored in an inert atmosphere over activated molecular sieves prior to use. All other reaction solvents were obtained from a Grubbs-type solvent purification system and were sparged with nitrogen prior to use. All reactions were performed under an inert atmosphere using standard Schlenk line techniques and workups were performed under air. Within this report, 'deactivated' silica was prepared by forming a slurry of silica, suspended in a solvent of choice, usually hexane, that contained 1% trimethylamine (v/v%).

## **1.2 Instrumentation**

<sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were recorded on a Bruker Avance 400 or 500 MHz spectrometer and referenced to the residual solvent peaks of CDCl<sub>3</sub> at 7.26 and 77.2 ppm respectively. <sup>13</sup>C{<sup>1</sup>H} spectra were fully assigned where possible using 2D correlation spectroscopy. Coupling constants are measured in Hz. Mass spectrometry analyses were conducted by Lisa Haigh of the Mass Spectrometry Service, Imperial College London. UV/Vis spectra were recorded on an Agilent Cary60 spectrometer and are reported in Section 3. Infrared spectra were recorded on a PerkinElmer Spectrum FT-IR spectrometer and are reported in Section 4.

## 1.3 Synthesis

## General procedure for the coupling of terminal alkynes to iodoferrocenes (Procedure **A**);

- specific details regarding molar equivalents and column conditions are reported below.

This synthetic procedure is adapted from a published method.<sup>3</sup> 1,1'-diiodoferrocene, terminal alkyne, Cul (5 mol%) and Pd(P<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (5 mol%) were dissolved in a 1:3 mixture of DIPA and THF. The mixture was stirred at 50 °C overnight (>16 hours). The solvent was then removed *in vacuo* to give a darkbrown crude material which was purified by flash-chromatography.

*General procedure for the conversion of cyanoethylthio to thioacetates (Procedure B);* 

- specific details regarding molar equivalents and column conditions are reported below.

This synthetic procedure is adapted from a published method.<sup>2</sup> A cyanoethylthio-substituted ferrocene was dissolved in THF. NaOMe (25% in MeOH) was added, causing the solution to turn from red to brown, and the solution was stirred at room temperature for 30 minutes. Ac<sub>2</sub>O was then added, causing the solution to turn from brown to red, and the solution was stirred for 30 minutes. The solution was diluted with ethyl acetate, washed with water (3 x 50 mL) and brine (50 mL), dried over MgSO<sub>4</sub> and filtered. The solvent was removed *in vacuo* to give an orange crude material which was purified by flash-chromatography. In some cases, a precipitation was also required to achieve acceptable purity (>95%), specific details reported below.





Fcl<sub>2</sub> (0.50 g, 1.14 mmol), TMSA (0.09 g, 0.95 mmol) and Cul (0.01 g, 0.01 mmol) were dissolved in DIPA (10 mL). Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.01 g, 0.01 mmol) was added, and the solution was left to stir overnight to form a dark brown solution. The solvent was removed *in vacuo* to yield a brown solid which was purified by chromatography on a silica column, eluted with n-hexane/DCM (1:0  $\rightarrow$  9:1 v/v) to give the product as a dark red oil (0.08 g, 0.20 mmol, 21%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 4.40 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.39 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.19 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.18 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 0.23 (s, 9H, *H*1) ppm; **MS ES+**: calcd. for C<sub>15</sub>H<sub>17</sub>SiFel[M]<sup>+</sup> 407.9494; found 407.9490.

This data is in accordance with a previously reported synthesis of this molecule.<sup>7</sup>



## <u>1-Ethynyl-1'-iodoferrocene</u> (1)<sup>8</sup>



(**1a**) (0.25 g, 1.10 mmol) was dissolved in a 1:1 mixture of THF:MeOH (30 mL). An aqueous solution of NaOH (1.0 M, 20 mL) was added and the solution was stirred overnight. A saturated aqueous solution of NaHCO<sub>3</sub> (30 mL) was added and the solvent was concentrated *in vacuo*. The product was extracted into DCM (100 mL), washed with water (3 x 100 mL) and brine (100 mL) before being dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* to give the product as a dark red oil (0.32 g, 0.94 mmol, 86%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 4.43 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.42 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.23 - 4.20 (m, 4H, Fc-*H*), 2.78 (s, 1H, *H*1) ppm; **MS ES+**: calcd. for C<sub>12</sub>H<sub>10</sub>IFe [M+H]<sup>+</sup> 336.9177; found 336.9167.

This data is in accordance with a previously reported synthesis of this molecule.<sup>8</sup>



Figure S2: The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 HMz) spectrum of 1.

## 1-lodo-1'-(4-(ethynylphenyl)thioacetate)ferrocene (2)



<u>Synthesis from (1)</u>: 4-lodo-phenylthioacetate (1.24 g, 4.47 mmol), (1) (0.50 g, 1.49 mmol), Cul (0.01 g, 0.08 mmol) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.10 g, 0.08 mmol) were dissolved in DIPA (30 mL) and stirred overnight to give an orange precipitate. The solvent was removed *in vacuo* and the crude product was purified by chromatography on a silica column, eluting with n-hexane/DCM (1:0  $\diamond$  0:1) to give the product as a red solid (0.49 g, 1.01 mmol, 67 %).

<u>Synthesis from (2a)</u>: Following general procedure **B**, (2a) (0.06 g g, 0.12 mmol), NaOMe (0.5 M in MeOH, 0.04 mL, 0.20 mmol) and Ac<sub>2</sub>O (0.04 mL, 0.40 mmol) gave a red oil which was purified by chromatography on a 'deactivated' silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  4:1) gave the product as a bright red oil which slowly solidified when left to stand (0.04 g, 0.08 mmol, 67%)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$ =7.54 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H5), 7.37 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H4), 4.48 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11), 4.45 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H12), 4.28 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H10), 4.23 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H13), 2.43 (s, 3H, H1); <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c}$ = 193.8 (*C*2), 134.4 (*C*4), 132.2 (*C*5), 127.5 (*C*6), 125.3 (*C*3), 89.2 (*C*8), 86.4 (*C*7), 76.5 (*C*12), 74.3 (*C*11), 72.3 (*C*10), 71.1 (*C*13), 67.2 (*C*9), 41.3 (*C*14), 30.4 (*C*1) ppm; MS ES+: calcd. for C<sub>20</sub>H<sub>15</sub>OSFe [M]<sup>+</sup> 485.9238; found. 485.9262.



## 1-Iodo-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (2a)



Following general procedure **A**, 4-(2-cyanoethylthio)ethynylbenzene (0.50 g, 1.93 mmol), Fcl<sub>2</sub> (3.37 g, 7.71 mmol), Cul (0.04 g, 0.19 mmol) and Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.10 g, 0.19 mmol) gave a dark brown oil, which was purified by chromatography on a silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  2:3) to give the product as an orange solid (0.62 g, 1.25 mmol, 65%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.47 (dt, <sup>3</sup>*J*<sub>HH</sub> = 8.4, <sup>4</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*5), 7.35 (dt, <sup>3</sup>*J*<sub>HH</sub> = 8.8, <sup>4</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*6), 4.47 (*pseudo*-t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*12), 4.45 (*pseudo*-t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*13), 4.28 (*pseudo*-t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*11), 4.23 (*pseudo*-t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 2H, *H*14), 3.15 (t, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 2H, *H*2), 2.61 (t, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 2H, *H*3) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz)  $\delta_{C}$  = 133.2 (*C*7), 132.4 (*C*6), 130.8 (*C*5), 123.3 (*C*4), 118.0 (*C*1), 88.8 (*C*9), 86.3 (*C*8), 76.5 (*C*13), 74.3 (*C*14), 72.2 (*C*12), 71.0 (*C*11), 67.4 (*C*10), 41.4 (*C*15), 30.1(*C*3), 18.4 (*C*2) ppm; MS ES+: calcd. for C<sub>21</sub>H<sub>16</sub>NSIFe [M]+ 496.9392; found. 496.9395.



Figure S6: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 2a.

<u>1-lodo-1'-(but-3-yn-2-one)ferrocene (2b)</u>



Formed as an impurity in the synthesis of **2**. Eluted from a silica column in n-hexane/DCM (1:0  $\rightarrow$  0:1) to give a red solid (0.02 g, 0.05 mmol, 3%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 4.55 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H7), 4.47 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H8), 4.39 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H6), 4.25 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H9), 2.42 (s, 3H, H1) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl3, 298 K, 100 MHz):  $\delta_{c}$  = 184.6 (*C*2), 92.1 (*C*4), 87.6 (*C*3), 76.8 (*C*8), 75.7 (*C*7), 74.0 (*C*6), 71.5 (*C*9), 62.4 (*C*5), 40.7 (*C*10), 32.8 (*C*1) ppm; MS ES+: calcd. for C<sub>14</sub>H<sub>12</sub>OFeI [M+H]<sup>+</sup> 378.9282; found. 378.9293.



Figure S8: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of **2b**.

## Mixture of isomers (2c)



Formed as an impurity in the synthesis of **2**. Eluted from a silica column in n-hexane/DCM (1:0  $\rightarrow$  0:1) to give a red solid (0.05 g, 0.07 mmol, 5%), consisting of two molecules formed in a ~ 1:2.4 ratio.

<u>Isomer 1</u>: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.46 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.0 Hz, 2H, Ar-*H*), 7.05 (s, 1H, -C=C-*H*), 6.87 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.0 Hz, 2H, Ar-*H*), 4.30 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.27 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.23 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.13 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 2.34 (s, 3H, CO-C*H*<sub>3</sub>) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 196.1 (-*C*=O), 152.0 (Ar-*C*-C), 137.8 (Ar-*C*-H), 135.2 (Ar-*C*-C), 133.0 (Ar-*C*-H), 126.1 (-C=*C*-H), 92.7 (-C=*C*-C), 86.0 (Fc-*C*-C), 77.1 (Fc-*C*-H), 73.3 (Fc-*C*-H), 72.9 (Fc-*C*-H), 71.3 (Fc-*C*-H), 41.0 (Fc-*C*-I), 31.0 (CO-*C*H<sub>3</sub>) ppm.

