Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

> Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Defective Silicotungstic acid-loaded magnetic floral N-doped carbon

microspheres for ultra-fast oxidative desulfurization of high sulfur liquid fuels

Yefeng Liu^{a,b*}, Xiaojie Yin^a, Chuan Li^a, Zhong Xie^a, Fuyan Zhao^a, Jing Li^a, Jinpei Hei^a, Yang Han^a, nannan

Wang^a*, Peng Zuo^a,*

a. Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, P. R.

China, 238000

b. Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of

Anhui Province, Chaohu University, Chaohu 238000, P. R. China, 238000.

Corresponding author e-mail: lyf@chu.edu.cn (Yefeng Liu); nnw1990@126.com (nannan Wang); zp@chu.edu.cn

(Peng Zuo)

1. Materials

Silicotungstic acid (H₄SiW₁₂O₄₀·xH₂O, abbreviated as SiW₁₂), H₃PW₁₂O₄₀·xH₂O (abbreviation for PW₁₂) and Phosphomolybdic acid (H₃PMo₁₂O₄₀·xH₂O, abbreviated as PMo₁₂) were purchased from Shanghai Macklin Biochemical Co., Ltd. (Jiangsu, China); Fe₃O₄ nanoparticle particles (20 nm) and

dopamine hydrochloride (DA) were obtained from Shanghai Macklin Biochemical Co., Ltd. (Jiangsu, China); tris (hydroxymethyl) aminomethane (C₄H₁₁NO₃, Tris) was obtained from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Jiangsu, China); Dibenzothiophene (DBT), benzothiophene (BT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were purchased from Aladdin Bio-Chem Technology Co., Ltd. (Jiangsu, China); N-octane and acetonitrile were obtained from Tianjin Damao Chemical Reagent Factory (Tianjin, China); other drugs and reagents are commercially available analytically pure.

2. Characterization

Fourier transform infrared (FT-IR) spectra were carried out on a L1600300 Spectrum Two LITa infrared spectrometer (UK) using the KBr pellet approach. Ultraviolet-Visible spectra of the samples were obtained on a 2802 UV/Vis instrument (Youniko, Shanghai). X-ray photoelectron spectroscopy (XPS) was measured on a Thermo Fisher Scientific Escalab 250Xi X-ray photoelectron Spectrometer (American) using Al Ka radiation and the C1s peak at 284.8 eV as internal standard. The X-ray diffraction (XRD) measurements of all samples were collected with Bruker D8 Advance X-ray powder diffractometer (Germany) using a Cu Kα source to determine the chemical composition and crystalline structural properties of the samples. Scanning electronic microscopy (SEM) was determined with a Hitachi S4800 / FEI NANOSEM 450 microscope (USA). Energy-dispersive X-ray spectroscopy (EDX) analytical data were acquired on EDAX Apollo XT spectrometer (USA). Thermogravimetry analyser (TG) was conducted by a NETZSCH STA 449 F3 analyzer (Germany) in air condition from room temperature to 900 °C, with a change of 10 °C min⁻¹. The activate radicals were recorded from by EPR (MiniSpcope MS 5000, Magnettech, Germany) with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as electron capturing reagent. Tungsten content was tested by inductively-coupled plasma optical

emission spectrometry (ICP-OES, Agilent 5110, USA). The H₂ temperature-programmed reduction (H₂-TPR, MFTP3060, China) was performed with a heating rate of 10 °C/min in a 5 % H₂/Ar flow (50 cm³/min). Prior to monitoring of the TPR profiles, 100 mg of the samples were placed in a quartz reactor and heated at 200 °C in an argon flow for 60 min. High performance liquid chromatograph (HPLC, LC98-I, Beijing Wenfen Analysis Instrument Technology Development Co., Ltd) was used to confirm the ODS reaction product.

3. The test condition of HPLC for ODS reaction

C18 reversed-phase column (200 mm×4.6 mm×5 μ m ID), column temperature of 30 °C, test wavelength of 254 nm. The mobile phase was methanol/H₂O (90/10, V/V) with flow rate of 1.0 mL·min⁻¹.

4. Kinetic studies of ODS, the apparent activation energy and TOF

The value of kinetic constant (k) given in Fig. 7 b can be obtained by the following equation:

$$\ln \frac{c_0}{c_t} = kt \tag{1}$$

where *k* represents the rate constant, t is the reaction time, C_0 is the initial sulfur content of the model oil, and Ct is the sulfur content at time t.

The plot of $\ln k$ against 1/T is shown in Fig. 7 c according to the Arrhenius equation (2).

$$\ln k = -\frac{E_a}{RT} + \ln A \tag{2}$$

Based on the linear correlation between -ln k and 1/T displayed in Fig. 7 c, the obtained linear equation is y=4665.36x-12.550, the estimated value of Ea is 38.79 kJ/mol.

where E_a is the apparent activation energy, kJ / mol; *R* is the molar gas constant, J / (mol·K); *T* is the thermodynamic temperature, K; *A* is the pre-exponential factor; and *k* is the reaction rate constant, min⁻¹.

Fig. S1 EPR spectra of (a) γ -Fe₂O₃@NC@SiW₁₂-300 and Fe₃O₄@PDA@SiW₁₂ and (b) γ -Fe₂O₃

Fig. S2 XPS spectra of O1s of $\gamma\text{-}Fe_2O_3@NC@SiW_{12}\text{-}300$ and SiW_{12}\text{-}300

Fig. S3 Model oils containing DBT+ACN system added with γ-Fe₂O₃@NC-300 and γ-Fe₂O₃@NC@SiW₁₂-300,

respectively.

Fig. S4 H₂-TPR spectra of γ-Fe₂O₃@NC@SiW₁₂-300, γ-Fe₂O₃@NC@PW₁₂-300 and γ-Fe₂O₃@NC@PMo₁₂-

300.

C₁₀₀ **a**₁₀₀ **b**₁₀₀ (%) Sulfur removal (%) 90 Sulfur removal 80 n(H₂O₂):n(S)= 80 ● 0.03 g ■ 0.08 g ● 0.05 g ● 0.1 g ● 0.01 g n(H₂O₂):n(S)=3:1 60 n(H₂O₂):n(S)=1.5:1 .75% 70 30.68% n(H₂O₂):n(S)=1:1 46.31% n(H₂O₂):n(S)=0.5:1 48.20% 50 60 40 10 20 30 10 30 40 40 σ 20 40 10 20 t (min) 30 t (min) t (min)

Fig. S5 (a) Effects of H_2O_2 dosage on the sulfur removal rate (0.03 g catalysts; T = 60 °C); (b) Effects of catalyst

dosage on the sulfur removal rate $(n(H_2O_2) : n(S) = 2:1; T = 60 \degree C);$ (C) Effects of the loading amount of SiW₁₂ on

the sulfur removal rate (0.03 g catalysts; $n(H_2O_2) : n(S) = 2:1; T = 60$ °C)

Fig. S6 HPLC chromatograms of (a) n-octane phases (b) and acetonitrile phases for ODS over γ -

 $Fe_2O_3@NC@SiW_{12}-300$ with H_2O_2 as oxidant.

Fig. S7 EPR spectra of fresh and recovered $\gamma\mbox{-}Fe_2O_3@NC@SiW_{12}\mbox{-}300$ catalyst