Supporting Information for

Synthesis of a chiral dinuclear Cu(II)-benzothiazolamine complex: evidence of cuprophilic interaction in its structure, exploration of

its electrochemical property, and catalytic performance.

O. Stephen Ojo*, Halilu Sale, Mark D. Symes and Claire Wilson

WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, G12 8QQ, United Kingdom.

*Corresponding author Telephone: +44 (0)141 330 6334 Email: Oluwarotimi.Ojo@glasgow.ac.uk

General Methods

Synthesis:

All reagents were obtained from commercial sources and used as received. All solvents were analytical grade and used as purchased. Brine refers to a saturated aqueous solution of sodium chloride. Flash column chromatography was performed using silica gel 60Å (35-70 μm). Merck Kieselgel aluminium-backed plates precoated with silica gel 60Å F254 were used for thin-layer chromatography (TLC) and were visualised by ultraviolet light (254 nm) and/or heating the plate after staining with vanillin or potassium permanganate (KMnO₄). The ¹H NMR spectra were recorded on Bruker Avance III HD 500 (500 MHz) or Avance III HD 400 (400 MHz) ultrashield[™] spectrometers and data are reported as follows: chemical shift (δ_H) in ppm relative to tetramethylsilane as the internal standard (CDCl₃, δ 7.26 ppm; DMSO- $d_6 \delta$ 2.50 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non-equivalent resonances), and integration. The ¹³C NMR spectra were recorded on NMR spectrometer at either 101 or 126 MHz and data are reported as follows: chemical shift (δ_c) in ppm relative to tetramethylsilane or the solvent as an internal standard (CDCl₃, δ 77.16 ppm; DMSO- d_{δ} δ 39.5 ppm). The multiplicity of each carbon with respect to hydrogen was deduced from DEPT (Distortionless Enhancement by Polarization Transfer) 135 experiments, which determined whether they are C, CH, CH₂, or CH₃. All the ¹³C and ¹⁹F NMR were ran and reported as hydrogen decoupled. The infrared spectra were recorded on a Perkin Elmer FT-IR spectrometer using neat samples; Wavelengths of maximum absorbance (v_{max}) are quoted in wavenumbers (cm⁻¹). Only selected, characteristic IR absorption data are provided for each compound. The mass spectra were recorded using electron ionisation (EI) or electrospray ionisation (ESI) techniques. The parent ion [M]⁺, [M+H]⁺ or [M+Na]⁺ is calculated to 4 decimal places from the molecular formula, and all values are within a tolerance of 5 ppm. Elemental analysis, mass spectrometer analysis and x-ray analysis were run by school of chemistry, University of Glasgow analytical service team.

Electrochemical measurement:

A Gamry potentiostat (Gamry Instruments, interface 1010E) was used to carry out cyclic voltammetry tests. The electrochemical measurements were undertaken using a conventional three-electrode glass cell consisting of working, counter, and reference electrodes. The working electrode was a glassy carbon (BASi, diameter = 3.0 mm) having a surface area of 0.071 cm^2 , while the counter electrode was a platinum foil. A saturated calomel electrode (SCE) was used as the reference electrode, and all potentials were measured with respect to the SCE. The glassy carbon electrode was polished by applying a $0.05 \,\mu\text{m}$ alumina suspension (BASi) onto an alumina polishing pad to achieve a fresh surface. Subsequently, the electrode was thoroughly washed with distilled water. The cyclic voltammetry experiments were conducted in the presence of $0.01 \,\text{M}$ Cu(II) or Cu(I) complexes in CH₃OH (Honeywell, 99.7% purity), 0.1 M tetraethylammonium chloride (Sigma-Aldrich, 97.0% purity) was used as a supporting electrode, at room temperature (~25 °C) after purging the solution for 20 minutes to remove any dissolved oxygen from the system.

Thermal measurement (TGA and DSC):

Thermogravimetric analysis (TGA) was gathered as follows: DT Q600, manufactured by TA Instruments; ramp from RT to 300 °C at 10°/min in 100ml/min Argon. Differential Scanning Calorimetry (DSC) was gathered as follows: Discovery DSC 25, manufactured by TA Instruments; ramp from RT to (temperature below decomposition temperature found by TGA) at 10°/min.

Elemental Analysis (EA):

All samples were measured on the CE-440 Elemental Analyzer by Exeter Analytical Inc., Version 10.03.21DDSA. Standard running conditions are combustion temperature (975 °C +/- 10°C), reduction temperature (620 °C +/- 20 °C), oven temperature (80 °C +/-2 °C), purge time (60 seconds), combustion time (60 seconds), helium outlet pressure (~1.0 bar to give Fill time of 30–50 sec), oxygen outlet pressure (~1.3 bar).

S3

Synthesis of benzothiazole-2-amines, L1 and L2

N-[(1S)-1-Phenylethyl]-2-benzothiazolamine (L1)

2-chlorobenzothiazole (2.30 mL, 3.00 g, 17.6855 mmol, 1.0 eq.) was
^{-Ph} added to a stirring mixture of (*S*)-1-phenylethylamine (2.14 g, 17.6855 mmol, 1.0 eq.) and NEt₃ (2.28 mL, 1.79 g, 17.6855 mmol, 1.0

eq.) in a 50 mL round bottom flask. The resulting mixture was heated to 130 °C and left to stir at this temperature for 12 h. Afterwards, the viscous mixture was allowed to cool to 40 °C then immediately diluted with saturated aqueous solution of ammonium chloride (100 mL) and extracted with DCM (60 mL) twice. The combined organic layers were washed with brine (30 mL), dried with MgSO₄, filtered and solvent removed *in vacuo*. The crude sample was recrystallised in hexane. Vacuum filtration provided **L1** (4.05 g, 15.9169 mmol, 90%) as a white crystalline solid. NEt₃ = Triethylamine. ¹H NMR (400 MHz, DMSO-*d6*) δ 8.52 (d, *J* = 7.7 Hz, 1H, *N*-H), 7.64 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.39–7.42 (m, 2H), 7.31–7.35 (m, 3H), 7.16–7.25 (m, 2H), 6.99 (d, *J* = 7.7, 1.3 Hz, 1H), 5.04 (p, *J* = 7.0 Hz, 1H), 1.49 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 165.3, 152.4, 144.4, 130.2, 128.3, 126.8, 125.9, 125.4, 120.8, 118.0, 53.3, 23.1. **IR** (neat) V_{max} (cm⁻¹): 2966, 1601, 1568, 1552, 1443. **HRMS** (ESI): calc for C₁₅H₁₄N₂S *m/z*: 254.0878 found [M+H]⁺ 255.0956. **MP**: 130-132 °C.

6-Bromo-*N*-[(1*S*)-1-phenylethyl]-2-benzothiazolamine (L2)

Br H Me H NBS (1.34 g, 7.5521 mmol, 1.0 eq.) was added to a stirring solution of (*S*)-**L1** (1.92 g, 7.5521 mmol, 1.0 eq.) in DCM (30 mL) at room temperature and left to stir for 12 h (the mixture immediately turned red, then after 1 h turned light brown). Afterwards, the mixture was washed with saturated aqueous solution of sodium hydrogen carbonate (35 mL) and the aqueous layer was further extracted with DCM (40 mL). The combined organic layers were washed with brine (35 mL), dried with MgSO₄, filtered and solvent removed *in vacuo* to generate (*S*)-**L2** (2.35 g, 7.049 mmol, 93%) as a brown solid. NBS = *N*-bromosuccinimide, DCM = Dichloromethane. ¹H NMR (400 MHz, DMSO-*d*6) δ 8.65 (d, *J* = 7.7 Hz, 1H, *N*-H), 7.89 (s, 1H), 7.38–7.41 (m, 2H), 7.30–7.35 (m, 3H), 7.21–7.26 (m, 2H), 5.03 (p, *J* = 7.0 Hz, 1H), 1.48 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*6) δ 165.8, 151.6, 144.1, 132.4, 128.39, 128.34, 126.9, 125.9, 123.3, 119.4, 112.1, 53.4, 23.0. IR (neat) V_{max} (cm⁻¹): 2969, 1594, 1555, 1443, 1254. HRMS (ESI): calc for C₁₅H₁₃N₂S⁷⁹Br *m/z*: 331.9983 found [M+H]⁺ 333.0061. MP: 120-122 °C.