<u>Isomer 2</u>: <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.76 (d, <sup>3</sup>J<sub>H-H</sub> = 8.0 Hz, 2H, Ar-*H*), 7.28 (d, <sup>3</sup>J<sub>H-H</sub> = 8.0 Hz, 2H, Ar-*H*), 5.60 (s, 1H, -C=C-*H*), 4.60 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.50 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.43 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 4.32 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, Fc-*H*), 1.95 (s, 3H, -CH<sub>3</sub>) ppm. A carbon-nmr could not be acquired for this species due to limited amounts of sample.





**Figure S9**: The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of **2c**. Distinct isomers are labelled with \* and \* respectively.



**Figure S10**: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of **2c**. Only a single isomer could be identified here, due to limitations relating to sample quantities.

1,1"'-Bis(trimethylsilyl)ethynylbiferrocene (3a)7



1,1'-Diiodobiferrocene (0.50 g, 0.80 mmol), TMSA (0.07 g, 0.67 mmol) and CuI (0.01 g, 0.03 mmol) were dissolved in DIPA (10 mL). Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.03 mmol) was added, and the solution was left to stir overnight to form a dark brown solution. The solvent was removed *in vacuo* to yield a brown solid which was purified by chromatography on a silica column, eluted with n-hexane/DCM (1:0  $\rightarrow$  4:1 v/v) to give the product as an orange solid (0.07 g, 0.12 mmol, 36%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 4.37 (t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 4.23 (t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 4.20 (t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4, Fc-*H*), 4.02 (t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 0.23 (s, 18H, *H*1) ppm; **MS ES+**: calcd. for C<sub>30</sub>H<sub>34</sub>Si<sub>2</sub>Fe<sub>2</sub> [M]<sup>+</sup> 562.0898; found 562.0893.

This data is in accordance with a previously reported synthesis of this molecule.<sup>9</sup>



## 1,1"'-Bisethynylbiferrocene (3)<sup>7</sup>



(3a) (0.25 g, 0.53 mmol) was dissolved in a 1:1 mixture of THF:MeOH (45 mL). An aqueous solution of NaOH (1.0 M, 10 mL) was added and the solution was stirred overnight to form a dark red solution. A saturated aqueous solution of NaHCO<sub>3</sub> (aq. 30 mL) was added and the solvent was concentrated *in vacuo*. The solution was then extracted into DCM (100 mL) before being washed with water (3 x 100 mL) and brine (100 mL). The solution was then dried over MgSO<sub>4</sub> and the solvent was removed *in vacuo* to give the product as a dark red solid (0.13 g, 0.31 mmol, 72%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 4.40 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 4.25 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 4.23 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 4.02 (t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, Fc-*H*), 2.66 (s, 2H, *H*1) ppm; **MS ES+**: calcd. for C<sub>24</sub>H<sub>18</sub>Fe<sub>2</sub> [M]<sup>+</sup> 418.0107; found. 418.0103.





1,1""-Bis(but-3-yn-2-one)biferrocene (4)



(3) (0.10 g, 0.24 mmol), 4-iodophenylthioacetate (0.27 g, 0.96 mmol) and CuI (0.01 g, 0.02 mmol) were dissolved in DIPA (20 mL) to give a red solution. This solution was degassed for 15 minutes,  $Pd(P^{-t}Bu_3)_2$  (0.01 g, 0.02 mmol) was added, and the solution was stirred overnight, forming a dark black precipitate. The solvent was removed *in vacuo* and the dark black solid was purified by chromatography on a silica column, eluting with chloroform to give the product as a dark red solid (0.10 g, 0.15 mmol, 61%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 4.47$  (t,  ${}^{3}J_{H-H} = 2.0$  Hz, 4H, H9), 4.40 (t,  ${}^{3}J_{H-H} = 2.0$  Hz, 4H, H7), 4.31 (t,  ${}^{3}J_{H-H} = 2.0$  Hz, 4H, H6), 4.24 (t,  ${}^{3}J_{H-H} = 2.0$  Hz, 4H, H8), 2.32 (s, 6H, H1) ppm;  ${}^{13}C{}^{1}H{}$  NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C} = 184.4$  (C2), 93.4(C5), 87.5 (C3), 84.5 (C4), 74.3 (C7), 71.9 (C8), 70.2 (C6), 68.2 (C9), 61.3 (C10), 32.6 (C1) ppm; MS ES+: calcd. for C<sub>28</sub>H<sub>23</sub>O<sub>2</sub>Fe<sub>2</sub> [M+H]<sup>+</sup> 503.0397; found. 503.0406.



Figure S14: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 4.

## 1,1'-Di(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (5a)



Following general procedure **A**, 4-(2-cyanoethylthio)ethynylbenzene (0.24 g, 0.91 mmol), Fcl<sub>2</sub> (0.23 g, 0.23 mmol), Cul (0.01 g, 0.02 mmol) and Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.01 g, 0.02 mmol) gave a dark-brown oil which was purified by chromatography on an alumina column, eluting with n-hexane/DCM (1:0  $\rightarrow$  0:1) to give the product as a dark red solid (0.12 g, 0.21 mmol, 93%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 7.37$  (dt, <sup>3</sup>*J*<sub>HH</sub> = 8.4, <sup>4</sup>*J*<sub>HH</sub> = 2.0 Hz, 4H, *H*6), 7.27 (dt, <sup>3</sup>*J*<sub>HH</sub> = 8.8, <sup>4</sup>*J*<sub>HH</sub> = 2.0 Hz, 4H, *H*5), 4.57 (*pseudo-*t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 4H, *H*12), 4.36 (*pseudo-*t, <sup>3</sup>*J*<sub>HH</sub> = 2.0 Hz, 4H, *H*11), 3.18 (t, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 4H, *H*2), 2.65 (t, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 4H, *H*3) ppm; <sup>13</sup>**C** {<sup>1</sup>**H**} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C} = 133.4$  (*C*7), 132.2 (*C*6), 130.5 (*C*5), 129.9 (*C*4), 118.0 (*C*1), 88.7 (*C*9), 86.2 (*C*8), 73.1 (*C*12), 71.0 (*C*11), 67.1 (*C*10), 30.0 (*C*2), 18.4 (*C*3) ppm; **MS ES+**: calcd. for C<sub>32</sub>H<sub>24</sub>N<sub>2</sub>S<sub>2</sub>Fe [M]+ 556.0730; found. 556.0727.



Figure S15: The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of 5a.



Figure S16: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 5a.

#### 1,1'-Di(4-(ethynylphenyl)thioacetate)ferrocene (5)9



Following general procedure **B**, (**5a**) (0.06 g, 0.11 mmol), NaOMe (25% in MeOH, 0.25 mL) and  $Ac_2O$  (0.50 mL) gave a light-orange powder which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, to give the product as an orange solid (0.04 g, 0.08 mmol, 70%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.41 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H5), 7.28 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H4), 4.55 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H11), 4.34 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H10), 2.43 (s, 6H, H1) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 193.7 (*C*2), 134.2 (*C*5), 132.0 (*C*4), 127.3 (*C*6), 125.2 (*C*3), 89.2 (*C*8), 86.3 (*C*7), 73.2 (*C*11), 71.1 (*C*10), 66.9 (*C*9), 30.4 (*C*1) ppm; **MS ES+**: calcd. for C<sub>30</sub>H<sub>22</sub>O<sub>2</sub>S<sub>2</sub>Fe [M]+ 534.0405; found. 534.0412.



Figure S18: The  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 5.

1,1"'-Di(4-(2-cyanoethylthio)ethynylbenzene)biferrocene (6a)



Following general procedure **A**, 1,1'''-diiodobiferrocene (0.20 g, 0.32 mmol), 4-(2cyanoethylthio)ethynylbenzene (0.12 g, 0.68 mmol), Cul (0.01 g, 0.03 mmol) and Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.03 mmol) gave a dark-brown oil. This was purified by chromatography on a silica column, eluting with DCM to give the product as a red solid (0.16 g, 0.21 mmol, 65%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 7.37$  (dd, <sup>3</sup> $J_{H-H} = 6.4$ , <sup>4</sup> $J_{H-H} = 2.0$  Hz, 4H, H6), 7.32 (dd, <sup>3</sup> $J_{H-H} = 6.4$ , <sup>4</sup> $J_{H-H} = 2.0$  Hz, 4H, H5), 4.42 (*pseudo*-t, <sup>3</sup> $J_{H-H} = 2.0$  Hz, 4H, H13), 4.27 (*pseudo*-t, <sup>3</sup> $J_{H-H} = 2.0$  Hz, 4H, H12), 4.22 (*pseudo*-t, <sup>3</sup> $J_{H-H} = 2.0$  Hz, 4H, H14), 4.09 (*pseudo*-t, <sup>3</sup> $J_{H-H} = 2.0$  Hz, 4H, H11), 3.16 (t, <sup>3</sup> $J_{H-H} = 7.6$  Hz, 4H, H2), 2.62 (t, <sup>3</sup> $J_{H-H} = 7.6$  Hz, 4H, H3) ppm; <sup>13</sup>C {<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c} = 132.7$  (*C*7), 132.2 (*C*5), 130.8 (*C*6), 123.6 (*C*4), 118.0 (*C*1), 89.9 (*C*9), 85.3 (*C*8), 84.4 (*C*15), 72.8 (*C*12), 70.3 (*C*11/*C*14), 69.9 (*C*11/*C*14), 68.4 (*C*13), 65.7 (*C*10), 30.1 (*C*3), 18.4 (*C*2) ppm. **MS ES+**: calcd. for C<sub>42</sub>H<sub>32</sub>N<sub>2</sub>S<sub>2</sub>Fe<sub>2</sub> [M]+ 740.0700; found.740.0712.







