Supporting information

Enhanced performance of Bil₃-incorporated CsPbBr₃ solar cells

Yuqi He^{#, a, c}, Zhenyang Li^{#, a, b}, Manying Liu^{*, a}, Saiqi Liu^a, Junjie Fu^a, Yange Zhang^a, Qiuye Li^c, Yuping Tong^{*, b}, Zhi Zheng^{*, a}

^aKey Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China

^bInstitute of Materials and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China

^cNational & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China

Section 1 Experimental

Materials

All chemicals and reagents are used as is without further purification. Anhydrous dimethyl sulfoxide (DMSO), anhydrous N, N-dimethylformamide (DMF) and bismuth iodide (BiI₃) were purchased from Beijing InnoChem Technology Co., Ltd. Lead bromide (PbBr₂) was purchased from Aladdin Reagent (Shanghai) Co., Ltd. Cesium bromide (CsBr), stannous chloride dihydrate (SnCl₂•H₂O) and thiourea (C(NH₂)₂S) were purchased from Alfa Aesar (China) Chemical Co., Ltd. FTO glass (1.5 cm × 1.5 cm, 8 Ω) and conductive carbon paste were purchased from Shanghai Zaofu Lead Bromide New Material Co., Ltd. Anhydrous ethanol was purchased from Macklin.

Preparation of precursor solution

1.835 g of PbBr₂ was weighed into a sample bottle, then 5 mL of dimethylformamide (DMF) solution was added and heated at 100°C on a heating table to dissolve PbBr₂ precursor solution. Weigh 1.491 g of CsBr into a 100 mL volumetric flask, add 100 mL of methanol solution to the flask and dissolve by sonication to obtain the CsBr precursor solution.

Preparation of BiI₃ incorporated CsPbBr₃ films

The surface of the FTO glass substrate was irradiated with ultraviolet ozone cleaner for 30 min, and the PbBr₂ solution and FTO glass were preheated at 100 °C on the heating table, and then 80 μ L PbBr₂ solution was measured with a pipette gun and applied on the FTO while hot, and then the FTO was heated at 100 °C for 30 min. After heating, the substrate is brought to room temperature to obtain a white PbBr₂ film. The 80 μ L CsBr solution was spin-coated onto the PbBr₂ film, heated at 250 ° C for 5 min, and then cooled to room temperature. This process was repeated for 9 times to obtain an orange CsPbBr₃ film. The incorporated samples were obtained by incorporating 1 M PbBr₂ solution with different concentrations of BiI₃.

Solar cell device assembly

1.015 g of $SnCl_2-2H_2O$ and 0.335 g of thiourea were added to a beaker, dissolved in 30 ml of deionised water, stirred at room temperature for 36 hours and centrifuged at 9000 rpm for 5 minutes. The supernatant was filtered through a 0.22 μ m PTFE filter to obtain a clear yellow SnO_2 solution. The FTO glass was irradiated with UV ozone cleaner for 30 minutes and the SnO_2 solution was then preheated on a heating table at 80 °C together with the FTO glass substrate. The hot SnO_2 solution was spin-coated onto the FTO substrate at 2000 r/min for 30 seconds and annealed at 200 °C for 1 hour to

obtain a dense SnO_2 layer. A CsPbBr₃ film was prepared on top of the SnO_2 and finally a 0.04 cm² carbon paste was applied to the CsPbBr₃ film. A complete cell unit was made by heating at 100 °C for 10 minutes.

Characterizations

The crystal structures were analysed by X-ray diffraction (XRD, New D8-Advance, Bruker-AXS). The morphology of CsPbBr₃ films with different BiI₃ incorporating was analysed by FEI Sirion 200 field emission scanning electron microscopy (SEM) and atomic force microscopy (AFM). For X-ray photoelectron spectroscopy (XPS) is the British Thermo Fisher K-Alpha. Absorption curves were measured by UV-Vis-NIR spectrophotometer (Cary 5000 UV-Vis, Varian). Steady-state PL and TRPL were collected by a fluorescence spectrophotometer equipped with a 465 nm excitation wavelength. TSPV signals were recorded using a 355 nm pulsed laser. Tafel curves were tested using a CHI600E electrochemical workstation. *J-V* characteristic curves were measured in air under AM1.5 sunlight generated by NEWPORT 91195A-SYS/EB-4 solar simulator.

Fig. S1 (a)XRD pattern and (b) local enlargement of $CsPbBr_3$ film at 0.5% BiBr_3 and PbI_2 incorporating concentration

Fig. S2 SEM photographs of the cross section of CsPbBr₃ thin films at (a) 0.0 %, (b) 0.1 %, (c) 0.5 % and (d) 1.0 % BiI₃

Fig. S3 AFM images of CsPbBr₃ films at the concentration of (a)0.0% and (b)0.5% BiI₃

Fig. S4 XPS spectra of CsPbBr₃ films (a) Bi 4f and (b) I 3d at different incorporating concentrations

Fig. S5 UPS patterns of CsPbBr3 thin films at 0.0% and 0.5% BiI3 incorporating concentration

Fig. S6 The stability of the 0.5% BiI₃-incorporated CsPbBr₃ all-inorganic perovskite solar cells was evaluated through two sets of tests: (a) a stability test at room temperature (25 °C) and relative humidity of $35 \pm 5\%$, and (b) a stability test after heating the cells at 100 °C for 3 hours. These tests aimed to assess the performance and reliability of the solar cells under different environmental conditions.