Scheme S1: Synthesis of Complexes A-E

tris(μ-acetato)-(μ-acetato)-bis[*N*-(1-phenylethyl)-1,3-benzothiazol-2-amine]-dicopper – Moiras Complex A

A colourless solution of (*S*)-**L1** (0.21 g, 0.8259 mmol, 1.0 eq.) in THF (5 mL) was added to a stirring deep blue solution of Cu(OAc)₂ (0.15 g, 0.8259 mmol, 1.0 eq.) in MeOH (5 mL) at room temperature. The resulting reaction mixture was heated to 65 °C and left to stir at this temperature for 0.5 h. Afterwards, the mixture was allowed to cool to room temperature, and solvent was removed *in vacuo*. The resulting light-green powder was washed with hexane and collected by vacuum filtration. **Moiras complex A** (0.35 g, 0.7929 mmol, 96%) was obtained as a light-green powder. MeOH = Methanol. **IR** (neat) V_{max} (cm⁻¹): 1621, 1596, 1571, 1556, 1454, 1421. **Elemental Analysis**: cal. C, 52.34%; H, 4.62%; N, 6.43%; O, 14.68%; S, 7.35%, Cu, 14.58%. Observ. C, 52.34%; H, 4.62%; N, 6.43%; O, 14.68%; S, 7.35%, Cu, 14.58%.

Complex B – Cu(OAc)₂(L1)₂

A colourless solution of (*S*)-**L1** (0.42 g, 1.6518 mmol, 2.0 eq.) in THF (5 mL) was added to a stirring deep blue solution of Cu(OAc)₂ (0.15 g, 0.8259 mmol, 1.0 eq.) in MeOH (5 mL) at room temperature. The resulting reaction mixture was heated to 65 °C and left to stir at this temperature for 0.5 h. Afterwards, the mixture was allowed to cool to room temperature, and solvent was removed *in vacuo*. The resulting green powder was washed with hexane and collected by vacuum filtration. **Complex B** (0.52 g , 0.7598 mmol, 92%) was obtained as a light-green powder (0.52 g , 0.7598 mmol, 92%). **IR** (neat) V_{max} (cm⁻¹): 1624, 1596, 1557, 1453, 1424. **Elemental Analysis**: cal. C, 59.16%; H, 4.96%; N, 8.12%; O, 9.27%; S, 9.29%; Cu, 9.21%. Observ. C, 59.16%; H, 4.96%; N, 8.12%; O, 9.27%; S, 9.29%, Cu, 9.21%.

Complex C – Cu(OAc)₂L1PPh₃

Cu(OAc)₂ (0.15 g, 0.8259 mmol, 1.0 eq.) was added, all at once, to a stirring colourless solution of (*S*)-**L1** (0.21 g, 0.8259 mmol, 1.0 eq.) and PPh₃ (0.22 g, 0.8259 mmol, 1.0 eq.) in THF (5 mL) and MeOH (5 mL) at room temperature. The resulting reaction mixture was heated to 65°C and left to stir at this temperature for 0.5 h. Afterwards, the mixture was allowed to cool to room temperature, and solvent was removed *in vacuo*. The resulting green powder was washed with hexane and collected by vacuum filtration. **Complex C** (0.55 g, 0.7846 mmol, 95%) was obtained as a light-green powder. PPh₃ = Triphenylphosphine. ³¹P NMR (162 MHz, CDCl₃): δ -2.65. **IR** (neat) V_{max} (cm⁻¹): 1624, 1596, 1558, 1452, 1420. **Elemental Analysis**: calc. C, 63.64%; H, 5.05%; N, 4.01%; O, 9.16%, P, 4.44%; S, 4.59%; Cu, 9.1%. Observ. C, 63.64%; H, 5.05%; N, 4.01%; O, 9.16%, P, 4.44%; S, 4.59%; Cu, 9.1%.

Complex D – CuBrL1PPh₃

CuBr.DMS (0.40 g, 1.9656 mmol, 1.0 eq.) was added, all at once, to a stirring colourless solution of (*S*)-**L1** (0.50 g, 1.9656 mmol, 1.0 eq.) and PPh₃ (0.52 g, 1.9656 mmol, 1.0 eq.) in THF (15 mL) at room temperature left to stir for 0.5 h. Afterwards, the mixture was allowed to cool to room temperature, and solvent was removed *in vacuo*. The resulting white fluffy powder was rinsed with hexane and collected by vacuum filtration. **Complex D** (1.14 g, 1.7297 mmol, 88%) was obtained as a white solid. PPh₃ = Triphenylphosphine. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H, *N*-H), 7.53–7.57 (m, 6H), 7.42–7.44 (m, 3H), 7.34–7.39 (m, 4H), 7.26–7.33 (m, 9H), 6.94–7.02 (m, 2H), 4.49 (q, *J* = 6.8 Hz, 1H), 4.49 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 150.1, 142.6, 134.2, 134.1, 133.0, 132.6, 129.9, 128.9, 128.7, 128.6, 127.7, 126.4, 126.0, 121.8, 120.8, 119.3, 57.0, 24.4. ³¹P NMR (162 MHz, CDCl₃): δ -4.60. **IR** (neat) V_{max} (cm⁻¹): 1548, 1449, 1432, 1092. **HRMS** (ESI): calc for C₃₃H₂₉N₂Cu⁷⁹BrPS *m/z*: 658.0268 found [M+H]⁺ 659.0346. **Elemental Analysis**: cal. C, 60.05%; H, 4.43%; N, 4.24%; Br, 12.10%; P, 4.69%; S, 4.86%, Cu, 9.63%.

Complex E – Cu(OAc)₂L2

A colourless solution of (*S*)-**L2** (0.28 g, 0.8259 mmol, 1.0 eq.) in THF (5 mL) was added to a stirring deep blue solution of Cu(OAc)₂ (0.15 g, 0.8259 mmol, 1.0 eq.) in MeOH (5 mL) at room temperature. The resulting reaction mixture was heated to 65 °C and left to stir at this temperature for 0.5 h. Afterwards, the mixture was allowed to cool to room temperature, and solvent was removed *in vacuo*. The resulting green powder was washed with hexane and collected by vacuum filtration. **Complex E** (0.38 g , 0.7433 mmol, 90%) was obtained as a light-green powder. **IR** (neat) V_{max} (cm⁻¹): 1622, 1593, 1561, 1549, 1450, 1420. **Elemental Analysis**: cal. C, 44.32%; H, 3.72%; N, 5.44%; Br, 15.52%; O, 12.43%; S, 6.23%, Cu, 12.34%. Observ. C, 44.32%; H, 3.72%; N, 5.44%; Br, 15.52%; O, 12.43%; S, 6.23%, Cu, 12.34%.