1,1"'-Di(4-(ethynylphenyl)thioacetate)biferrocene (6)9



Following general procedure **B**, (**6a**) (0.06 g, 0.08 mmol), NaOMe (25% in MeOH, 0.25 mL) and  $Ac_2O$  (0.50 mL) gave a red-solid which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, to give the product as a bright red solid (0.04 g, 0.06 mmol, 76%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz): **δ**<sub>H</sub> = 7.46 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 4H, *H*5), 7.37 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 4H, *H*4), 4.44 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, *H*11), 4.30 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, *H*12), 4.25 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, *H*10), 4.12 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 4H, *H*13), 2.47 (s, 6H, *H*1) ppm; <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz): **δ**<sub>c</sub> = 193.9 (*C*2), 134.3 (*C*5), 132.0 (*C*4), 127.0 (*C*6), 125.6 (*C*3), 90.5 (*C*8), 85.5 (*C*7), 84.4 (*C*14), 72.9 (*C*12), 70.3 (*C*13), 69.9 (*C*10), 68.4 (*C*11), 65.7 (*C*9), 30.4 (*C*1) ppm. **MS ES+**: calcd. for  $C_{40}H_{30}O_2S_2Fe_2$  [M]+ 718.0386; found. 718.0390.



Figure S22: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 6.

#### 1-(4-Ethynylpyridine)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (7a)



Following general procedure **A**, (**2a**) (0.20 g, 0.40 mmol), 4-ethynylpyridine hydrochloride (0.17 g, 1.21 mmol), Cul (0.01 g, 0.04 mmol) and Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.04 mmol) gave a dark-brown solid, which was purified by chromatography on an alumina column, eluting with DCM to give the product as an orange solid (0.14 g, 0.30 mmol, 75%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.45 (br s, 2H, H20), 7.33 (d, <sup>3</sup>J<sub>H-H</sub> = 8.4 Hz, 2H, H5), 7.26 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H6), 7.23 (br s, 2H, H19), 4.63 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H13), 4.60 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H12), 4.43 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H14), 4.40 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11), 3.20 (t, <sup>3</sup>J<sub>H-H</sub> = 6.0 Hz, 2H, H3), 2.70 (t, <sup>3</sup>J<sub>H-H</sub> = 6.0 Hz, 2H, H2) ppm; <sup>13</sup>C {<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 149.6 (*C*20), 133.2 (*C*4), 132.1 (*C*5), 132.0 (*C*18), 130.5 (*C*6), 125.4 (*C*19), 123.0 (*C*7), 118.0 (*C*1), 92.8 (*C*16), 88.2 (*C*9), 86.4 (*C*8), 84.6 (*C*17), 73.3 (*C*13), 73.1 (*C*12), 71.4 (*C*14), 71.0 (*C*11), 67.5 (*C*10), 66.0 (*C*15), 29.9 (*C*3), 18.4 (*C*2) ppm; **MS ES+**: calcd. for C<sub>28</sub>H<sub>21</sub>N<sub>2</sub>SFe [M+H]+ 473.0769; found. 473.0777.



Figure S23: The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of 7a.



Figure S24: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 7a.

#### <u>1-(4-Ethynylpyridine)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (7)</u>



Following general procedure **B**, (**7a**) (0.06 g, 0.13 mmol), NaOMe (25% in MeOH, 0.25 mL) and  $Ac_2O$  (0.50 mL) gave an orange solid which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, to give the product as an orange solid (0.04 g, 0.08 mmol, 70%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 8.47$  (dd,  ${}^{3}J_{H-H} = 4.4$ ,  ${}^{4}J_{H-H} = 1.6$  Hz, 2H, H19), 7.39 (d,  ${}^{3}J_{H-H} = 8.4$  Hz, 2H, H5), 7.29 (dd,  ${}^{3}J_{H-H} = 4.4$ ,  ${}^{4}J_{H-H} = 1.6$  Hz, 2H, H18), 7.20 (d,  ${}^{3}J_{H-H} = 8.4$  Hz, 2H, H4), 4.58 (*pseudo*-t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H13), 4.56 (*pseudo*-t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H10), 4.37 (*pseudo*-t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H12), 4.34 (*pseudo*-t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H11), 2.44 (s, 3H, H1) ppm;  ${}^{13}C$  {<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c} = 193.6$  (*C*2), 149.7 (*C*19), 134.2 (*C*4), 132.1 (*C*17), 131.9 (*C*5), 127.5 (*C*6), 125.4 (*C*18), 125.0 (*C*3), 92.8 (*C*15), 88.8 (*C*8), 86.5 (*C*7), 84.6 (*C*16), 73.4 (*C*13), 73.2 (*C*10), 71.4 (*C*12), 71.1 (*C*11), 67.3 (*C*9), 65.9 (*C*15), 30.4 (*C*1) ppm; **MS ES+**: calcd. for C<sub>27</sub>H<sub>20</sub>NOSFe [M+H]+462.0610; found. 462.0618.



Figure S26: The  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 7.

#### 1-(3-Ethynylpyridine)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (8a)



Following general procedure **A**, (**2a**) (0.20 g, 0.40 mmol), 3-ethynylpyridine (0.12 g, 1.21 mmol), CuI (0.01 g, 0.04 mmol) and Pd( $P^{-t}Bu_{3}$ )<sub>2</sub> (0.02 g, 0.04 mmol) gave an orange powder, which was purified by chromatography on an alumina column, eluting with DCM, to give the product as an orange solid (0.17 g, 0.37 mmol, 91%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.57 (br m, 2H, H19/H22) 7.63 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 1H, H20), 7.30 (dt, <sup>3</sup>*J*<sub>H-H</sub> = 8.4, <sup>4</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H5), 7.22 (dt, <sup>3</sup>*J*<sub>H-H</sub> = 8.8, <sup>4</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H6), 7.17 (br s, 1H, H21), 4.56 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H12/13), 4.35 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H12/13), 4.35 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H11/14), 4.34 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, H11/14), 3.14 (t, <sup>3</sup>*J*<sub>H-H</sub> = 6.0 Hz, 2H, H2), 2.64 (t, <sup>3</sup>*J*<sub>H-H</sub> = 6.0 Hz, 2H, H3) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c}$  = 153.2 (C19), 151.8 (C18), 147.5 (C22), 139.5 (C20), 138.0 (C21), 133.0 (C4), 132.1(C5), 130.6 (C6), 123.1 (C7), 118.0 (C1), 90.8 (C16), 88.4 (C9), 86.3 (C8), 83.8 (C17), 73.2 (C12/C13), 73.1 (C12/C13), 71.1 (C11/C14), 71.0 (C11/C14), 67.3 (C15), 66.7 (C10), 30.0 (C3), 18.35 (C2) ppm; MS ES+: calcd. for C<sub>28</sub>H<sub>21</sub>N<sub>2</sub>SFe [M+H]+ 473.0769; found. 473.0778.



Figure S28: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 8a.

#### 1-(3-Ethynylpyridine)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (8)



Following general procedure **B**, (**8a**) (0.06 g, 0.13 mmol), NaOMe (25% in MeOH, 0.25 mL) and  $Ac_2O$  (0.50 mL) gave an orange solid, which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, to give the product as an orange solid (0.03 g, 0.08 mmol, 61%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.66 (d, <sup>4</sup>*J*<sub>H+H</sub> = 1.6 Hz, 1H, *H*18), 8.47 (dd, <sup>3</sup>*J*<sub>H+H</sub> = 4.8, <sup>4</sup>*J*<sub>H+H</sub> = 1.6 Hz, 1H, *H*19), 7.41 (dt, <sup>3</sup>*J*<sub>H+H</sub> = 8.4, <sup>4</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*5), 7.28 (dt, <sup>3</sup>*J*<sub>H+H</sub> = 8.8, <sup>4</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*4), 7.17-7.14 (m, 1H, *H*20), 4.58 (*pseudo*-t, <sup>3</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*10/13), 4.57 (*pseudo*-t, <sup>3</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*10/13), 4.36 (*pseudo*-t, <sup>3</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*11/12), 4.36 (*pseudo*-t, <sup>3</sup>*J*<sub>H+H</sub> = 2.0 Hz, 2H, *H*11/12), 2.44 (s, 3H, *H*1) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c}$  = 193.6 (*C*2), 152.1 (*C*18), 148.0 (*C*21), 138.2 (*C*19), 134.3 (*C*5), 132.0 (*C*4), 127.4 (*C*6), 125.1 (*C*3), 123.1 (*C*10), 123.0 (*C*17) 90.8 (*C*14), 89.0 (*C*8), 86.4 (*C*7), 83.7 (*C*16), 73.2 (*C*10/13), 71.2 (*C*11/12), 71.1 (*C*11/12), 67.1 (*C*9), 66.6 (*C*14), 30.4 (*C*1) ppm; **MS ES+**: calcd. for C<sub>27</sub>H<sub>20</sub>NOSFe [M+H]+ 462.0610; found. 462.0615.



