Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

Supporting Information

Novel organically linked Zn^{II} hydrogenselenite coordination polymers: synthesis, characterization, and efficient TiO₂ photosensitization for enhanced photocatalytic hydrogen production

Andressa Lunardi,^a Tanize Bortolotto, ^a Camila Nunes Cechin,^a Natália de Freitas Daudt,^b Melina de Azevedo Mello,^c Sailer S. dos Santos,^a Roberta Cargnelutti,^a Ernesto Schulz Lang^a and Bárbara Tirloni*^a

- ^{a.} Departamento de Química, Universidade Federal de Santa Maria UFSM, Laboratório de Materiais Inorgânicos – LMI, 97105-900, Santa Maria, RS, Brazil.
 E-mail: <u>barbara.tirloni@ufsm.br</u>
- ^{b.} Departamento de Engenharia Mecânica, Universidade Federal de Santa Maria UFSM, 97105-900, Santa Maria, RS, Brazil.
- ^{c.} Colégio Técnico Industrial de Santa Maria CTISM Universidade Federal de Santa Maria UFSM, 97105-900, Santa Maria, RS, Brazil.

Table of Contents

Table S1. Crystallographic and structure refinement data for compounds 1–2	3
Table S2. Selected bond lengths (Å) and angles (°) for compounds 1-2	4
Table S3. Selected hydrogen bond lengths (Å) and angles (°) for compounds 1-2	4
Table S4. Time (t) and temperature (T) used to obtain 1-2	5
Figure S1. ORTEP ¹² representation of the polymeric structure of compound 1	6
Figure S2. ORTEP ¹² representation of the polymeric structure of compound 2	6
Figure S3. Simulated and experimental PXRD pattern for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1)	7
Figure S4. Simulated and experimental PXRD pattern for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2)	8
Figure S5. FT-IR spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1)	9
Figure S6. FT-IR spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2)	9
Figure S7. FT-IR spectrum of photocatalysts TiO ₂ -1A, TiO ₂ -2A and TiO ₂	10
Figure S8. Confocal Raman spectrum for [Zn(μ-HSeO ₃) ₂ (bipy)] _n (1)	10
Figure S9. Confocal Raman spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2)	11
Figure S10. ⁷⁷ Se NMR spectrum for [Zn(μ-HSeO ₃) ₂ (bipy)] _n (1)	11
Figure S11. ⁷⁷ Se NMR spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1) using 10 kHz rotation	12
Figure S12. ⁷⁷ Se NMR spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2)	12
Figure S13. Diffuse reflectance spectra of 1-2, TiO ₂ , TiO ₂ -1A and TiO ₂ -2A	13
Figure S14. Kubelka-Munk absorbance spectra of 1-2, TiO ₂ , TiO ₂ -1A and TiO ₂ -2A	13
Figure S15. Graphical determination of the E_g value of TiO ₂	14
Figure S16. Graphical determination of the E_g value of $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1)	14
Figure S17. Graphical determination of the E_g value of TiO ₂ -1A	15
Figure S18. Graphical determination of the E_g value of $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2)	15
Figure S19. Graphical determination of the E_g value of TiO ₂ -2A	16
Figure S20. Element mapping for photocatalyst TiO ₂ -1A	17
Figure S21. Element mapping for photocatalyst TiO ₂ -2A	18
Figure S22. EDS spectrum for photocatalyst TiO ₂ -1A	19
Figure S23. EDS spectrum for photocatalyst TiO ₂ -2A	19
Figure S24. SEM images for photocatalyst TiO ₂ -1A	20
Figure S25. SEM images for photocatalyst TiO ₂ -2A	20
Figure S26. Particle size distribution for the photocatalyst TiO ₂ -1A	21
Figure S27. Particle size distribution for the photocatalyst TiO ₂ -2A	21
Figure S28. Stainless steel reactor used in syntheses of compounds 1-2	22
Figure S29. System used in experiments applying photocatalyst TiO ₂ -1A and TiO ₂ -2A	۱ for
hydrogen evaluation	22
Figure 30. Photocatalytic activity of the photocatalyst TiO ₂ -1A	23
Figure 31. Photocatalytic activity of the photocatalyst TiO ₂ -2A	23

	1	2
Formula	$C_{10}H_{10}N_2O_6Se_2Zn$	$C_{12}H_{10}N_2O_6Se_2Zn$
F.W. (g.mol ⁻¹)	477.49	501.51
Crystal system	Monoclinic	Triclinic
Space group	C2/c	P-1
<i>a</i> (Å)	16.9676(8)	7.4196(6)
b (Å)	10.9596(5)	9.7542(9)
c (Å)	7.4548(3)	11.1087(10)
α (°)	90	71.238(3)
β(°)	95.478(2)	88.646(3)
γ(°)	90	87.737(3)
Т (К)	299(2)	299(2)
V (ų)	1379.95(11)	760.60(12)
Z	4	1
$ ho_{calc.}$ (g.cm ⁻³)	2.289	2.181
μ (mm ⁻¹)	7.083	6.431
F(000)	912	480
Refl. collected	28932	23456
Refl. unique (R _{int})	2132 [0.0835]	4648 [0.0673]
$R_1[l > 2\sigma(l)]$	$R_1 = 0.0418$	$R_1 = 0.0561$
$wR_2[I > 2\sigma(I)]$	$wR_2 = 0.0711$	$wR_2 = 0.1405$
<i>R</i> ¹ (all data) ^[a]	$R_1 = 0.0778$	$R_1 = 0.1025$
wR_2 (all data) ^[b]	$wR_2 = 0.0799$	$wR_2 = 0.1558$
Goodness-of-fit on F ²	1.046	1.093
Largest diff. peak and hole (e.Å ⁻³)	0.687 and -0.575	1.336 and -0.730

Table S1.	Crystallographic and	structure refinement	data for con	1900 1-2.