Solvent coordination effect: Tetrahydrofuran (THF) *vs* Toluene (PhMe)

The behaviour of these copper complexes in THF and PhMe suggests that THF (polar coordinating solvent) is included in the coordination sphere of the Cu¹ or Cu¹¹ species.^{1a} The colour of the Cu¹¹ complexes is green, in PhMe the colour stayed green but changed to blue in THF. The Cu¹¹ complex is white, in PhMe it stayed colourless but changed to light-gold in THF. The choice of solvent can play a crucial role in the success of some catalytic organic reaction.^{1b} Also, a previous study has shown that solvent interaction and/or binding played a key role in the dynamic equilibrium between copper isomeric forms.^{1c}

Figure S1: Behaviour of Copper complexes in solution

Figure S2: Cu^{II} vs Cu^I

Figure S3: Complex **A** (10 mg) in 5 mL of solvent (1-Methylpyrrolidine, DCM, Pyridine or THF)

Is cuprophilic interaction between Cu(II)-Cu(II) a δ -bond?

Figure S4: Two Cu(II) van der Waals radii in contact. Using Mercury software

When two spheres overlap with one another, it's an indication that the corresponding atoms are covalently bonded. When they are merely touching one another, their distance of separation is usually equal to the sum of their van der Waals (vdw) radii. In complex **A**, the chiral benzothiazolamine ligand makes this distance shorter than the sum of two Cu vdw radii. Cuprophilic interaction between Cu(I)-Cu(I) can't be a metalmetal δ -bond because of full d orbitals, $3d^{10}-3d^{10}$. However, Cu(II)-Cu(II) $3d^9-3d^9$ interaction as a δ -bond warranty an investigation since $3d_z^2$ (or $3d_{x2-y2}$) orbitals is partially filled.

Origin of σ,π and δ bonding interactions

Thermal Properties of

Complexes A-C and E

TGA and DSC Data

Moiras Complex A – [Cu(OAc)₂L1]₂

TGA

DSC

Complex B – Cu(OAc)₂(L1)₂

DSC

TGA

Peak at 172.5 C – indicative of exothermic reaction caused by crystallisation.

Complex E – Cu(OAc)₂L2

TGA

DSC

Thermogravimetric analysis:

Complex **A** vs **B** vs **C** vs **E**

Electrochemical Properties of

Complexes A-E

Figure S5: Cyclic voltammograms of 0.01 M $[Cu(OAc)_2L1]_2$ in CH₃OH (with 0.1 M C₈H₂OCIN supporting electrolyte), glassy carbon working electrode, SCE (reference electrode), and platinum foil (counter electrode) at different scan rates (0.1 – 10 V s⁻¹).

Figure S6: Cyclic voltammograms of 0.01 M $Cu(OAc)_2(L1)_2$ in CH₃OH (with 0.1 M C₈H₂OCIN supporting electrolyte), glassy carbon working electrode, SCE (reference electrode), and platinum foil (counter electrode) at different scan rates (0.1 – 10 V s⁻¹).

Figure S7: Cyclic voltammograms of 0.01 M Cu(OAc)₂L1PPh₃ in CH₃OH (with 0.1 M C₈H₂OCIN supporting electrolyte), glassy carbon working electrode, SCE (reference electrode), and platinum foil (counter electrode) at different scan rates (0.1 – 10 V s⁻¹).

Figure S8: Cyclic voltammograms of 0.01 M CuBrL1PPh₃ in CH₃OH (with 0.1 M C_8H_2OCIN supporting electrolyte), glassy carbon working electrode, SCE (reference electrode), and platinum foil (counter electrode) at different scan rates (0.1 – 10 V s⁻¹).

Figure S9: Cyclic voltammograms of $0.01 \text{ M Cu}(OAc)_2\text{L2}$ in CH₃OH (with $0.1 \text{ M C}_8\text{H}_2\text{OIN}$ supporting electrolyte), glassy carbon working electrode, SCE (reference electrode), and platinum foil (counter electrode) at different scan rates ($0.1 - 10 \text{ V s}^{-1}$).

Application of a Complex A as a catalyst in Chan-Lam reaction.

Coupling of 4-chloroaniline with arylboronic acids: C-N bond formation

General experimental procedure for the synthesis of 6a-e:

Arylamine **4** (0.20 g, 1.5677 mmol, 1.0 eq.), arylboronic acid **5** (2.3516 mmol, 1.5 eq.), and pyridine (0.12 g, 1.5677 mmol, 1.0 eq.) were dissolved in PhMe (5 mL) in a reaction vessel, then **Moiras complex A** (17.1 mg, 0.0392 mmol, 0.025 eq.) was added. The resulting mixture turned blue, and it was left to stir at room temperature for 24 h. Afterwards, it was diluted with ethyl acetate (30 mL), washed with 1 M HCl (15 mL) followed by brine (20 mL). The organic layer was dried with MgSO₄, filtered and solvent removed *in vacuo*. The crude mixture was purified by silica gel chromatography using 2-5% ethyl acetate in Hexanes.

N-(4-Chlorophenyl)-3-methylbenzenamine (6a)

The general experimental procedure described for the synthesis of 6a-6e was followed using 4-chloroaniline 4 (0.20 g, 1.5677 mmol, 1.0 eq.), 3-tolylboronic acid **5a** (0.32 g, 2.3516 mmol, 1.5 eq.), pyridine (0.12 g, 1.5677 mmol, 1.0 eq.), Moiras complex A (17.1 mg, 0.0392 mmol, 0.025 eq.) and PhMe (5 mL). Compound **6a** was obtained as a brown oil (0.31 g, 1.4423 mmol, 92%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, J = 8.9 Hz, 2H), 7.14–7.19

(m, 1H), 6.98 (d, J = 8.9 Hz, 2H), 6.84–6.89 (m, 2H), 6.78 (d, J = 7.7 Hz, 1H), 5.62 (s, 1H, *N*-H), 2.32 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.7, 142.1, 139.5, 129.4, 129.3, 125.5, 122.5, 118.9, 115.3, 21.6. **IR** (neat) V_{max} (cm⁻¹): 3393, 1585, 1488, 1316. **HRMS** (ESI): calc for C₁₃H₁₂N³⁵Cl *m/z*: 217.0658 found [M+H]⁺ 218.0736.

N-(4-Chlorophenyl)-3-fluorobenzenamine (6b)

The general experimental procedure described for the synthesis of **6a**-6e was followed using 4-chloroaniline 4 (0.20 g, 1.5677 mmol, 1.0 eq.), 3fluorophenylboronic acid **5b** (0.33 g, 2.3516 mmol, 1.5 eq.), pyridine (0.12 g, 1.5677 mmol, 1.0 eq.), Moiras complex A (17.1 mg, 0.0392 mmol, 0.025 eq.) and PhMe (5 mL). Compound **6b** was obtained as a brown oil (0.31

g, 1.4109 mmol, 90%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (d, J = 8.9 Hz, 2H), 7.16–7.22 (m, 1H), 7.02 (d, J = 8.9 Hz, 2H), 6.70–6.77 (m, 2H), 6.57–6.64 (m, 1H), 5.72 (s, 1H, N-H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.9 (d, J_{C-F} = 244.5 Hz, 1C), 145.0 (d, J_{C-F} = 10.4 Hz, 1C), 140.8, 130.7 (d, *J*_{C-F} = 9.9 Hz, 1C), 129.5, 126.9, 120.2, 112.9 (d, *J*_{C-F} = 2.6 Hz, 1C), 107.7 (d, J_{C-F} = 21.6 Hz, 1C), 104.0 (d, J_{C-F} = 25.0 Hz, 1C). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -111.9. **IR** (neat) V_{max} (cm⁻¹): 3410, 1585, 1484, 1323. **HRMS** (ESI): calc for C₁₂H₉NF³⁵Cl *m/z*: 221.0408 found [M+H]⁺ 222.0486.