δ (ppm)



#### 1-(6-Ethynyl-2,2'-bipyridine)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (9a)



Following general procedure **A**, (**2a**) (0.20 g, 0.40 mmol), 6-ethynyl-2,2'-bipyridine (0.22 g, 1.20 mmol), Cul (0.01 g, 0.04 mmol) and Pd(P-<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.04 mmol) gave a black solid which was purified by chromatography on a silica column, eluting with n-hexane/ethyl acetate (1:0  $\rightarrow$  1:1) to give the product as an orange solid (0.10 g, 0.18 mmol, 45%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 8.69$  (d, <sup>3</sup>*J*<sub>H-H</sub> = 4.0 Hz, 1H, *H*21), 8.42 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.0 Hz, 1H, *H*27), 8.27 (d, <sup>3</sup>*J*<sub>H-H</sub> = 7.6 Hz, 1H, *H*24), 7.82 (td, <sup>3</sup>*J*<sub>H-H</sub> = 7.2, <sup>4</sup>*J*<sub>H-H</sub> = 1.6 Hz, 1H, *H*26), 7.66 (t, <sup>3</sup>*J*<sub>H-H</sub> = 7.6 Hz, 1H, *H*20), 7.38 (d, <sup>3</sup>*J*<sub>H-H</sub> = 7.6 Hz, 1H, *H*25), 7.36-7.29 (m, 3H, *H*5, *H*19), 7.14 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.0 Hz, 2H, *H*6), 4.65 (*pseudo-*t, 2H, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, *H*11/*H*14), 4.58 (*pseudo-*t, 2H, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, *H*11/*H*14), 4.36 (*pseudo-*t, 4H, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, *H*12, *H*13), 3.07 (t, <sup>3</sup>*J*<sub>H-H</sub> = 7.6 Hz, 2H, *H*3), 2.56 (t, <sup>3</sup>*J*<sub>H-H</sub> = 7.6 Hz, 2H, *H*2) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 156.5 (*C*22), 155.7 (*C*23), 149.3 (*C*21), 143.4 (*C*18), 137.0 (*C*26), 136.9 (*C*20), 132.9 (*C*4), 132.2 (*C*5), 130.3 (*C*6), 127.1 (*C*25), 124.1 (*C*19), 123.0 (*C*7), 121.7 (*C*27), 119.7 (*C*24), 118.0 (*C*1), 88.4 (*C*9/*C*16), 87.6 (*C*9/*C*16), 86.9 (*C*8/*C*17), 86.4 (*C*8/*C*17), 73.4 (*C*11/*C*14), 73.0 (*C*11/*C*14), 71.3 (*C*12/*C*13), 71.1 (*C*12/*C*13), 67.3 (*C*10/*C*15), 66.3 (*C*10/*C*15), 29.8 (*C*3), 18.3 ppm (*C*2); **MS ES+**: calcd. for C<sub>33</sub>H<sub>24</sub>N<sub>3</sub>SFe [M+H]+ 550.1040; found. 550.1050.



Page 21 of 96

<u>1-(6-Ethynyl-2,2'-bipyridine)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (9)</u>



Following general procedure **B**, (**9a**) (0.03 g, 0.06 mmol), NaOMe (25% in MeOH, 0.01 mL) and  $Ac_2O$  (0.02 mL) gave a dark-red powder which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, and subsequently precipitated from a mixture of ethyl acetate/hexane to give the product as a dark-red solid (0.02 g, 0.04 mmol, 63%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 8.68$  (ddd,  ${}^{3}J_{H-H} = 4.8$ ,  ${}^{4}J_{H-H} = 1.7$ ,  ${}^{5}J_{H-H} = 0.9$  Hz, 1H, H26), 8.44 (dt,  ${}^{3}J_{H-H} = 8.0$ ,  ${}^{4}J_{H-H} = 1.0$  Hz, 1H, H18), 7.81 (td,  ${}^{3}J_{H-H} = 7.6$ ,  ${}^{4}J_{H-H} = 1.8$  Hz, 1H, H24), 7.68 (t,  ${}^{3}J_{H-H} = 7.8$  Hz, 1H, H19), 7.42 (d,  ${}^{3}J_{H-H} = 8.5$  Hz, 2H, H5), 7.37 (dd,  ${}^{3}J_{H-H} = 7.7$ ,  ${}^{4}J_{H-H} = 1.0$  Hz, 1H, H20), 7.32 (ddd,  ${}^{3}J_{H-H} = 7.5$ ,  ${}^{4}J_{H-H} = 4.8$ ,  ${}^{4}J_{H-H} = 1.2$  Hz, 1H, H25), 7.23 (d,  ${}^{3}J_{H-H} = 8.5$  Hz, 2H, H4), 4.65 (*pseudo-*t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H10/H13), 4.59 (*pseudo-*t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H10/H13), 4.37 (*pseudo-*t,  ${}^{3}J_{H-H} = 2.0$  Hz, 2H, H11/H12), 2.42 (s, 3H, H1) ppm;  ${}^{13}$ C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C} = 193.7$  (C2), 156.5 (C21), 155.8 (C22), 149.2 (C26), 143.3 (C17), 137.1 (C25), 137.0 (C20), 134.2 (C5), 132.0 (C3), 127.3 (C4), 127.2 (C24), 125.1 (C6), 124.0 (C25), 121.7 (C23), 119.9 (C18), 89.1 (C8/C15), 87.6 (C8/C15), 86.9 (C7/C16), 86.4 (C7/C16), 73.5 (C10/C13), 73.2 (C10/C13), 71.4 (C11/C12), 71.2 (C11/C12), 67.1 (C9/C14), 66.2 (C9/C14), 29.9 (C1) ppm; MS ES+: calcd. for C<sub>32</sub>H<sub>22</sub>N<sub>2</sub>OSFe [M]+ 539.0880; found. 539.0890.



Page 22 of 96

#### 1-(Ethynylpyrene)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (10a)



Following general procedure **A**, (**2a**) (0.15 g, 0.30 mmol), 1-ethynylpyrene (0.27 g, 1.20 mmol), Cul (0.01 g, 0.03 mmol) and Pd(<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.03 mmol) gave a black solid which was purified by chromatography on a silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  6:4) to give the product as a bright orange solid (0.16 g, 0.27 mmol, 91%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.56 (d, <sup>3</sup>J<sub>H-H</sub> = 8.8 Hz, 1H, Ar-H), 8.23-8.16 (m, 2H, Ar-H), 8.11-7.99 (m, 6H, Ar-H), 7.07 (d, <sup>3</sup>J<sub>H-H</sub> = 8.0 Hz, 2H, *H*5), 6.76 (d, <sup>3</sup>J<sub>H-H</sub> = 8.0 Hz, 2H, *H*6), 4.78 (br s, 2H, *H*12/*H*13), 4.68 (br s, 2H, *H*12/*H*13), 4.45 (br s, 2H, *H*11/*H*14), 4.44 (br s, 2H, *H*11/*H*14), 2.81 (t, <sup>3</sup>J<sub>H-H</sub> = 7.6 Hz, 2H, *H*3), 2.35 (t, <sup>3</sup>J<sub>H-H</sub> = 7.6 Hz, 2H, *H*2) ppm; <sup>13</sup>**C NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 132.7 (*C*4), 131.9 (*C*5), 131.8 (Ar-<u>C</u>-C), 131.4 (Ar-<u>C</u>-C), 131.2 (Ar-<u>C</u>-C), 130.9 (Ar-<u>C</u>-C), 129.7 (*C*6), 129.5 (Ar-<u>C</u>-H), 128.2 (Ar-<u>C</u>-H), 128.0 (Ar-<u>C</u>-H), 127.4 (Ar-<u>C</u>-H), 126.3 (Ar-<u>C</u>-H), 125.8 (Ar-<u>C</u>-H), 125.6 (Ar-<u>C</u>-H), 125.6 (Ar-<u>C</u>-H), 124.5 (Ar-<u>C</u>-H), 124.4 (Ar-<u>C</u>-C), 122.7 (*C*7), 118.7 (Ar-<u>C</u>-C), 117.9 (*C*1), 92.9 (*C*9/*C*16), 88.2 (*C*9/*C*16), 88.6 (*C*8/*C*17), 86.5 (*C*8/*C*17), 73.3 (*C*12/*C*13), 73.3 (*C*12/*C*13), 71.1 (*C*11/*C*14), 71.1 (*C*11/*C*14), 68.8 (*C*10/*C*15), 68.4 (*C*10/*C*15), 29.6 (*C*3), 18.1 (*C*2) ppm; **MS ES+**: calcd. for C<sub>39</sub>H<sub>26</sub>NSFe [M+H]+ 596.1135; found. 596.1149.







#### 1-(Ethynylpyrene)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (10)



Following general procedure **B**, (**10a**) (0.06 g, 0.10 mmol), NaOMe (25% in MeOH, 0.02 mL) and Ac<sub>2</sub>O (0.04 mL) gave a red solid which was purified by chromatography on a 'deactivated' silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  1:1) to give the product as a bright-red solid (0.02 g, 0.04 mmol, 35%).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.58 (d, <sup>3</sup>J<sub>H-H</sub> = 9.2 Hz, 1H, Ar-H), 8.20 (dd, <sup>3</sup>J<sub>H-H</sub> = 7.6, <sup>4</sup>J<sub>H-H</sub> = 1.6 Hz, 2H, Ar-H), 8.12-7.99 (m, 6H, Ar-H), 7.23 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H5), 6.94 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H4), 4.72 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H10/H13), 4.63 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H10/H13), 4.42 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H12), 4.41 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H12), 2.37 (s, 3H, H1) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 193.8 (*C*2), 133.8 (*C*4), 131.8 (*C*5), 131.8 (Ar-C-C), 131.4 (Ar-C-C), 131.2 (Ar-C-C), 130.9 (Ar-C-C), 129.4 (Ar-C-H), 128.2 (Ar-C-H), 127.9 (Ar-C-H), 127.4 (Ar-C-C), 126.9 (*C*6), 126.3 (Ar-C-H), 125.8 (Ar-C-H), 125.5 (Ar-C-C), 125.5 (Ar-C-H), 125.0 (*C*3), 124.6 (Ar-C-H), 124.4 (Ar-C-C), 118.6 (Ar-C-C), 93.0 (*C*8/C15), 89.1 (*C*8/C15), 86.5 (*C*7/C16), 86.2 (*C*7/C16), 73.3 (*C*10/C13), 73.3 (*C*10/C13), 71.0 (*C*11/C12), 71.0 (*C*11/C12), 67.8 (*C*9/C14), 67.3 (*C*9/C14), 30.3 (*C*1) ppm; **MS ES+**: calcd. for C<sub>38</sub>H<sub>25</sub>OSFe [M+H]+ 585.0976; found. 585.0991.



