Electronic Supplementary Information

A simple hydrothermal synthesis of oxygen vacancy-rich $MnMoO_4$ rod-like materials and its highly efficient electrocatalytic nitrogen reduction

Huhu Yin^a, Xiujing Xing^b, Wei Zhang^a, Jin Li^a, Wei Xiong^{a,*}, and Hao Li^{c,*}

^a Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

^b Chemistry Department, University of California, Davis 95616 United States

^c Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

Tel/Fax: +86-27-87195001; +81-080-9363-8256

^{*}Corresponding authors

E-mail address: xiongwei@wit.edu.cn (W. X.); li.hao.b8@tohoku.ac.jp (H. L.)

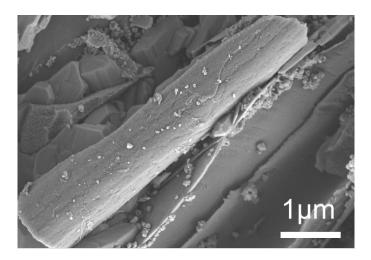


Figure S1. SEM image of MMN-500 after stability test.

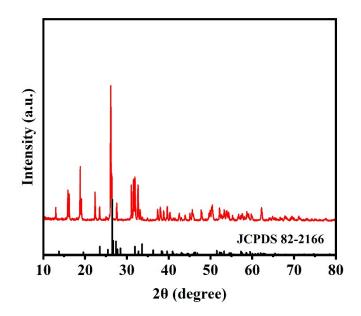
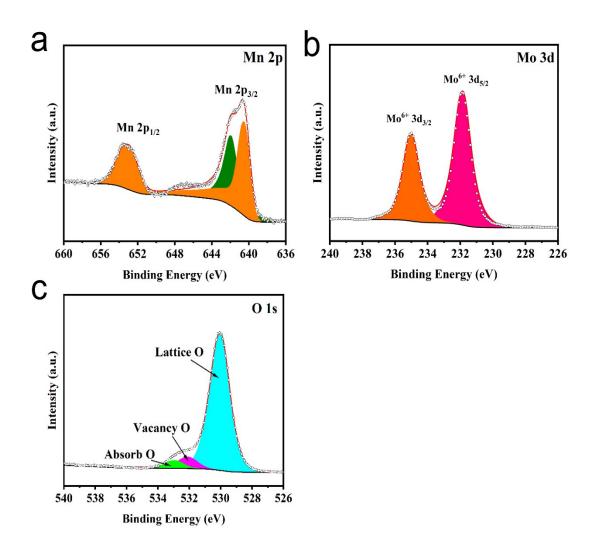



Figure S2. XRD pattern of MMN-500 after stability test.

Figure S3. XPS spectra of MMN-500 after stability test: (a) Mn 2p, (b) Mo 3d, and (c) O 1s.