N-(4-Chlorophenyl)-4-fluorobenzenamine (6c)

The general experimental procedure described for the synthesis of **6a**-6e was followed using 4-chloroaniline 4 (0.20 g, 1.5677 mmol, 1.0 eq.), 4fluorophenylboronic acid **5c** (0.33 g, 2.3516 mmol, 1.5 eq.), pyridine (0.12 g, 1.5677 mmol, 1.0 eq.), Moiras complex A (17.1 mg, 0.0392 mmol, 0.025 eq.) and PhMe (5 mL). Compound 6c was obtained as a brown oil (0.30 g, 1.3639 mmol, 87%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (d, J = 8.8 Hz, 2H), 6.96–7.06 (m, 4H), 6.89 (d, J = 8.8 Hz, 2H), 5.54 (s, 1H, N-H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (d, *J*_{C-F} = 241.0 Hz, 1C), 142.8, 138.6 (d, *J*_{C-F} = 2.6 Hz, 1C), 129.4, 125.2, 121.1 (d, *J*_{C-F} = 7.9 Hz, 1C), 117.9, 116.2 (d, J_{C-F} = 22.6 Hz, 1C). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -121.1. **IR** (neat)

V_{max} (cm⁻¹): 3409, 1593, 1489, 1312. **HRMS** (ESI): calc for C₁₂H₉NF³⁵Cl *m/z*: 221.0408 found [M+H]⁺ 222.0486.

4-Chloro-N-(4-methoxyphenyl)benzenamine (6d)

The general experimental procedure described for the synthesis of 6a-6e was followed using 4-chloroaniline 4 (0.20 g, 1.5677 mmol, 1.0 eq.), 4-methoxyphenylboronic acid 5d (0.36 g, 2.3516 mmol, 1.5 eq.), pyridine (0.12 g, 1.5677 mmol, 1.0 eq.), Moiras complex A (17.1 mg,

0.0392 mmol, 0.025 eq.) and PhMe (5 mL). Compound 6d was obtained as a brown solid (0.31 g, 1.3325 mmol, 85%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.9 Hz, 2H), 7.05 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.9 Hz, 2H), 5.46 (s, 1H, N-H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 129.2, 122.7, 119.6, 116.7, 114.9, 55.7. IR (neat) V_{max} (cm⁻¹): 3415, 1595, 1491, 1292. HRMS (ESI): calc for C₁₃H₁₂NO³⁵Cl *m/z*: 233.0607 found [M+H]⁺ 234.0685. **MP**: 50-52°C

N-(4-Chlorophenyl)-1-naphthalenamine (6e)

The general experimental procedure described for the synthesis of **6a-6e** was followed using 4-chloroaniline 4 (0.20 g, 1.5677 mmol, 1.0 eq.), 4methoxyphenylboronic acid 5e (0.36 g, 2.3516 mmol, 1.5 eq.), pyridine (0.12 g, 1.5677 mmol, 1.0 eq.), Moiras complex A (17.1 mg, 0.0392 mmol, 0.025 eq.) and PhMe (5 mL). Compound **6e** was obtained as a brown solid (0.35 g, 1.3953 mmol, 89%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.72–7.78 (m, 2H), 7.62–7.68 (m, 1H), 7.37-7.46 (m, 2H), 7.30-7.34 (m, 1H), 7.23-7.27 (m, 2H), 7.18-7.20 (m, 1H), 7.05–7.09 (m, 2H), 5.82 (s, 1H, N-H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 140.3, 134.6, 129.6, 129.54, 129.52, 127.8, 126.74, 126.72, 126.3, 124.0, 120.1, 119.5, 112.5. **IR** (neat)

V_{max} (cm⁻¹): 3396, 1591, 1487, 1311. **HRMS** (ESI): calc for C₁₆H₁₂N³⁵Cl *m/z*: 253.0658 found [M+H]⁺ 254.0736. MP: 90-92°C

References

1. (a) S. Racioppi, L. Orian, C. Tubaro, A. Gennaro, and A. Ahmed Isse, Solvent Coordination Effect on Copper-Based Molecular Catalysts for Controlled Radical Polymerization, Catalysts 2022, 12, 1656. (b) H. Zhang and R. M. Gschwind, Influence of Copper Salts, Solvents, and Ligands on the Structures of Precatalytic Phosphoramidite Copper Complexes for Conjugate Addition Reactions, Chem. Eur. J. 2007, **13**, 6691–6700. (c) H.-C Liang, M. J. Henson, L. Q. Hatcher, M. A. Vance, C. X. Zhang, D. Lahti, S. Kaderli, R. D. Sommer, A. L. Rheingold, A. D. ZuberbUhler, E. I. Solomon, and K. D. Karlin, *Inorg. Chem.* 2004, **43**, 4115-4117.

X-ray Crystallography

Structure report for Moiras Complex A (2023GU0007 /Expt 50 +Cu(OAc)2)

View showing the structure and atom labelling scheme. Atomic displacement ellipsoids drawn at 50% probability level, H- atoms omitted for clarity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion

Computing details

Data collection: *APEX3* Ver. 2016.9-0 (Bruker-AXS, 2016); cell refinement: *SAINT* V8.40B (?, 2016); data reduction: *SAINT* V8.40B (?, 2016); program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018); program(s) used to refine structure: *SHELXL* 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov *et al.*, 2009).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

(mo_2023gu0007_150k_0m)

Crystal data

$C_{38}H_{40}Cu_2N_4O_8S_2$	$D_{\rm x} = 1.467 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 871.94$	Mo K α radiation, $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 9883 reflections
a = 10.1971 (4) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 14.3001 (5) Å	$\mu = 1.24 \text{ mm}^{-1}$
c = 27.0785 (11) Å	T = 150 K
V = 3948.6(3) Å ³	Block, green
<i>Z</i> = 4	$0.25\times0.14\times0.05~mm$
F(000) = 1800	

Data collection

Bruker D8 VENTURE diffractometer	9774 independent reflections
Radiation source: microfocus sealed tube, INCOATEC Iµs 3.0	8253 reflections with $I > 2\sigma(I)$
Multilayer mirror optics monochromator	$R_{\rm int} = 0.055$
Detector resolution: 7.4074 pixels mm ⁻¹	$\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.1^{\circ}$
ϕ and ω scans	$h = -13 \rightarrow 9$
Absorption correction: multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1188 before and 0.0705 after correction. The Ratio of minimum to maximum transmission is 0.8168. The $\lambda/2$ correction factor is Not present.	$k = -17 \rightarrow 19$
$T_{\min} = 0.609, \ T_{\max} = 0.746$	<i>l</i> = −36→29
31215 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0378P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.090$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rangle_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
9774 reflections	$\Delta \rangle_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
494 parameters	Absolute structure: Refined as an inversion twin.
0 restraints	Absolute structure parameter: 0.019 (13)
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for (mo_2023gu0007_150k_0m)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.25470 (5)	0.34441 (3)	0.39415 (2)	0.01857 (11)
S1	0.46804 (11)	0.82573 (7)	0.42404 (4)	0.0254 (2)
O1	0.1043 (3)	0.35952 (19)	0.43933 (10)	0.0251 (7)
N1	0.3465 (3)	0.6663 (2)	0.43371 (11)	0.0197 (7)
C1	0.2540 (5)	0.7364 (2)	0.44131 (13)	0.0185 (8)
C1A	0.0979 (5)	0.4274 (3)	0.46952 (15)	0.0243 (10)
Cu2	0.30203 (5)	0.52111 (3)	0.41716 (2)	0.01903 (12)
S2	0.06214 (13)	0.07240 (8)	0.32956 (4)	0.0319 (3)
02	0.1769 (3)	0.49394 (18)	0.47170 (10)	0.0280 (7)
N2	0.5715 (3)	0.6531 (2)	0.41884 (13)	0.0244 (7)
H2	0.565063	0.593182	0.419735	0.029*
C2	0.1218 (4)	0.7220 (3)	0.45217 (15)	0.0234 (9)
H2A	0.089104	0.661670	0.455852	0.028*
C2A	-0.0162 (6)	0.4264 (3)	0.50451 (19)	0.0425 (14)
H2AA	-0.093141	0.448838	0.487855	0.064*
H2AB	0.002548	0.465934	0.532259	0.064*
H2AC	-0.031147	0.363613	0.515801	0.064*
O3	0.1442 (3)	0.40517 (18)	0.34206 (9)	0.0220 (6)
N3	0.1987 (4)	0.2023 (2)	0.37296 (11)	0.0198 (7)
C3	0.0400 (5)	0.7985 (3)	0.45740 (15)	0.0278 (10)
Н3	-0.048151	0.789433	0.464753	0.033*
C3A	0.1108 (4)	0.4904 (3)	0.34386 (14)	0.0208 (9)
O4	0.1526 (3)	0.54899 (18)	0.37427 (10)	0.0221 (6)
N4	-0.0265 (4)	0.2324 (2)	0.36971 (13)	0.0272 (8)
H4	-0.015293	0.281074	0.387880	0.033*
C4	0.0885 (5)	0.8895 (3)	0.45174 (16)	0.0299 (11)
H4A	0.031716	0.940087	0.454784	0.036*
C4A	0.0149 (5)	0.5236 (3)	0.30523 (16)	0.0314 (10)
H4AA	0.057864	0.526308	0.273716	0.047*