Figure S37: The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of **10**. Labels provided for unambiguous peaks.



peaks.

## 1-(4-(Ethynylphenyl)-2-phenyldiazene)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (11a)



Following general procedure **A**, (**2a**) (0.20 g, 0.40 mmol), 4-(ethynylphenyl)-2-phenyldiazene (0.33 g, 1.61 mmol), CuI (0.01 g, 0.04 mmol) and Pd(P<sup>-t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.04 mmol) gave a black solid, which was purified by chromatography on a silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  4:6) to give the produce as a deep-red solid (0.20 g, 0.35 mmol, 87%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 7.94$  (d,  ${}^{3}J_{H-H} = 7.2$  Hz, 2H, H24), 7.79 (d,  ${}^{3}J_{H-H} = 8.4$  Hz, 2H, H20), 7.58-7.48 (m, 5H, H19, H23, H25), 7.32 (d,  ${}^{3}J_{H-H} = 8.4$  Hz, 2H, H6), 7.19 (d,  ${}^{3}J_{H-H} = 8.4$  Hz, 2H, H5), 4.59 (*pseudo*-t, 2H,  ${}^{3}J_{H-H} = 2.0$  Hz, H11/H14), 4.36 (*pseudo*-t, 2H,  ${}^{3}J_{H-H} = 2.0$  Hz, H11/H14), 4.36 (*pseudo*-t, 2H,  ${}^{3}J_{H-H} = 2.0$  Hz, H12/H13), 4.35 (*pseudo*-t, 2H,  ${}^{3}J_{H-H} = 2.0$  Hz, H11/H14), 4.36 (*pseudo*-t, 2H,  ${}^{3}J_{H-H} = 7.6$  Hz, 2H, H2) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C} = 152.8$  (C22), 151.3 (C21), 133.0 (C4), 132.2 (C6), 132.2 (C7), 131.3 (C25), 130.4 (C5), 129.3 (C23), 126.8 (C18), 123.1 (C24), 123.0 (C20), 122.9 (C19), 118.0 (C1), 90.2 (C9/C16), 88.4 (C9/C16), 87.0 (C8/C17), 86.4 (C8/C17), 73.1 (C11/C14), 71.1 (C12/C13), 71.0 (C12/C13), 67.4 (C10/C15), 67.2 (C10/C15), 29.8 (C3), 18.2 (C2) ppm; MS ES+: calcd. for C<sub>35</sub>H<sub>26</sub>N<sub>3</sub>SFe [M+H]+ 576.1197; found. 576.1204.



Page 25 of 96

#### 1-(4-(Ethynylphenyl)-2-phenyldiazene)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (11)



Following general procedure **B**, (**11a**) (0.04 g, 0.07 mmol), NaOMe (25% in MeOH, 0.10 mL) and  $Ac_2O$  (0.20 mL) gave a red-solid, which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, and then precipitated from an equal parts mixture of DCM/hexane to give the product as a deep-red solid (0.03 g, 0.05 mmol, 74%).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.94 (dt, <sup>3</sup>J<sub>H-H</sub> = 6.8, <sup>4</sup>J<sub>H-H</sub> = 1.6 Hz, 2H, H23), 7.80 (d, <sup>3</sup>J<sub>H-H</sub> = 8.8 Hz, 2H, H19), 7.57-7.46 (m, 5H, H18, H22, H24), 7.41 (d, <sup>3</sup>J<sub>H-H</sub> = 8.8 Hz, 2H, H5), 7.26 (d, <sup>3</sup>J<sub>H-H</sub> = 8.8 Hz, 2H, H4), 4.59 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H12), 4.58 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H12), 4.36 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 4H, H10, H13), 2.36 (s, 3H, H1) ppm; <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 193.7 (*C*2), 152.9 (*C*20), 151.4 (*C*21), 134.2 (*C*4), 132.2 (*C*5), 132.0 (*C*23), 131.2 (*C*24), 129.2 (*C*18), 127.3 (*C*6), 126.7 (*C*17), 125.1 (*C*3), 123.1 (*C*23), 123.0 (*C*19), 90.2 (*C*8/C15), 89.1 (*C*8/C15), 87.0 (*C*7/C16), 86.4 (*C*7/C16), 73.2 (*C*10/C13), 73.2 (*C*10/C13), 71.2 (*C*11/*C*12), 71.1 (*C*11/*C*12), 67.1 (*C*9/C14), 67.1 (*C*9/C14), 29.8 (*C*1) ppm; **MS ES+**: calcd. for C<sub>34</sub>H<sub>25</sub>N<sub>2</sub>OSFe [M+H]+ 565.1037; found. 565.1044.



Figure S42: The  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of 11.

#### 1-(4-Ethynylbenzaldehyde)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (12a)



Following general procedure **A**, (**2a**) (0.20 g, 0.40 mmol), 4-ethynylbenzaldehyde (0.13 g, 1.00 mmol), Cul (0.01 g, 0.04 mmol) and Pd(P<sup>-t</sup>Bu<sub>3</sub>)<sub>2</sub> (0.02 g, 0.04 mmol) gave a dark-brown solid, which was purified by chromatography on a silica column, eluting with *n*-hexane/DCM (1:0  $\rightarrow$  4:6) to give the product as a red powder (0.17 g, 0.34 mmol, 85%).

<sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 9.98 (s, 1H, H22), 7.72 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H20), 7.49 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 1.6 Hz, 2H, H19), 7.30 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H6), 7.19 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H5), 4.58 (*pseudo-*t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H12/H13), 4.56 (*pseudo-*t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H12/H13), 4.37 (*pseudo-*t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H14), 4.34 (*pseudo-*t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, H11/H14), 3.12 (t, <sup>3</sup>J<sub>H-H</sub> = 7.2 Hz, 2H, H3), 2.61 (t, <sup>3</sup>J<sub>H-H</sub> = 7.2 Hz, 2H, H2) ppm; <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 191.6 (*C22*), 134.9 (*C18*, *C21*), 133.1 (*C4*), 132.1 (*C6*), 131.8 (*C19*), 130.4 (*C5*), 129.6 (*C20*), 123.0 (*C7*), 118.0 (*C1*), 92.2 (*C9*/C16), 88.3 (*C9*/C16), 86.5 (*C8*/C17), 86.4 (*C8*/C17), 73.3 (*C12*/C13), 73.1 (*C12*/C13), 71.3 (*C11*/C14), 71.0 (*C11*/C14), 67.5 (*C10*/C15), 66.6 (*C10*/C15), 29.9 (*C3*), 18.3 (*C2*) ppm; **MS ES+**: calcd. for C<sub>30</sub>H<sub>22</sub>NOSFe [M+H]+ 500.0772; found. 500.0784.



Figure S44: The  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of **12a**.

#### 1-(4-Ethynylbenzaldehyde)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (12)



Following general procedure **B**, (**12a**) (0.10 g, 0.20 mmol), NaOMe (25% in MeOH, 0.03 mL) and Ac<sub>2</sub>O (0.05 mL) gave a red-solid, which was purified by chromatography on a 'deactivated' silica column, eluting with n-hexane/DCM (1:0  $\rightarrow$  7:3), to give the product as a bright-red solid (0.02 g, 0.04 mmol, 21%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 9.95 (s, 1H, H21), 7.71 (dt,  ${}^{3}J_{H-H}$  = 8.4,  ${}^{4}J_{H-H}$  = 1.6 Hz, 2H, H18), 7.47 (dt,  ${}^{3}J_{H-H}$  = 8.4,  ${}^{4}J_{H-H}$  = 1.6 Hz, 2H, H19), 7.35 (dt,  ${}^{3}J_{H-H}$  = 8.4,  ${}^{4}J_{H-H}$  = 2.0 Hz, 2H, H5), 7.22 (dt,  ${}^{3}J_{H-H}$  = 8.4,  ${}^{4}J_{H-H}$  = 2.0 Hz, 2H, H5), 7.22 (dt,  ${}^{3}J_{H-H}$  = 8.4,  ${}^{4}J_{H-H}$  = 2.0 Hz, 2H, H4), 4.58 (*pseudo*-t,  ${}^{3}J_{H-H}$  = 2.0 Hz, 2H, H11/H12), 4.57 (*pseudo*-t,  ${}^{3}J_{H-H}$  = 2.0 Hz, 2H, H10/H13), 4.34 (*pseudo*-t,  ${}^{3}J_{H-H}$  = 2.0 Hz, 2H, H10/H13), 2.43 (s, 3H, H1) ppm;  ${}^{13}$ **C** {<sup>1</sup>**H**} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 193.6 (*C*2), 191.8 (*C*21), 134.9 (*C*20), 134.1 (*C*4), 131.9 (*C*5), 131.8 (*C*19), 130.3 (*C*17), 129.6 (*C*18), 127.3 (*C*6), 125.1 (*C*3), 92.0 (*C*8/*C*15), 91.7 (*C*8/*C*15), 88.8 (*C*7/*C*16), 86.6 (*C*7/*C*16), 73.3 (*C*11/*C*12), 73.2 (*C*11/*C*12), 71.2 (*C*10/*C*13), 70.9 (*C*10/*C*13), 67.5 (*C*9/*C*14), 66.7 (*C*9/*C*14), 30.4 (*C*1) ppm; **MS ES+**: calcd. for C<sub>29</sub>H<sub>21</sub>O<sub>2</sub>SFe [M+H]+ 489.0612; found. 489.0620.



Figure S46: The  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of **12**.