Element	Line type	Apparent concentration	wt%	wt% Sigma	Atomic percent ratio	
Br	L	45.15	38.53	1.29	57.55	
Ι	L	0.38	0.34	0.93	0.32	
Cs	L	23.87	21.45	1.33	19.26	
Pb	М	40.09	39.46	1.52	22.73	
Bi	М	0.22	0.23	1.70	0.13	
Overall amount		100.00			100.00	

Table S1 EDS element content of CsPbBr₃ film with 0.5% Bil₃ incorporating content

Table S2 TSPV parameters of CsPbBr₃ films with different BiI₃ incorporating concentrations.

Sample	$T_t(\mathbf{s})$	$T_r(\mathbf{s})$	T_t/T_r
CsPbBr ₃	6.5×10 ⁻⁷	4.3×10 ⁻⁴	1.5×10 ⁻³
0.1% BiI ₃ -CsPbBr ₃	6.1×10 ⁻⁷	2.3×10^{-3}	2.6×10 ⁻⁴
0.5% BiI ₃ -CsPbBr ₃	7.4×10^{-7}	3.8×10 ⁻³	1.9×10 ⁻⁴
1.0% BiI ₃ -CsPbBr ₃	7.8×10^{-7}	1.0×10 ⁻³	$7.8 imes 10^{-4}$

	J _{sc} (mA	V_{oc}	FF	PCE	Def
Device structure	cm ⁻²)	(V)	(%)	(%)	Kei
FTO/SpO. /0.5% Bil. CsPhBr. /carbon	8.66	1 52	72.47	9.54	This
1 10/3102/0.5 /0B113-CS1 0B13/Carbon		1.52			work
FTO/TiO ₂ /CsPbBr ₃ /carbon	7.37	1.37	76.00	7.65	S 1
FTO/TiO ₂ /CsPbBr ₃ /carbon	7.40	1.22	81.4	7.37	S2
FTO/SnO ₂ /CsPbBr ₃ /Carbon	7.64	1.52	79.00	9.14	S3
FTO/SnO ₂ /CsPbBr ₃ /BaI ₂ /Carbon	7.95	1.55	82.00	10.09	S4
FTO/TiO ₂ /Turmeri-CsPbBr ₃ /carbon	11.94	1.24	66.11	9.78	S5
FTO/TiO ₂ /Carotene-CsPbBr ₃ /carbon	8.81	1.32	67.31	7.81	S5
FTO/TiO ₂ /CsPbBr ₃ /ReSe ₂ /carbon	7.92	1.62	83.06	10.67	S6
FTO/TiO2/DAP/CsPbBr3/carbon	7.51	1.62	84.05	10.31	S7
$FTO/SnO_2\text{-}TiO_xCl_{4\text{-}2x}/WS_2/CsPbBr_3/carbon$	7.95	1.70	79.00	10.65	S 8
FTO/SnO2 QDs/CsPbBr3/CsSnBr3 QDs/carbon	7.80	1.61	84.40	10.60	S9
ITO/SnO ₂ /CsPbBr ₃ /Spiro-OMeTAD/Au	7.13	1.23	68.00	5.96	S10
FTO/TiO ₂ /CsPbBr ₃ /carbon	8.36	1.44	78.00	9.36	S11
FTO/TiO ₂ /ASF/CsPbBr ₃ /carbon	7.47	1.62	83.56	10.08	S12
FTO/SnO ₂ /CsPbBr ₃ @ECTF-1/Carbon	7.07	1.53	77.00	8.28	S13

Table S3 Summary of the photovoltaic parameters of CsPbBr₃ PSCs with champion PCE.

S1. J. Cheng, J. Yan, J. Wang, Y. Jiang, J. Xing, H. Liu, H. Hao and J. Dong, *Energies*, 2023, **16**, 6426-6437.

S2. D. Huang, P. Xie, Z. Pan, H. Rao and X. Zhong, J. Mater. Chem. A, 2019, 7, 22420-22428.

- C. Liu, T. Zhang, Z. Li, B. Zhao, X. Ma, Y. Chen, Z. Liu, H. Chen and X. Li, ACS Appl. Energy Mater., 2021, 4, 10610-10617.
- S4. Y. Liu, T. Xiang, B. Zhang, J. Wang, X. Yu, Y. Xiao, J. Xiao, Z. Ku and Y. Peng, *ACS Appl. Energy Mater.*, 2022, **5**, 8049-8056.
- S5. Y. Liu, C. Zhou, C. Cui, X. Liu, B. Pang, J. Feng, H. Dong, L. Yu and L. Dong, *Sol. RRL*, 2023, **20**, 1-18.
- S6. J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan and Q. Tang, *Small*, 2022, **18**, 2106323-2106331.
- S7. J. Ti, J. Zhu, B. He, Z. Zong, X. Yao, R. Tui, H. Huang, C. Chen, H. Chen, Y. Duan and Q. Tang, J. Mater. Chem. A, 2022, 10, 6649-6661.
- S8. Q. Zhou, J. Duan, X. Yang, Y. Duan and Q. Tang, *Angew. Chem. Int. Ed.*, 2020, **59**, 21997-22001.
- S9. Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He and Q. Tang, *Sol. RRL*, 2019, **3**, 1800284-1800290.
- S10. Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan and J. Chen, Joule, 2018, 2, 1356-1368.
- S11. G. Che, X. Wang, C. Cui, B. Pang, X. Wang, H. Dong, J. Feng, L. Yu and L. Dong, J. Alloys Compd., 2023, 53, 172423-172449.

S12. L. Cui, B. He, Y. Ding, J. Zhu, X. Yao, J. Ti, H. Chen, Y. Duan and Q. Tang, *Chem. Eng. J.*, 2022, **431**, 134193-134201.

 M. Liu, Z. Li, G. Wei, E. Fan, Q. Feng, D. Zhao, Y. Guo, Y. Zhang and Z. Zheng, *Cryst. Growth Des.*, 2023, 23, 3349-3356.