H4AB	-0.016514	0 584727	0 313908	0.047*
НАС	-0.057615	0.480947	0.303494	0.047*
05	0.4063 (3)	0.35455 (19)	0.35019 (10)	0.0245 (7)
C5	0.2182 (5)	0.9050 (3)	0.44180 (15)	0.0280 (11)
Н5	0.250387	0.965496	0.438442	0.034*
C5A	0.4506 (4)	0.4335 (3)	0.33870 (15)	0.0227 (9)
O6	0.4180 (3)	0.51001 (19)	0.35796 (10)	0.0262 (7)
C6	0.3010 (5)	0.8284 (3)	0.43682 (14)	0.0222 (9)
C6A	0.5514 (5)	0.4365 (3)	0.29776 (17)	0.0352 (12)
H6AA	0.521004	0.476823	0.271827	0.053*
H6AB	0.564442	0.374631	0.284927	0.053*
H6AC	0.632838	0.459990	0.310544	0.053*
07	0.4472 (3)	0.46832 (19)	0.45588 (10)	0.0273 (7)
C7	0.4626 (4)	0.7026 (3)	0.42552 (14)	0.0207 (9)
C7A	0.4509 (5)	0.3827 (3)	0.46700 (15)	0.0247 (10)
08	0.3766 (3)	0.32018 (19)	0.45016 (10)	0.0257 (7)
C8	0.7009 (5)	0.6931 (3)	0.41010 (15)	0.0262 (9)
H8	0.719104	0.738216	0.436456	0.031*
C8A	0.5554 (6)	0.3534 (3)	0.50347 (17)	0.0382 (12)
H8AA	0.629592	0.394449	0.500599	0.057*
H8AB	0.582238	0.290432	0.496566	0.057*
H8AC	0.520867	0.356871	0.536397	0.057*
С9	0.7094 (5)	0.7439 (3)	0.36102 (15)	0.0288 (10)
C10	0.6618 (6)	0.7028 (4)	0.31854 (17)	0.0442 (14)
H10	0.620691	0.644849	0.320136	0.053*
C11	0.6752 (6)	0.7481 (5)	0.27322 (19)	0.0582 (18)
H11	0.644336	0.719721	0.244584	0.070*
C12	0.7337 (6)	0.8341 (5)	0.2707 (2)	0.0620 (19)
H12	0.743555	0.863767	0.240370	0.074*
C13	0.7774 (5)	0.8763 (5)	0.3128 (2)	0.0588 (18)
H13	0.814616	0.935604	0.311032	0.071*
C14	0.7670 (5)	0.8318 (3)	0.35822 (19)	0.0406 (12)
H14	0.798442	0.860636	0.386618	0.049*
C15	0.8010 (5)	0.6145 (3)	0.41381 (18)	0.0361 (11)
H15A	0.802840	0.591021	0.447015	0.054*
H15B	0.886152	0.637887	0.405125	0.054*
H15C	0.777086	0.564978	0.391622	0.054*
C16	0.2860 (5)	0.1319 (2)	0.36048 (13)	0.0200 (9)
C17	0.4196 (5)	0.1302 (3)	0.37107 (15)	0.0252 (10)
H17	0.458714	0.179823	0.387662	0.030*

C18	0.4931 (5)	0.0543 (3)	0.35673 (16)	0.0300 (11)
H18	0.582070	0.052658	0.364157	0.036*
C19	0.4370 (5)	-0.0195 (3)	0.33146 (16)	0.0335 (11)
H19	0.489066	-0.069719	0.321830	0.040*
C20	0.3054 (5)	-0.0200 (3)	0.32032 (15)	0.0318 (11)
H20	0.267946	-0.069433	0.303005	0.038*
C21	0.2304 (5)	0.0551 (3)	0.33561 (14)	0.0264 (10)
C22	0.0792 (5)	0.1798 (3)	0.36015 (14)	0.0219 (9)
C23	-0.1582 (5)	0.2142 (3)	0.35203 (16)	0.0307 (10)
H23	-0.181295	0.150041	0.361240	0.037*
C24	-0.1714 (5)	0.2227 (3)	0.29628 (16)	0.0271 (10)
C25	-0.2775 (5)	0.1801 (4)	0.27276 (18)	0.0380 (12)
H25	-0.338149	0.146451	0.291238	0.046*
C26	-0.2930 (6)	0.1875 (4)	0.22232 (19)	0.0440 (13)
H26	-0.364363	0.159189	0.207026	0.053*
C27	-0.2037 (6)	0.2366 (3)	0.19455 (18)	0.0385 (12)
H27	-0.213706	0.240807	0.160488	0.046*
C28	-0.0992 (5)	0.2794 (3)	0.21745 (18)	0.0369 (12)
H28	-0.039258	0.313268	0.198733	0.044*
C29	-0.0824 (5)	0.2726 (3)	0.26771 (16)	0.0292 (10)
H29	-0.010997	0.301516	0.282672	0.035*
C30	-0.2507 (6)	0.2800 (4)	0.37935 (19)	0.0507 (14)
H30A	-0.240556	0.271492	0.414310	0.076*
H30B	-0.339628	0.266453	0.370121	0.076*
H30C	-0.230336	0.343540	0.370846	0.076*

Atomic displacement parameters $(Å^2)$ for $(mo_2023gu0007_150k_0m)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0212 (3)	0.0171 (2)	0.0174 (2)	-0.0010 (2)	-0.0008 (2)	-0.00138 (17)
S1	0.0253 (6)	0.0171 (5)	0.0340 (6)	-0.0040 (4)	-0.0017 (5)	0.0027 (4)
01	0.0293 (18)	0.0234 (15)	0.0225 (15)	-0.0008 (14)	0.0034 (13)	-0.0042 (12)
N1	0.0186 (18)	0.0205 (17)	0.0199 (17)	0.0014 (15)	-0.0023 (13)	-0.0026 (13)
C1	0.025 (2)	0.0176 (17)	0.0128 (17)	0.0025 (19)	-0.0010 (17)	-0.0012 (13)
C1A	0.037 (3)	0.020 (2)	0.015 (2)	0.004 (2)	0.0010 (18)	0.0032 (15)
Cu2	0.0230 (3)	0.0160 (2)	0.0181 (2)	-0.0009 (2)	-0.0026 (2)	-0.00011 (18)
S2	0.0324 (7)	0.0271 (5)	0.0362 (7)	-0.0079 (5)	-0.0068 (5)	-0.0092 (5)
02	0.045 (2)	0.0193 (14)	0.0194 (14)	-0.0036 (14)	0.0046 (13)	-0.0013 (11)
N2	0.022 (2)	0.0177 (15)	0.0336 (19)	-0.0009 (15)	0.0032 (16)	0.0013 (15)