<u>1-(4-(Ethynylphenyl)methylene-bis(1H-pyrrole))-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene</u> (13a)



(12a) (0.20 g, 0.40 mmol) was dissolved in pyrrole (50 mL). TFA (6.00  $\mu$ L, 0.08 mmol) was added and the solution was stirred at room temperature for 4 hours. Triethylamine (11.00  $\mu$ L, 0.08 mmol) was added and the solution was stirred for a further 30 minutes. The solvent was removed *in vacuo* and the crude material was purified by chromatography on a silica column, eluting with *n*-hexane/DCM (1:0  $\rightarrow$  3:7) to give the product as a red solid (0.24 g, 0.39 mmol, 97%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.00 (br s, 2H, *H27*), 7.41-7.36 (m, 4H, *H5/H20*), 7.26 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H6*), 7.13 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H19*), 6.75 (br s, 2H, *H26*), 6.20 (q, <sup>3</sup>*J*<sub>H-H</sub> = 2.8 Hz, 2H, *H25*), 5.93 (br s, 2H, *H24*), 5.48 (s, 1H, *H22*), 4.56 (br s, 4H, *H12/H13*), 4.35 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H11/H14*), 4.34 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H11/H14*), 3.13 (t, <sup>3</sup>*J*<sub>H-H</sub> = 7.2 Hz, 2H, *H3*), 2.59 (t, <sup>3</sup>*J*<sub>H-H</sub> = 7.2 Hz, 2H, *H2*) ppm; <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 141.9 (*C21*), 132.8 (*C4*), 132.3 (*C5/C19*), 132.2 (*C23*), 131.8 (*C5/C19*), 130.7 (*C6*), 128.4 (*C20*), 123.3 (*C7*), 122.5 (*C18*), 118.0 (*C1*), 117.5 (*C26*), 108.6 (*C25*), 107.5 (*C24*), 88.9 (*C9/C16*), 87.3 (*C9/C16*), 86.7 (*C8/C17*), 86.0 (*C8/C17*), 73.2 (*C12/C13*), 73.2 (*C12/C13*), 71.1 (*C11/C14*), 70.9 (*C11/C14*), 67.4 (*C10/C15*), 66.9 (*C10/C15*), 44.0 (*C22*), 30.0 (*C3*), 18.3 (*C2*) ppm; **MS ES+**: calcd. for C<sub>38</sub>H<sub>30</sub>N<sub>3</sub>SFe [M+H]<sup>+</sup> 616.1510; found. 616.1500.



<u>1-(4-(Ethynylphenyl)methylene-bis(1H-pyrrole))-1'-(4-(ethynylphenyl)thioacetate)ferrocene (13)</u>



Following general procedure **B**, (**13a**) (0.07 g, 0.11 mmol), NaOMe (25% in MeOH, 0.01 mL) and  $Ac_2O$  (0.02 mL) gave a red-oil, which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, to give the product as a deep-red oil (0.05 g, 0.08 mmol, 73%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 8.03 (br s, 2H, *H*26), 7.44 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H*5), 7.35 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H*18), 7.28 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H*4), 7.11 (d, <sup>3</sup>*J*<sub>H-H</sub> = 8.4 Hz, 2H, *H*19), 6.71 (*pseudo*-q, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H*25), 6.16 (q, <sup>3</sup>*J*<sub>H-H</sub> = 3.2 Hz, 2H, *H*24), 5.91 (br s, 2H, *H*23), 5.45 (s, 1H, *H*21), 4.55 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H*11/*H*12), 4.55 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H*11/*H*12), 4.33 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H*10/*H*13), 4.31 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 2H, *H*10/*H*13), 2.42 (s, 3H, *H*1) ppm; <sup>13</sup>C {<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{c}$  = 194.1 (*C*2), 141.8 (*C*20), 134.2 (*C*4), 132.2 (*C*22),132.1 (*C*5), 131.8 (*C*18), 128.4 (*C*19), 127.2 (*C*6), 125.3 (*C*3), 122.5 (*C*17), 117.5 (*C*25), 108.6 (*C*24), 107.4 (*C*23), 89.4 (*C*8/*C*15), 87.1 (*C*8/*C*15), 86.7 (*C*7/*C*16), 86.2 (*C*7/*C*16), 73.2 (*C*11/*C*12), 73.1 (*C*11/*C*12), 71.1 (*C*10/*C*13), 70.9 (*C*10/*C*13), 67.5 (*C*9/*C*14), 66.9 (*C*9/*C*14), 44.0 (*C*21), 30.4 (*C*1) ppm; **MS ES+**: calcd. for C<sub>37</sub>H<sub>29</sub>ON<sub>2</sub>SFe [M+H]+ 605.1350; found. 603.1360.









Following general procedure **A**, freshly prepared 1,3,5-triethynylbenzene (approx. 0.03 g, 0.17 mmol), (**2a**) (0.37 g, 0.75 mmol), Cul (0.01 g, 0.02 mmol), [Pd(CH<sub>3</sub>CN)<sub>2</sub>Cl<sub>2</sub>] (0.01 g, 0.02 mmol) and [PH(<sup>t</sup>Bu)<sub>3</sub>]BF<sub>4</sub> (0.01 g, 0.03 mmol) gave a dark brown solid, which was purified by chromatography on a silica column, eluting with hexane/DCM (1:1), to give the product as a red solid (0.14 g, 0.11 mmol, 67%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H} = 7.39 - 7.35$  (m, 9H, *H*6 and *H*19), 7.24 (dt, <sup>3</sup>*J*<sub>H-H</sub> = 8.4, <sup>4</sup>*J*<sub>H-H</sub> = 2.0 Hz, 6H, *H*6), 4.56 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 12H), 4.36 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 6H), 4.35 (*pseudo*-t, <sup>3</sup>*J*<sub>H-H</sub> = 2.0 Hz, 6H), 3.08 (t, <sup>3</sup>*J*<sub>H-H</sub> = 6.0 Hz, 6H, *H*2), 2.56 (t, <sup>3</sup>*J*<sub>H-H</sub> = 6.0 Hz, 6H, *H*3); <sup>13</sup>C{<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C} = 133.1$  (*C*4/*C*19), 133.0 (*C*4/*C*19), 132.2(*C*5), 130.6 (*C*6), 124.4 (*C*18), 123.1 (*C*7), 118.0 (*C*1), 88.5 (*C*9/*C*16), 88.4 (*C*9/*C*16), 86.3 (*C*8/*C*17), 85.6 (*C*8/*C*17), 73.2 (*C*12/*C*13), 73.2 (*C*12/*C*13), 71.1 (*C*11/*C*14), 71.1 (*C*11/*C*14), 67.2 (*C*10/*C*15), 66.9 (*C*10/*C*15), 30.0 (*C*3), 18.4 (*C*2) ppm; **MS ES+**: calcd. for C<sub>75</sub>H<sub>52</sub>N<sub>3</sub>S<sub>3</sub>Fe<sub>3</sub> [M+H]+ 1258.1371; found. 1258.1277.



Figure S52: The <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100 MHz) spectrum of **14a**.





Following general procedure **B**, (**14a**) (0.07 g, 0.06 mmol), NaOMe (25% in MeOH, 0.25 mL) and  $Ac_2O$  (0.50 mL) gave a red solid, which was purified by chromatography on a 'deactivated' silica column, eluting with DCM, give the product as an orange solid (0.06 g, 0.05 mmol, 87%).

<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 298 K, 400 MHz):  $\delta_{H}$  = 7.46 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H5), 7.38 (s, 3H, H18), 7.31 (dt, <sup>3</sup>J<sub>H-H</sub> = 8.4, <sup>4</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H1/H12), 4.55 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H11/H12), 4.55 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H11/H12), 4.55 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H10/H13), 4.35 (*pseudo*-t, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, H10/H13), 2.40 (s, 9H, H1); <sup>13</sup>C{<sup>1</sup>H} **NMR** (CDCl<sub>3</sub>, 298 K, 100 MHz):  $\delta_{C}$  = 193.8 (C2), 134.3 (C4), 133.1 (C18), 132.0 (C5), 127.4 (C6), 125.2 (C3), 124.4 (C17), 89.3 (C8/C15), 88.4 (C8/C15), 86.3 (C7), 85.6 (C16), 73.3 (C11/C12), 71.4 (C10/C13), 71.3 (C10/C13), 66.8 (C9/C14), 30.4 (C1) ppm; **MS ES+**: calcd. for C<sub>72</sub>H<sub>49</sub>Fe<sub>3</sub>O<sub>3</sub>S<sub>3</sub> [M+H]+ 1225.0887; found. 1225.0874.