 $[a]R_1 = |F_o - F_c|/|F_o|; [b]wR_2 = [w(F_o^2 - F_c^2)^2/(wF_o^2)]^{-1/2}.$

Bond lengths (Å)		Bond angles (°)	
1			
Zn1–N1	2.201(3)	N1–Zn1–N1'	74.71(15)
Zn1–01	2.072(2)	N1'-Zn1-O2''	91.34(10)
Zn1–02''	2.098(2)	N1'-Zn1-01	88.44(10)
Se1-01	1.654(2)	02''-Zn1-01	88.90(10)
Se1-02	1.668(2)	02–Se1–O1	107.49(12)
Se1-03	1.754(3)	02–Se1–O3	99.79(13)
O3–H3A	0.820(3)	01–Se1–O3	100.44(13)
2			
Zn1–N1	2.203(6)	N1–Zn1–N2	74.9(2)
Zn1–N2	2.219(5)	N1–Zn1–O5'	88.4(2)
Zn1–01	2.070(5)	04–Zn1–O1	109.62(19)
Zn1–04	2.064(5)	04–Zn1–O5'	90.12(19)
Zn1–05'	2.090(5)	O4–Zn1–N2	87.3(2)
Se1-01	1.657(5)	02–Se1–O1	100.3(2)
Se1-02	1.756(5)	02–Se1–O3	99.3(2)
Se1-03	1.668(5)	01–Se1–O3	106.7(2)
O2–H2A	0.820(5)		

 Table S2.
 Selected bond lengths (Å) and angles (°) for compounds 1-2.

1 ('): -*x*+1,*y*,-*z*+1/2; (''): -*x*+1,-*y*+1,-*z*+1

2 ('): -*x*+2,-*y*+1,-*z*+1

Table S3. Selected hydrogen bond lengths (Å) and angles (°) for compounds 1-2.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
1				
O3–H3A…O2'	0.82	1.87	2.685(4)	172.3
2				
O2–H2A…O5	0.82	1.90	2.699(7)	164.1
1('): -x+1.vz+1/2				

(): -x+1, y, -2+1/2

n	t _n (minutes) ^a	T _n (°C) ^b
0	-	90
1	60	110
2	60	130
3	60	140
4	240	140
5	120	130
6	120	120
7	120	100
8	120	80
9	300	40

Table S4. Time (t) and temperature (T) used to obtain 1-2.

Total time: 20 h, with 4 h at 140 °C.

a) time required for the oven to reach T_n ; b) temperature in the reactor.

Figure S1. ORTEP¹² representation of the polymeric structure of $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1). The thermal ellipsoids indicate the 50% probability level.

Figure S2. ORTEP¹² representation of the polymeric structure of $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2). The thermal ellipsoids indicate the 50% probability level.

Figure S3. Simulated and experimental PXRD pattern for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1).

Figure S4. Simulated and experimental PXRD pattern for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2).

Figure S5. FT-IR spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1).

Figure S6. FT-IR spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2).

Figure S7. FT-IR spectrum of photocatalysts TiO₂-1A, TiO₂-2A and TiO₂.

Figure S8. Confocal Raman spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1).

Figure S9. Confocal Raman spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2).

Figure S10. ⁷⁷Se NMR spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1)

Figure S11. ⁷⁷Se NMR spectrum for $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (**1**) using 10 kHz rotation.

Figure S12. ⁷⁷Se NMR spectrum for $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2).

Figure S13. Diffuse reflectance spectra of 1-2, TiO₂, TiO₂-1A and TiO₂-2A.

Figure S14. Kubelka-Munk absorbance spectra of 1-2, TiO₂, TiO₂-1A and TiO₂-2A.

Figure S16. Graphical determination of the E_g value of $[Zn(\mu-HSeO_3)_2(bipy)]_n$ (1).

Figure S18. Graphical determination of the E_g value of $[Zn(\mu-HSeO_3)_2(phen)]_n$ (2).

Figure S20. Element mapping for photocatalyst TiO₂-1A.

Figure S21. Element mapping for photocatalyst TiO₂-2A.

Figure S22. EDS spectrum for photocatalyst TiO_2 -**1A**. The element Au comes from metallization process.

Figure S23. EDS spectrum for photocatalyst TiO_2 -2A. The element Au comes from metallization process.

Figure S24. SEM images for photocatalyst TiO₂-1A.

Figure S25. SEM images for photocatalyst TiO₂-2A.

Figure S26. Particle size distribution for the photocatalyst TiO₂-1A.

Figure S27. Particle size distribution for the photocatalyst TiO₂-2A.

Figure S28. Stainless steel reactor used in syntheses of compounds 1-3.

Figure S29. System used in experiments applying photocatalyst TiO_2 -1A and TiO_2 -2A for hydrogen evaluation.

Figure S30. Photocatalytic activity of the photocatalyst TiO₂-1A.

Figure S31. Photocatalytic activity of the photocatalyst TiO₂-2A.