C2	0.024 (2)	0.025 (2)	0.022 (2)	-0.0022 (19)	0.0012 (18)	-0.0023 (16)
C2A	0.052 (4)	0.033 (2)	0.042 (3)	0.000 (3)	0.022 (3)	-0.001 (2)
O3	0.0255 (17)	0.0211 (14)	0.0195 (15)	0.0009 (13)	-0.0023 (12)	-0.0004 (11)
N3	0.0207 (18)	0.0205 (16)	0.0181 (16)	-0.0038 (16)	-0.0030 (15)	-0.0004 (12)
C3	0.023 (2)	0.034 (2)	0.027 (2)	0.002 (2)	-0.0018 (19)	-0.0071 (18)
C3A	0.018 (2)	0.025 (2)	0.020 (2)	0.0003 (18)	0.0009 (17)	0.0027 (16)
O4	0.0250 (17)	0.0200 (14)	0.0212 (14)	0.0011 (13)	-0.0028 (12)	-0.0016 (11)
N4	0.022 (2)	0.0312 (19)	0.0282 (19)	-0.0031 (17)	-0.0039 (16)	-0.0083 (15)
C4	0.032 (3)	0.027 (2)	0.031 (2)	0.008 (2)	-0.003 (2)	-0.0061 (18)
C4A	0.032 (3)	0.029 (2)	0.033 (2)	0.000 (2)	-0.010 (2)	-0.0004 (19)
05	0.0249 (18)	0.0234 (14)	0.0253 (15)	0.0006 (14)	0.0028 (13)	-0.0008 (12)
C5	0.037 (3)	0.0184 (19)	0.028 (2)	0.003 (2)	-0.004 (2)	-0.0037 (15)
C5A	0.019 (2)	0.030 (2)	0.020 (2)	-0.0026 (19)	-0.0040 (17)	-0.0002 (17)
O6	0.0291 (19)	0.0240 (15)	0.0255 (16)	-0.0022 (14)	0.0016 (13)	-0.0020 (12)
C6	0.026 (2)	0.022 (2)	0.0180 (18)	-0.0031 (19)	-0.0023 (17)	0.0005 (15)
C6A	0.036 (3)	0.036 (2)	0.033 (3)	-0.004 (2)	0.015 (2)	-0.0060 (19)
07	0.0359 (19)	0.0183 (14)	0.0278 (16)	-0.0002 (14)	-0.0117 (14)	0.0009 (12)
C7	0.026 (2)	0.0173 (18)	0.019 (2)	-0.0029 (18)	-0.0056 (17)	0.0016 (15)
C7A	0.030 (3)	0.023 (2)	0.021 (2)	0.002 (2)	-0.0050 (19)	-0.0017 (16)
08	0.0312 (19)	0.0213 (15)	0.0247 (15)	-0.0021 (14)	-0.0071 (13)	0.0022 (11)
C8	0.023 (2)	0.030 (2)	0.026 (2)	-0.006 (2)	-0.0025 (19)	0.0001 (17)
C8A	0.047 (3)	0.027 (2)	0.041 (3)	0.004 (2)	-0.023 (2)	0.002 (2)
С9	0.017 (2)	0.041 (2)	0.028 (2)	-0.001 (2)	0.0002 (19)	0.0040 (18)
C10	0.042 (3)	0.059 (3)	0.032 (3)	0.005 (3)	-0.008 (2)	-0.002 (2)
C11	0.047 (4)	0.102 (5)	0.025 (3)	0.013 (4)	-0.007 (3)	-0.001 (3)
C12	0.028 (3)	0.112 (5)	0.046 (3)	0.008 (4)	0.006 (3)	0.040 (3)
C13	0.023 (3)	0.081 (4)	0.072 (4)	-0.010 (3)	0.002 (3)	0.047 (3)
C14	0.027 (3)	0.049 (3)	0.047 (3)	-0.010 (3)	-0.005 (2)	0.013 (2)
C15	0.024 (2)	0.043 (3)	0.041 (3)	0.000 (2)	0.000 (2)	0.009 (2)
C16	0.030 (3)	0.0165 (17)	0.0136 (18)	0.0004 (17)	0.0003 (17)	0.0012 (13)
C17	0.028 (3)	0.023 (2)	0.024 (2)	-0.0026 (19)	-0.0015 (19)	0.0010 (16)
C18	0.028 (3)	0.033 (2)	0.029 (2)	0.007 (2)	0.003 (2)	0.0023 (19)
C19	0.049 (3)	0.026 (2)	0.026 (2)	0.009 (2)	0.007 (2)	0.0015 (19)
C20	0.049 (3)	0.021 (2)	0.025 (2)	-0.001 (2)	0.001 (2)	-0.0035 (17)
C21	0.034 (3)	0.0220 (19)	0.023 (2)	-0.0058 (19)	-0.0028 (19)	-0.0019 (16)
C22	0.022 (2)	0.024 (2)	0.020 (2)	-0.0038 (18)	-0.0038 (17)	-0.0007 (16)
C23	0.019 (2)	0.040 (2)	0.033 (2)	-0.006 (2)	-0.0031 (19)	-0.002 (2)
C24	0.022 (3)	0.031 (2)	0.027 (2)	0.001 (2)	-0.0044 (18)	-0.0052 (17)
C25	0.028 (3)	0.045 (3)	0.041 (3)	-0.007 (2)	-0.006 (2)	-0.005 (2)
C26	0.041 (3)	0.044 (3)	0.047 (3)	0.004 (3)	-0.023 (3)	-0.015 (2)

C27	0.050 (3)	0.036 (3)	0.029 (2)	0.009 (3)	-0.012 (2)	-0.002 (2)
C28	0.043 (3)	0.031 (2)	0.037 (3)	0.002 (2)	-0.004 (2)	0.008 (2)
C29	0.028 (3)	0.024 (2)	0.035 (3)	-0.005 (2)	-0.007 (2)	-0.0005 (18)
C30	0.027 (3)	0.085 (4)	0.041 (3)	0.002 (3)	0.002 (2)	-0.015 (3)

Geometric parameters (Å, °) for (mo_2023gu0007_150k_0m)

Cu1—O1	1.974 (3)	С6А—Н6АС	0.9600
Cu1—Cu2	2.6470 (6)	O7—C7A	1.261 (5)
Cu1—O3	2.004 (3)	C7A—O8	1.258 (5)
Cu1—N3	2.188 (3)	C7A—C8A	1.513 (6)
Cu1—O5	1.956 (3)	С8—Н8	0.9800
Cu1—O8	1.991 (3)	C8—C9	1.517 (6)
S1—C6	1.739 (5)	C8—C15	1.521 (6)
S1—C7	1.761 (4)	С8А—Н8АА	0.9600
O1—C1A	1.271 (5)	C8A—H8AB	0.9600
N1—C1	1.392 (5)	C8A—H8AC	0.9600
N1—Cu2	2.172 (3)	C9—C10	1.380 (6)
N1—C7	1.312 (5)	C9—C14	1.389 (7)
C1—C2	1.395 (6)	С10—Н10	0.9300
C1—C6	1.405 (5)	C10—C11	1.394 (7)
C1A—O2	1.248 (5)	C11—H11	0.9300
C1A—C2A	1.501 (6)	C11—C12	1.369 (9)
Cu2—O2	1.990 (3)	С12—Н12	0.9300
Cu2—O4	1.957 (3)	C12—C13	1.364 (9)
Cu2—O6	1.998 (3)	С13—Н13	0.9300
Cu2—O7	1.965 (3)	C13—C14	1.390 (7)
S2—C21	1.741 (5)	C14—H14	0.9300
S2—C22	1.754 (4)	C15—H15A	0.9600
N2—H2	0.8600	C15—H15B	0.9600
N2—C7	1.329 (5)	С15—Н15С	0.9600
N2—C8	1.458 (6)	C16—C17	1.393 (7)
C2—H2A	0.9300	C16—C21	1.408 (5)
C2—C3	1.383 (6)	С17—Н17	0.9300
C2A—H2AA	0.9600	C17—C18	1.374 (6)
C2A—H2AB	0.9600	C18—H18	0.9300
C2A—H2AC	0.9600	C18—C19	1.382 (6)
O3—C3A	1.266 (5)	С19—Н19	0.9300
N3—C16	1.385 (5)	C19—C20	1.376 (7)
N3—C22	1.306 (6)	С20—Н20	0.9300

