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1. Materials 

Silicotungstic acid (H4SiW12O40·xH2O, abbreviated as SiW12), H3PW12O40·xH2O (abbreviation for 

PW12) and Phosphomolybdic acid (H3PMo12O40·xH2O, abbreviated as PMo12) were purchased from 

Shanghai Macklin Biochemical Co., Ltd. (Jiangsu, China); Fe3O4 nanoparticle particles (20 nm) and 
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dopamine hydrochloride (DA) were obtained from Shanghai Macklin Biochemical Co., Ltd. (Jiangsu, 

China); tris (hydroxymethyl) aminomethane (C4H11NO3, Tris) was obtained from Shanghai Aladdin 

Bio-Chem Technology Co., Ltd. (Jiangsu, China); Dibenzothiophene (DBT), benzothiophene (BT), 

and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were purchased from Aladdin Bio-Chem 

Technology Co., Ltd. (Jiangsu, China); N-octane and acetonitrile were obtained from Tianjin Damao 

Chemical Reagent Factory (Tianjin, China); other drugs and reagents are commercially available 

analytically pure. 

2. Characterization 

Fourier transform infrared (FT-IR) spectra were carried out on a L1600300 Spectrum Two LITa 

infrared spectrometer (UK) using the KBr pellet approach. Ultraviolet-Visible spectra of the samples 

were obtained on a 2802 UV/Vis instrument (Youniko, Shanghai). X-ray photoelectron spectroscopy 

(XPS) was measured on a Thermo Fisher Scientific Escalab 250Xi X-ray photoelectron Spectrometer 

(American) using Al Ka radiation and the C1s peak at 284.8 eV as internal standard. The X-ray 

diffraction (XRD) measurements of all samples were collected with Bruker D8 Advance X-ray powder 

diffractometer (Germany) using a Cu Kα source to determine the chemical composition and crystalline 

structural properties of the samples. Scanning electronic microscopy (SEM) was determined with a 

Hitachi S4800 / FEI NANOSEM 450 microscope (USA). Energy-dispersive X-ray spectroscopy (EDX) 

analytical data were acquired on EDAX Apollo XT spectrometer (USA). Thermogravimetry analyser 

(TG) was conducted by a NETZSCH STA 449 F3 analyzer (Germany) in air condition from room 

temperature to 900 °C, with a change of 10 °C min-1. The activate radicals were recorded from by EPR 

(MiniSpcope MS 5000, Magnettech, Germany) with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as 

electron capturing reagent. Tungsten content was tested by inductively-coupled plasma optical 



 

 

emission spectrometry (ICP-OES, Agilent 5110, USA). The H2 temperature-programmed reduction 

(H2-TPR, MFTP3060, China) was performed with a heating rate of 10 °C/min in a 5 % H2/Ar flow (50 

cm3/min). Prior to monitoring of the TPR profiles, 100 mg of the samples were placed in a quartz 

reactor and heated at 200 °C in an argon flow for 60 min. High performance liquid chromatograph 

(HPLC, LC98-I, Beijing Wenfen Analysis Instrument Technology Development Co., Ltd) was used 

to confirm the ODS reaction product.  

3. The test condition of HPLC for ODS reaction 

C18 reversed-phase column (200 mm×4.6 mm×5 µm ID), column temperature of 30 °C, test 

wavelength of 254 nm. The mobile phase was methanol/H2O (90/10, V/V) with flow rate of 1.0 

mL·min–1.  

4. Kinetic studies of ODS, the apparent activation energy and TOF 

The value of kinetic constant (k) given in Fig. 7 b can be obtained by the following equation: 

ln 𝐶𝐶0
𝐶𝐶𝑡𝑡

= 𝑘𝑘𝑘𝑘                                     (1) 

where k represents the rate constant, t is the reaction time, C0 is the initial sulfur content of the 

model oil, and Ct is the sulfur content at time t. 

The plot of ln k against 1/T is shown in Fig. 7 c according to the Arrhenius equation (2).  

ln𝑘𝑘 = − 𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅

+ 𝑙𝑙𝑙𝑙 𝐴𝐴                                (2) 

Based on the linear correlation between -ln k and 1/T displayed in Fig. 7 c, the obtained linear 

equation is y=4665.36x-12.550, the estimated value of Ea is 38.79 kJ/mol. 

where Ea is the apparent activation energy, kJ / mol; R is the molar gas constant, J / (mol·K); T is 

the thermodynamic temperature, K; A is the pre-exponential factor; and k is the reaction rate constant, 

min-1.  
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Fig. S1 EPR spectra of (a) γ-Fe2O3@NC@SiW12-300 and Fe3O4@PDA@SiW12 and (b) γ-Fe2O3  
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Fig. S2 XPS spectra of O1s of γ-Fe2O3@NC@SiW12-300 and SiW12-300 
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Fig. S3 Model oils containing DBT+ACN system added with γ-Fe2O3@NC-300 and γ-Fe2O3@NC@SiW12-300, 

respectively. 
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Fig. S4 H2-TPR spectra of γ-Fe2O3@NC@SiW12-300, γ-Fe2O3@NC@PW12-300 and γ-Fe2O3@NC@PMo12-

300. 
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Fig. S5 (a) Effects of H2O2 dosage on the sulfur removal rate (0.03 g catalysts; T = 60 ℃); (b) Effects of catalyst 

dosage on the sulfur removal rate (n(H2O2) : n(S) = 2:1; T = 60 ℃); (C) Effects of the loading amount of SiW12 on 

the sulfur removal rate (0.03 g catalysts; n(H2O2) : n(S) = 2:1; T = 60 ℃) 
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Fig. S6 HPLC chromatograms of (a) n-octane phases (b) and acetonitrile phases for ODS over γ-

Fe2O3@NC@SiW12-300 with H2O2 as oxidant. 
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Fig. S7 EPR spectra of fresh and recovered γ-Fe2O3@NC@SiW12-300 catalyst 

 