## 2. Cyclic Voltammetry

## 2.1 Experimental

Cyclic voltammograms of compounds in solution were recorded under an atmosphere of nitrogen in  $CH_2Cl_2 / 0.1 \text{ M} [^nBu_4][PF_6]$  on a Gamry reference 600TM (Gamry Instruments, Warminter, PA, USA) potentiostat with a glassy carbon disc as the working electrode (diameter = 2.5 mm), and Pt-wire as reference and counter electrodes. Analyte solutions were between 0.1-1.0 mM. All potentials (mV) are reported relative to  $[Cp_2Fe]^+/[Cp_2Fe]$  and were measured against either  $[Cp_2Fe]^+/[Cp_2Fe]$  or  $[Cp_2Fe]^+/[Cp_2Fe]$  as internal references. All scans have been corrected for iR<sub>s</sub> with values obtained from AC impedance measurements.

|            |                    |       | •                    | •     | •       |
|------------|--------------------|-------|----------------------|-------|---------|
| Compound   | E <sub>p</sub> /mV | E₀/mV | E <sub>1/2</sub> /mV | ΔE/mV | ipa/ipc |
| <b>2</b> a | 245                | 178   | 211                  | 66    | 1.03    |
| 2          | 252                | 186   | 219                  | 66    | 0.98    |
| 5a         | 194                | 125   | 160                  | 69    | 0.97    |
| 5          | 218                | 144   | 181                  | 74    | 1.04    |
| 6a         | -11                | -79   | -45                  | 68    | 0.99    |
|            | 338                | 269   | 303                  | 69    |         |
| 6          | -2                 | -60   | -31                  | 58    | 1.01    |
|            | 350                | 292   | 321                  | 58    |         |
| 7a         | 234                | 169   | 206                  | 75    | 1.01    |
| 7          | 258                | 186   | 221                  | 72    | 0.91    |
| 8a*        | 223                | 148   | 185                  | 75    | 0.98    |
| 8          | 229                | 166   | 197                  | 63    | 1.00    |
| 9a         | 229                | 152   | 190                  | 77    | 0.97    |
| 9          | 233                | 163   | 198                  | 70    | 0.98    |
| 10a        | 167                | 101   | 133                  | 66    | 0.97    |
| 10         | 176                | 117   | 146                  | 59    | 0.97    |
| 11a        | 199                | 132   | 165                  | 67    | 0.99    |
| 11         | 208                | 143   | 175                  | 65    | 0.96    |
| 12a        | 227                | 148   | 187                  | 78    | 0.98    |
| 12         | 233                | 160   | 196                  | 73    | 0.97    |
| 13a        | 180                | 117   | 149                  | 63    | 0.95    |
| 13         | 196                | 133   | 165                  | 64    | 1.05    |
| 14a        | 207                | 135   | 171                  | 72    | 1.02    |
| 14         | 223                | 158   | 190                  | 65    | 0.92    |
|            |                    |       |                      |       |         |

**Table S1:** Electrochemical data obtained from cyclic voltammetry of all compounds.

\*This molecule showed significant instability over multiple scans, values reported are taken from a single scan at 100 mV/s.





**Fig S55**: Scan rate dependent cyclic voltammetry of **2a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S56**: Scan rate dependent cyclic voltammetry of **2** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S57**: Scan rate dependent cyclic voltammetry of **5a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).




**Fig S58**: Scan rate dependent cyclic voltammetry of **5** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S59**: Scan rate dependent cyclic voltammetry of **6a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

## 1,1"'-Di(4-(ethynylphenyl)thioacetate)biferrocene (6)



**Fig S60**: Scan rate dependent cyclic voltammetry of **6** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

#### <u>1-(4-Ethynylpyridine)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (7a)</u>



**Fig S61**: Scan rate dependent cyclic voltammetry of **7a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S62**: Scan rate dependent cyclic voltammetry of **7** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S63**: Cyclic voltammetry collected at 100 mV/s for compound **8a**. A full scan rate dependency was not obtained for this system as it showed significant instability under the conditions we used.



Fig S64: Sequential scans of 8a at 300 mV/s showing a clear change in the redox profile.

#### <u>1-(3-Ethynylpyridine)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (8)</u>



**Fig S65**: Scan rate dependent cyclic voltammetry of **8** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S66**: Scan rate dependent cyclic voltammetry of **9a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S67**: Scan rate dependent cyclic voltammetry of **9** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

#### 1-(Ethynylpyrene)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (10a)



**Fig S68**: Scan rate dependent cyclic voltammetry of **10a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

#### 1-(Ethynylpyrene)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (10)



**Fig S69**: Scan rate dependent cyclic voltammetry of **10** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

<u>1-(4-(Ethynylphenyl)-2-phenyldiazene)-1'-(4-(2-cyanoethylthio)ethynylbenzene)ferrocene (11a)</u>



**Fig S70**: Scan rate dependent cyclic voltammetry of **11a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S71**: Scan rate dependent cyclic voltammetry of **11** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).



**Fig S72**: Scan rate dependent cyclic voltammetry of **12a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

#### <u>1-(4-Ethynylbenzaldehyde)-1'-(4-(ethynylphenyl)thioacetate)ferrocene (12)</u>



**Fig S73**: Scan rate dependent cyclic voltammetry of **12** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S74**: Scan rate dependent cyclic voltammetry of **13a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

<u>1-(4-(Ethynylphenyl)methylene-bis(1H-pyrrole))-1'-(4-(ethynylphenyl)thioacetate)ferrocene (13)</u>



**Fig S75**: Scan rate dependent cyclic voltammetry of **13** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S76**: Scan rate dependent cyclic voltammetry of **14a** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).





**Fig S77**: Scan rate dependent cyclic voltammetry of **14** (top), with linear fits to compare the scan rates to their respective peak currents (bottom left) and peak potentials (bottom right).

## 3. Ultraviolet-Visible Spectroscopy

**Table S2:** Peak positions obtained from UV-vis. spectroscopy of all cyanoethyl/thioacetate compounds. All data were recorded at room temperature in CH<sub>2</sub>Cl<sub>2</sub> using a quartz cell with a path length of 1 cm. For each compound, the mass of sample and the volume of solvent were both recorded and used to determine extinction coefficients through use of the Beer-Lambert law.<sup>9</sup> 'sh' denotes a shoulder rather than a well-defined peak.

| Compound | λ <sub>max</sub> /nm (ε/M <sup>-1</sup> cm <sup>-1</sup> )                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
| 2a       | 282 (28239), 313 (31491), 360 sh (3508), 442 (1044)                                                                              |
| 2        | 271 (24038), 315 (25132), 357 sh (3485), 446 (958)                                                                               |
| 5a       | 280 sh (39657), 299 (43950), 311 (45003), 326 sh (42292), 356 sh (17505), 446 (1377)                                             |
| 5        | 269 (31516), 294 (26940), 319 (27086), 359 sh (5997), 451 (1037)                                                                 |
| 6a       | 286 sh (48272), 315 (51304), 365 sh (9383), 455 (2870)                                                                           |
| 6        | 269 (45712), 314 (43836), 364 sh (9605), 455 (2691)                                                                              |
| 7a       | 246 (20466), 252 (20772), 257 (21157) 274 (21497), 291 (25287), 305 sh (21770), 318 (20798), 324 (21026), 360 (3403), 451 (1246) |
| 7        | 267 (17349), 291 (18165), 320 (17324), 362 sh (4898), 461 sh (1292)                                                              |
| 8a       | 253 sh (22272), 291 (27892), 310 (27769), 365 sh (3259), 465 (1146)                                                              |
| 8        | 269 (31225), 291 sh (28075), 312 (27692), 365 (4175), 450 (1303)                                                                 |
| 9a       | 288 (36799), 300 (35930), 454 (1174)                                                                                             |
| 9        | 276 (29840), 316 (26627), 460 (1066)                                                                                             |
| 10a      | 240 (61122), 286 (61290), 321 (35522), 367 (39941), 386 (38293), 467 (3354)                                                      |
| 10       | 248 sh (59220), 285 (60606), 318 (34120), 367 (42390), 386 (40466), 473 (3072)                                                   |
| 11a      | 287 sh (34436), 320 (46689), 360 (43149), 470 (7364)                                                                             |
| 11       | 268 (28113), 322 (36043), 358 (35699), 471 (6096)                                                                                |
| 12a      | 285 sh (28080), 301 (31565), 324 sh (26083), 387 sh (4124), 454 sh (1737)                                                        |
| 12       | 277 sh (34723), 300 (39254), 325 sh (31549), 393 sh (4926), 470 (2100)                                                           |
| 13a      | 267 (30050), 299 (32954), 317 (32592), 367 sh (3597), 453 (1383)                                                                 |
| 13       | 269 (31782), 296 (27755), 315 (28536), 367 sh (2986), 457 (1030)                                                                 |
| 14a      | 272 (89123), 293 (90493), 316 (89180), 368 sh (13130), 451 (3929)                                                                |
| 14       | 268 (71659), 293 (60257), 314 (62245), 364 sh (10877), 457 (2928)                                                                |



Fig S87. UV-Vis spectrum of compound 2a, measured in CH<sub>2</sub>Cl<sub>2</sub>.







Fig S89. UV-Vis spectrum of compound 5a, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S90. UV-Vis spectrum of compound 5, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S92. UV-Vis spectrum of compound 6, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S93. UV-Vis spectrum of compound 7a, measured in  $CH_2CI_2$ .



Fig S94. UV-Vis spectrum of compound 7, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S95. UV-Vis spectrum of compound 8a, measured in  $CH_2CI_2$ .



Fig S96. UV-Vis spectrum of compound 8, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S98. UV-Vis spectrum of compound 9, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S100. UV-Vis spectrum of compound 10, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S102. UV-Vis spectrum of compound 11a, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S103. UV-Vis spectrum of compound 11, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S105. UV-Vis spectrum of compound 12, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S106. UV-Vis spectrum of compound 13a, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S107. UV-Vis spectrum of compound 13, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S108. UV-Vis spectrum of compound 14a, measured in CH<sub>2</sub>Cl<sub>2</sub>.



Fig S109. UV-Vis spectrum of compound 14, measured in CH<sub>2</sub>Cl<sub>2</sub>.