С3—Н3	0.9300	C20—C21	1.382 (6)
C3—C4	1.400 (6)	С23—Н23	0.9800
C3A—O4	1.250 (5)	C23—C24	1.521 (6)
C3A—C4A	1.509 (6)	C23—C30	1.524 (7)
N4—H4	0.8600	C24—C25	1.395 (6)
N4—C22	1.340 (6)	C24—C29	1.389 (6)
N4—C23	1.449 (6)	С25—Н25	0.9300
C4—H4A	0.9300	C25—C26	1.379 (7)
C4—C5	1.368 (7)	С26—Н26	0.9300
C4A—H4AA	0.9600	C26—C27	1.374 (8)
C4A—H4AB	0.9600	С27—Н27	0.9300
C4A—H4AC	0.9600	C27—C28	1.377 (7)
O5—C5A	1.256 (5)	C28—H28	0.9300
С5—Н5	0.9300	C28—C29	1.375 (6)
C5—C6	1.389 (6)	С29—Н29	0.9300
C5A—O6	1.256 (5)	С30—Н30А	0.9600
C5A—C6A	1.513 (6)	С30—Н30В	0.9600
С6А—Н6АА	0.9600	С30—Н30С	0.9600
С6А—Н6АВ	0.9600		
O1—Cu1—Cu2	83.76 (8)	C7A—O7—Cu2	121.5 (3)
O1—Cu1—O3	87.23 (12)	N1—C7—S1	115.3 (3)
O1—Cu1—N3	93.51 (13)	N1—C7—N2	124.5 (3)
O1—Cu1—O8	91.84 (12)	N2—C7—S1	120.2 (3)
O3—Cu1—Cu2	81.62 (8)	O7—C7A—C8A	116.5 (4)
O3—Cu1—N3	94.09 (12)	O8—C7A—O7	125.9 (4)
N3—Cu1—Cu2	175.00 (10)	O8—C7A—C8A	117.7 (4)
O5—Cu1—O1	169.42 (12)	C7A—O8—Cu1	121.9 (3)
O5—Cu1—Cu2	85.89 (8)	N2—C8—H8	108.2
O5—Cu1—O3	89.07 (12)	N2—C8—C9	112.4 (4)
O5—Cu1—N3	96.64 (13)	N2—C8—C15	107.9 (4)
O5—Cu1—O8	89.04 (13)	С9—С8—Н8	108.1
O8—Cu1—Cu2	82.71 (8)	C9—C8—C15	111.9 (4)
O8—Cu1—O3	164.30 (11)	С15—С8—Н8	108.2
O8—Cu1—N3	101.61 (12)	С7А—С8А—Н8АА	109.5
C6—S1—C7	89.2 (2)	С7А—С8А—Н8АВ	109.5
C1A—O1—Cu1	121.5 (3)	С7А—С8А—Н8АС	109.5
C1—N1—Cu2	125.3 (3)	Н8АА—С8А—Н8АВ	109.5
C7—N1—C1	110.6 (3)	Н8АА—С8А—Н8АС	109.5
C7—N1—Cu2	122.1 (3)	Н8АВ—С8А—Н8АС	109.5

N1—C1—C2	125.4 (4)	С10—С9—С8	120.4 (4)
N1—C1—C6	115.5 (4)	C10—C9—C14	119.2 (4)
C2—C1—C6	119.1 (4)	С14—С9—С8	120.3 (4)
O1—C1A—C2A	116.0 (4)	С9—С10—Н10	119.9
O2—C1A—O1	125.4 (4)	C9—C10—C11	120.1 (6)
O2—C1A—C2A	118.6 (4)	С11—С10—Н10	119.9
N1—Cu2—Cu1	177.76 (9)	С10—С11—Н11	119.9
O2—Cu2—Cu1	82.61 (8)	C12—C11—C10	120.2 (5)
O2—Cu2—N1	99.63 (12)	С12—С11—Н11	119.9
O2—Cu2—O6	163.58 (11)	С11—С12—Н12	120.0
O4—Cu2—Cu1	85.00 (8)	C13—C12—C11	119.9 (5)
O4—Cu2—N1	95.17 (12)	C13—C12—H12	120.0
O4—Cu2—O2	88.91 (13)	С12—С13—Н13	119.6
O4—Cu2—O6	90.03 (13)	C12—C13—C14	120.8 (6)
O4—Cu2—O7	168.99 (11)	C14—C13—H13	119.6
O6—Cu2—Cu1	80.98 (8)	C9—C14—C13	119.7 (5)
O6—Cu2—N1	96.78 (12)	С9—С14—Н14	120.2
O7—Cu2—Cu1	84.04 (8)	C13—C14—H14	120.2
O7—Cu2—N1	95.74 (12)	C8—C15—H15A	109.5
O7—Cu2—O2	90.69 (13)	C8—C15—H15B	109.5
O7—Cu2—O6	87.24 (13)	C8—C15—H15C	109.5
C21—S2—C22	89.0 (2)	H15A—C15—H15B	109.5
C1A—O2—Cu2	121.8 (3)	H15A—C15—H15C	109.5
C7—N2—H2	117.6	H15B—C15—H15C	109.5
C7—N2—C8	124.7 (3)	N3—C16—C17	126.3 (4)
C8—N2—H2	117.6	N3—C16—C21	115.1 (4)
C1—C2—H2A	120.4	C17—C16—C21	118.6 (4)
C3—C2—C1	119.2 (4)	С16—С17—Н17	120.3
С3—С2—Н2А	120.4	C18—C17—C16	119.3 (4)
С1А—С2А—Н2АА	109.5	C18—C17—H17	120.3
С1А—С2А—Н2АВ	109.5	C17—C18—H18	119.4
C1A—C2A—H2AC	109.5	C17—C18—C19	121.2 (5)
H2AA—C2A—H2AB	109.5	C19—C18—H18	119.4
H2AA—C2A—H2AC	109.5	С18—С19—Н19	119.5
H2AB—C2A—H2AC	109.5	C20—C19—C18	121.1 (4)
C3A—O3—Cu1	122.8 (3)	С20—С19—Н19	119.5
C16—N3—Cu1	124.8 (3)	С19—С20—Н20	121.0
C22—N3—Cu1	122.8 (3)	C19—C20—C21	118.1 (4)
C22—N3—C16	110.8 (3)	С21—С20—Н20	121.0
С2—С3—Н3	119.6	C16—C21—S2	109.3 (3)

