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Figure S1. Schematic process for the hydrogenation of coal-based 1,4-

butynediol and its products network. 
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Figure S2. H2-TPR profiles of Ni-Cu-P catalysts.

Note information: H2-TPR profiles in Figure S2 provide the information about the Ni-

Cu bimetallic synergy as well as the metal support interaction. Due to the distinct 

phyllosilicate structures of Ni-phyllosilicate (Niphy) and Cu-phyllosilicate (Cuphy), 

their reduction behaviors are significantly different. According to the former 

investigations from our and other groups, Cuphy only displayed a sharp peak centered 

at 290 °C, whereas Niphy displayed a sluggish reduction peak at a rather high and broad 

reduction temperature range centered at about 720 °C. For the bimetallic Ni9Cu1-P 

catalyst, an obvious three-stage reduction was observed. Notably, the first peak is 

attributed to the reduction of copper species, and another wide and high temperature 

reduction stage in the range of 550-800 °C can be designated to Niphy, indicating the 

stronger metal-support interactions in the phyllosilicate-derived NiCu-P, which can 

lead to higher metal dispersion and solvothermal-stability of the catalysts[1-2]. 

Interestingly, there was a new emerged reduction peak at 300-400 °C, which we believe 

is responsible for the highly active Ni species that differentiated from the Niphy matrix 

by the induction of promoting Cu species. In general, Cu2+ is more easily reducible than 

Ni2+ under similar conditions since it has much lower standard reduction potential[3], 

and over the Ni-Cu catalyst surface, the presence of Cu species can produce a large 
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amount of spillover hydrogen which is able to migrate to the adjacent Ni2+ sites and 

consequently accelerates the reduction/nucleation of the nearby Ni site and improves 

the reducibility of Ni2+ species at considerably lower temperatures[4]. As a result, the 

Ni species bonding to the nearby Cu site has a strong bimetallic synergy effect, and is 

more reducible at a rather low temperature for NiCu-P. However, as the increase of 

Cu/Ni ratios will by no means lead to the decline of total active Ni sites number, and 

Ni9Cu1-P showed the largest amount of Cu-induced Ni0 species differentiated from the 

Niphy matrix as shown in Figure S2, which may be responsible for its superior 

hydrogenation activity.
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Figure S3. a) N2 adsorption-desorption isotherms and b) pore size distributions 

of different reduced catalysts.
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Figure S4. TEM images of a referential Cu-P catalyst a) calcined and b) reduced at 

500 oC. c) the mean metal particle size of Cu-P-R500 calculated by counting for more 

than 100 of the reduced Cu nanoparticles. d) and e) XRD patterns and the 

corresponding Cu crystalline sizes of the reduced Cu-P catalysts.
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Table S1 Metal elemental and species compositions for Ni-Cu-P catalysts.

Metal content a / wt%
Metal species composition according to 

TPR peak fitting c/ wt% (%)Catalysts

Cu Ni Cu from phy Diff. Ni Ni from phy

Ni-P 0 15.9 - - 15.9(100.0)

Ni9Cu1-P 1.6 15.0 1.8(10.7) b 5.9(35.5) 8.9(53.8)

Ni5Cu5-P 8.5 7.8 9.1(56.0) 5.0(31.2) 2.1(12.8)

a The actual metal content was calculated by XRF.

b The data in parentheses is the metal species percentage integrated from the TPR peak 

fitting profiles. 

c The metal species’ composition is quantified according to their TPR percentage in the 

total metal content.
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Table S2. Mean metal particle size at different reduction temperatures. 

Mean metal particle size / nm
Catalysts

R250 R500 R750
Ni-P 6.3 10.1 12.0

Ni9Cu1-P 5.8 8.8 12.3
Ni5Cu5-P 3.5 5.6 10.1
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Table S3 Textural property of the reduced catalysts.

Catalysts
BET surface area 

/cm2g-1

Pore volume 

/cm3g-1
Pore diameter / nm

Ni-P-R500 128.1 0.29 9.2

Ni9Cu1-P- R500 117.1 0.26 8.7

Ni5Cu5-P- R500 129.3 0.31 9.6

Ni9Cu1-P- R250 117.0 0.28 8.7

Ni9Cu1-P- R750 114.4 0.21 7.2
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Table S4 Catalyst activity and selectivity tests for BYD hydrogenation over Cu-P-Rx 

catalysts.
Product selectivity / %

Catalyst Conversion / %
BDO BED HTHF Others

Cu-P-R250 0 - - - -

Cu-P-R500 1.5 0 100 0 0

Cu-P-R750 0 - - - -
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Table S5 The peak temperature and desorded H2 amount for NiCu-P catalysts.

Peak temperature / C
Catalysts

α-H β-H
Amount of desorbed

H2 / mmol g-1

Ni-P-R250 82 - 0.06
Ni-P-R500 76 - 0.08
Ni-P-R750 74 - 0.10
Ni9Cu1-P-R250 81 122 0.09
Ni9Cu1-P-R500 79 109 0.12
Ni9Cu1-P-R750 76 - 0.05
Ni5Cu5-P-R250 81 124 0.09
Ni5Cu5-P-R500 78 113 0.06
Ni5Cu5-P-R750 75 - 0.05



S12

Table S6 Peak profiles and total acidity for NiCu-P catalysts according to NH3-TPD 

results.

Peak temperature / C
Catalysts

Weak acid Medium strong acid
Total acidity / 
umol g-1

Ni-P-R250 104 - 1.4
Ni-P-R500 93 265 0.82
Ni-P-R750 92 - 0.39
Ni9Cu1-P-R250 103 - 1.38
Ni9Cu1-P-R500 91 248 0.75
Ni9Cu1-P-R750 94 - 0.43
Ni5Cu5-P-R250 108 - 2.62
Ni5Cu5-P-R500 98 231 0.67
Ni5Cu5-P-R750 102 - 0.46
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Table S7 Metal elemental composition of the fresh and spent catalysts after the 

cycling tests.

Metal content a
Catalysts

Ni / wt% Cu / wt%
Ni-P-fresh 15.9 -

Ni-P-1-time-usage 15.8 -
Ni9Cu1-P-fresh 15.0 1.6

Ni9Cu1-P-3-time-usage 15.2 1.5
Ni9Cu1-P-6-time-usage 14.9 1.6

Ni5Cu5-fresh 7.8 8.5
Ni5Cu5-P-1-time-usage 7.6 8.3

a The metal content was detected by XRF results.
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