# 4. Infrared Spectroscopy

\_

**Table S3:** Peak positions (4000-1450 cm<sup>-1</sup>) obtained from infrared-spectroscopy of cyanoethyl/thioacetate compounds. Relative peak intensities are denoted as 'w' (weak), 'm' (medium) or 's' (strong).

| Compound     | Absorption Frequency (cm <sup>-1</sup> )                                                                                                                                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a           | 3104 (w), 3090 (w), 3056 (w), 3043 (w), 2247 (m), 2227 (w), 2211 (m), 1906 (w), 1653 (w), 1592 (w), 1544 (w), 1496 (s), 1458 (w)                                         |
| 2            | 3099 (w), 3051 (w), 2921 (w), 2852 (w), 2208 (m), 1906 (w), 1704 (s), 1591 (m), 1546 (w),<br>1493 (m), 1455 (w)                                                          |
| 5a           | 3089 (w), 2958 (w), 2926 (m), 2852 (w), 2251 (m), 2009 (m), 1588 (s), 1499 (s), 1487 (s)                                                                                 |
| 5            | 3101 (w), 3059 (w), 2957 (w), 2920 (m), 2851 (w), 2208 (w), 1691 (s), 1593 (w), 1499 (m), 1456 (w)                                                                       |
| 6a           | 3112 (w), 3083 (m), 2954 (w), 2926 (m), 2851 (w), 2247 (m), 2205 (m), 1913 (w), 1733<br>(w), 1653 (w), 1590 (s), 1546 (w), 1497 (s), 1457 (m)                            |
| 6            | 3111 (w), 3086 (w), 3084 (w), 2957 (m), 2919 (m), 2851 (m), 2203 (m), 2161 (w), 1736<br>(m), 1691 (s), 1590 (m), 1547 (w), 1491 (m), 1454 (m)                            |
| 7a           | 3027 (w), 2955 (w), 2923 (m), 2853 (w), 2247 (w), 2212 (m), 1715 (w), 1593 (s), 1585 (s), 1538 (w), 1498 (m), 1457 (w)                                                   |
| 7            | 2956 (w), 2919 (w), 2851 (w), 2210 (m), 1737 (m), 1707 (s), 1592 (s), 1537 (w), 1498 (w),<br>1456 (w)                                                                    |
| 8a           | 3083 (w), 2954 (w), 2918 (w), 2850 (w), 2244 (w), 2210 (m), 1656 (w), 1591 (m), 1563<br>(m), 1497 (s), 1488 (s)                                                          |
| 8            | 3102 (w), 3082 (w), 3023 (w), 2958 (m), 2922 (m), 2852 (m), 2209 (m), 1700 (s), 1592<br>(m), 1559 (m), 1487 (s)                                                          |
| 9a           | 3099 (w), 3066 (w), 2960 (w), 2926 (w), 2853 (w), 2254 (w), 2222 (m), 1894 (w), 1773 (w), 1735 (w), 1589 (m), 1576 (s), 1558 (s), 1506 (s), 1474 (s)                     |
| 9            | 3086 (w), 3055 (w), 2955 (w), 2923 (w), 2853 (w), 2218 (m), 2210 (m), 1703 (s), 1590<br>(m), 1578 (s), 15558 (s), 1496 (w), 1472 (m)                                     |
| 10a          | 3089 (w), 3045 (w), 2926 (w), 2852 (w), 2252 (m), 2211 (m), 2197 (m), 1808 (w), 1773 (w), 1735 (w), 1642 (w), 1623 (w), 1598 (s), 1582 (m), 1498 (s), 1487 (s), 1457 (w) |
| 10           | 3104 (w), 3086 (w), 3037 (w), 3023 (w), 2918 (w), 2209 (m), 1801 (w), 1697 (s), 1600 (m), 1585 (m), 1500 (m), 1489 (m), 1457 (w)                                         |
| 11a          | 3092 (w), 3060 (w), 2926 (w), 2851 (w), 2250 (w), 2199 (m), 1740 (w), 1655 (w), 1593 (s), 1503 (s), 1482 (m), 1464 (m)                                                   |
| 11           | 3058 (w), 2918 (m), 2851 (m), 2204 (m), 1732 (s), 1700 (s), 1594 (m), 1500 (m), 1484 (w), 1464 (m)                                                                       |
| 1 <b>2</b> a | 3086 (w), 2929 (w), 2849 (w), 2247 (w), 2204 (m), 1696 (s), 1684 (s), 1598 (s), 1560 (m), 1500 (m), 1457 (w)                                                             |
| 12           | 3086 (w), 3055 (w), 2954 (w), 2920 (m), 2849 (m), 2735 (w), 2203 (m), 1700 (s), 1598 (s), 1560 (m), 1496 (m), 1457 (w)                                                   |

## Supporting Information

| Compound    | Absorption Frequency (cm <sup>-1</sup> )                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>13</b> a | 3420 (m), 3376 (m), 3099 (w), 3046 (w), 2976 (w), 2928 (w), 2853 (w), 2252 (w), 2209 (m), 2031 (w), 1948 (w), 1909 (w), 1751 (w), 1707 (m), 1591 (w), 1561 (m), 1512 (s), 1498 (s), 1466 (m), 1457 (m) |
| 13          | 3411 (m), 3371 (m), 3099 (w), 3030 (w), 2957 (w), 2920 (m), 2852 (w), 2208 (m), 2033 (w), 1951 (w), 1909 (w), 1694 (s), 1591 (m), 1562 (w), 1512 (m), 1498 (m), 1456 (w)                               |
| 14a         | 3094 (w), 2959 (w), 2924 (m), 2852 (w), 2251 (w), 2210 (m), 1734 (m), 1577 (m), 1545<br>(w), 1499 (m), 1456 (w)                                                                                        |
| 14          | 3099 (w), 2954 (w), 2922 (m), 2852 (w), 2210 (m), 1734 (m), 1698 (s), 1581 (w), 1578<br>(m), 1500 (w), 1456 (w)                                                                                        |



Fig S110. IR spectrum of compound 2a.















Fig S115. IR spectrum of compound 6.



Fig S116. IR spectrum of compound 7a.


Fig S117. IR spectrum of compound 7.



Fig S118. IR spectrum of compound 8a.



Fig S119. IR spectrum of compound 8.







Fig S121. IR spectrum of compound 9.















Fig S127. IR spectrum of compound 12.











Fig S131. IR spectrum of compound 14.





Fig S132. High-resolution mass spectrometry data for compound 1a.



Fig S133. High-resolution mass spectrometry data for compound 1.



Fig S134. High-resolution mass spectrometry data for compound 2.



Fig S135. High-resolution mass spectrometry data for compound 2a.



Fig S136. High-resolution mass spectrometry data for compound 2b.



Fig S137. High-resolution mass spectrometry data for compound 2c.



Fig S138. High-resolution mass spectrometry data for compound 3a.



Fig S139. High-resolution mass spectrometry data for compound 3.



Fig S140. High-resolution mass spectrometry data for compound 4.



Fig S141. High-resolution mass spectrometry data for compound 5a.



Fig S142. High-resolution mass spectrometry data for compound 5.



Fig S143. High-resolution mass spectrometry data for compound 6a.



Fig S144. High-resolution mass spectrometry data for compound 6.



Fig S145. High-resolution mass spectrometry data for compound 7a.



Fig S146. High-resolution mass spectrometry data for compound 7.



Fig S147. High-resolution mass spectrometry data for compound 8a.



Fig S148. High-resolution mass spectrometry data for compound 8.



Fig S149. High-resolution mass spectrometry data for compound 9a.



Fig S150. High-resolution mass spectrometry data for compound 9.



Fig S151. High-resolution mass spectrometry data for compound 10a.







Fig S153. High-resolution mass spectrometry data for compound 11a.



Fig S154. High-resolution mass spectrometry data for compound 11.



Fig S155. High-resolution mass spectrometry data for compound 12a.







Fig S157. High-resolution mass spectrometry data for compound 13a.



Fig S158. High-resolution mass spectrometry data for compound 13.



Fig S159. High-resolution mass spectrometry data for compound 14a.



Fig S160. High-resolution mass spectrometry data for compound 14.

# 6. References

- (1) Inkpen, M. S.; Du, S.; Driver, M.; Albrecht, T.; Long, N. J. Oxidative Purification of Halogenated Ferrocenes. *Dalton Trans.* **2013**, *42* (8), 2813–2816.
- (2) Wang, C.; Bryce, M. R.; Gigon, J.; Ashwell, G. J.; Grace, I.; Lambert, C. J. Synthesis and Properties of Functionalized 4 Nm Scale Molecular Wires with Thiolated Termini for Self-Assembly onto Metal Surfaces. J. Org. Chem. 2008, 73 (13), 4810–4818.
- (3) Wilson, L. E.; Hassenrück, C.; Winter, R. F.; White, A. J. P.; Albrecht, T.; Long, N. J. Functionalised Biferrocene Systems towards Molecular Electronics. *Eur. J. Inorg. Chem.* **2017**, *2017* (2)(2), 496–504.
- Sinn, S.; Schulze, B.; Friebe, C.; Brown, D. G.; Jäger, M.; Altuntaş, E.; Kübel, J.; Guntner, O.; Berlinguette, C. P.; Dietzek, B.; Schubert, U. S. Physicochemical Analysis of Ruthenium(II) Sensitizers of 1,2,3-Triazole-Derived Mesoionic Carbene and Cyclometalating Ligands. *Inorg. Chem.* 2014, 53 (4), 2083–2095.
- (5) Möller, N.; Rühling, A.; Lamping, S.; Hellwig, T.; Fallnich, C.; Ravoo, B. J.; Glorius, F. Stabilization of High Oxidation State Upconversion Nanoparticles by N-Heterocyclic Carbenes. *Angew. Chem* - Int. Ed. 2017, 56 (15), 4356–4360.
- (6) Kobayashi, N.; Kijima, M. 1,3,5-Tris(Functionalised-Phenylethynyl)Benzene-Metal Complexes: Synthetic Survey of Mesoporous Coordination Polymers and Investigation of Their Carbonisation. J. Mater. Chem. **2008**, *18* (9), 1037–1045.
- (7) Chen, C. P.; Luo, W. R.; Chen, C. N.; Wu, S. M.; Hsieh, S.; Chiang, C. M.; Dong, T. Y. Redox-Active π-Conjugated Organometallic Monolayers: Pronounced Coulomb Blockade Characteristic at Room Temperature. *Langmuir* **2013**, *29* (9), 3106–3115.
- Dong, T. Y.; Chen, K.; Lin, M. C.; Lee, L. Toward the Development of Molecular Wires: Ruthenium(II) Terpyridine Complexes Containing Polyferrocenyl as a Spacer. *Organometallics* 2005, *21* (17), 4198-4206.
- (9) Swinehart, D. F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39 (7), 333–335.