C2—C3—C4	120.8 (5)	C20—C21—S2	128.9 (3)
С4—С3—Н3	119.6	C20—C21—C16	121.8 (4)
O3—C3A—C4A	116.8 (4)	N3—C22—S2	115.7 (3)
O4—C3A—O3	125.4 (4)	N3—C22—N4	124.1 (4)
O4—C3A—C4A	117.8 (4)	N4—C22—S2	120.2 (3)
C3A—O4—Cu2	121.3 (3)	N4—C23—H23	107.8
C22—N4—H4	117.2	N4—C23—C24	113.3 (4)
C22—N4—C23	125.5 (4)	N4—C23—C30	107.6 (4)
C23—N4—H4	117.2	С24—С23—Н23	107.8
C3—C4—H4A	119.6	C24—C23—C30	112.2 (4)
C5—C4—C3	120.9 (4)	С30—С23—Н23	107.8
С5—С4—Н4А	119.6	C25—C24—C23	119.1 (4)
СЗА—С4А—Н4АА	109.5	C29—C24—C23	122.4 (4)
СЗА—С4А—Н4АВ	109.5	C29—C24—C25	118.5 (4)
СЗА—С4А—Н4АС	109.5	С24—С25—Н25	119.8
H4AA—C4A—H4AB	109.5	C26—C25—C24	120.5 (5)
Н4АА—С4А—Н4АС	109.5	С26—С25—Н25	119.8
Н4АВ—С4А—Н4АС	109.5	С25—С26—Н26	119.8
C5A—O5—Cu1	120.1 (3)	C27—C26—C25	120.3 (5)
С4—С5—Н5	120.7	С27—С26—Н26	119.8
C4—C5—C6	118.6 (4)	С26—С27—Н27	120.2
С6—С5—Н5	120.7	C26—C27—C28	119.6 (5)
O5—C5A—O6	125.8 (4)	С28—С27—Н27	120.2
O5—C5A—C6A	116.8 (4)	С27—С28—Н28	119.6
O6—C5A—C6A	117.4 (4)	C29—C28—C27	120.7 (5)
C5A—O6—Cu2	124.0 (3)	С29—С28—Н28	119.6
C1—C6—S1	109.3 (3)	С24—С29—Н29	119.8
C5—C6—S1	129.2 (3)	C28—C29—C24	120.4 (4)
C5—C6—C1	121.5 (4)	С28—С29—Н29	119.8
С5А—С6А—Н6АА	109.5	С23—С30—Н30А	109.5
С5А—С6А—Н6АВ	109.5	С23—С30—Н30В	109.5
С5А—С6А—Н6АС	109.5	С23—С30—Н30С	109.5
Н6АА—С6А—Н6АВ	109.5	H30A—C30—H30B	109.5
Н6АА—С6А—Н6АС	109.5	H30A—C30—H30C	109.5
Н6АВ—С6А—Н6АС	109.5	H30B—C30—H30C	109.5
Cu1—O1—C1A—O2	5.7 (6)	C7—N1—C1—C2	-178.3 (4)
Cu1—O1—C1A— C2A	-175.2 (3)	C7—N1—C1—C6	2.4 (5)
Cu1—O3—C3A—O4	8.3 (6)	C7—N2—C8—C9	-66.3 (5)

Cu1—O3—C3A— C4A	-173.2 (3)	C7—N2—C8—C15	169.8 (4)
Cu1—N3—C16—C17	17.7 (5)	C8—N2—C7—S1	0.1 (5)
Cu1—N3—C16—C21	-163.6 (3)	C8—N2—C7—N1	-179.5 (4)
Cu1—N3—C22—S2	164.13 (18)	C8—C9—C10—C11	-177.1 (5)
Cu1—N3—C22—N4	-17.0 (6)	C8—C9—C14—C13	178.2 (5)
Cu1—O5—C5A—O6	10.1 (6)	C8A—C7A—O8— Cu1	-169.9 (3)
Cu1—O5—C5A— C6A	-169.4 (3)	C9—C10—C11—C12	-1.1 (9)
O1—C1A—O2—Cu2	15.5 (6)	C10—C9—C14—C13	-0.8 (8)
N1—C1—C2—C3	-178.1 (4)	C10—C11—C12— C13	-0.9 (9)
N1—C1—C6—S1	-1.4 (4)	C11—C12—C13— C14	2.0 (9)
N1—C1—C6—C5	177.8 (3)	C12—C13—C14—C9	-1.1 (8)
C1—N1—C7—S1	-2.3 (4)	C14—C9—C10—C11	1.9 (8)
C1—N1—C7—N2	177.4 (4)	C15—C8—C9—C10	74.6 (6)
C1—C2—C3—C4	0.2 (6)	C15—C8—C9—C14	-104.4 (5)
Cu2—N1—C1—C2	17.6 (5)	C16—N3—C22—S2	-2.2 (4)
Cu2—N1—C1—C6	-161.7 (3)	C16—N3—C22—N4	176.7 (4)
Cu2—N1—C7—S1	162.39 (18)	C16—C17—C18— C19	0.9 (6)
Cu2—N1—C7—N2	-17.9 (5)	C17—C16—C21—S2	177.3 (3)
Cu2—07—C7A—08	10.1 (7)	C17—C16—C21— C20	-1.9 (6)
Cu2—O7—C7A— C8A	-170.6 (3)	C17—C18—C19— C20	-0.8 (7)
N2—C8—C9—C10	-47.1 (6)	C18—C19—C20— C21	-0.7 (7)
N2-C8-C9-C14	134.0 (4)	C19—C20—C21—S2	-177.0 (3)
C2—C1—C6—S1	179.3 (3)	C19—C20—C21— C16	2.1 (6)
C2—C1—C6—C5	-1.5 (6)	C21—S2—C22—N3	1.2 (3)
C2—C3—C4—C5	-1.2 (7)	C21—S2—C22—N4	-177.8 (4)
C2A—C1A—O2— Cu2	-163.5 (3)	C21—C16—C17— C18	0.5 (6)
O3—C3A—O4—Cu2	11.0 (6)	C22—S2—C21—C16	0.2 (3)
N3—C16—C17—C18	179.1 (4)	C22—S2—C21—C20	179.3 (4)
N3—C16—C21—S2	-1.5 (4)	C22—N3—C16—C17	-176.3 (4)
N3—C16—C21—C20	179.3 (4)	C22—N3—C16—C21	2.4 (5)
C3—C4—C5—C6	0.8 (7)	C22—N4—C23—C24	-65.8 (6)
N4—C23—C24—C25	160.2 (4)	C22—N4—C23—C30	169.5 (4)
N4—C23—C24—C29	-20.7 (6)	C23—N4—C22—S2	-7.4 (6)

C4—C5—C6—S1	179.6 (3)	C23—N4—C22—N3	173.7 (4)
C4—C5—C6—C1	0.6 (6)	C23—C24—C25— C26	179.2 (4)
C4A—C3A—O4— Cu2	-167.5 (3)	C23—C24—C29— C28	-179.2 (4)
O5—C5A—O6—Cu2	7.5 (6)	C24—C25—C26— C27	0.4 (8)
C6—S1—C7—N1	1.3 (3)	C25—C24—C29— C28	0.0 (7)
C6—S1—C7—N2	-178.4 (3)	C25—C26—C27— C28	-0.8 (8)
C6—C1—C2—C3	1.1 (6)	C26—C27—C28— C29	0.8 (7)
C6A—C5A—O6— Cu2	-173.0 (3)	C27—C28—C29— C24	-0.4 (7)
O7—C7A—O8—Cu1	9.4 (7)	C29—C24—C25— C26	0.0 (7)
C7—S1—C6—C1	0.1 (3)	C30—C23—C24— C25	-77.7 (6)
C7—S1—C6—C5	-179.0 (4)	C30—C23—C24— C29	101.5 (5)

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

¹H and ¹³C NMR Spectra

S44

S48

