Electronic Supplementary Information

Micro- and nanostructured layered-kagome zinc orthovanadate $BaZn_3(VO_4)_2(OH)_2$

Bachchar Hadrane, Philippe Deniard, Nicolas Gautier, Michael Paris, Christophe Payen* and Rémi Dessapt*

Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes

Table of contents:

Figure S1. Portion of the Rietveld refinement plot for $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$ showing observed, calculated and difference patterns. Data were taken and refined from $2\theta = 10^\circ$ to $2\theta = 90^\circ$ 2
Table S1. Structural parameters, crystallite size, and final agreement factors for $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$ derived from our Rietveld refinement
Figure S2. SEM image of $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$
Figure S3. Rietveld refinement plot for BaZn ₃ NPs-25min showing observed, calculated and difference patterns
Table S2. Structural parameters, crystallite sizes, and final agreement factors for BaZn ₃ NPs-7h.
Table S3. Structural parameters, crystallite sizes, and final agreement factors for BaZn ₃ NPs-25 min.
Table S4. Main M-O (M = Ba, Zn, and V) bond distances (Å) and O-V-O angles for $BaZn_3$ MPs, $BaZn_3$ NPs-7h and $BaZn_3$ NPs-25min
Figure S4. Ball and stick model showing MO_x polyhedra (M = Ba, Zn, and V) in the crystal structure of $BaZn_3(VO_4)_2(OH)_2$. The six long Ba—O1 distances are not visualized for the sake of clarity
Figure S5. SEM-EDS spectrum acquired on BaZn ₃ MPs
Figure S6. (a, b) TEM images of representative BaZn₃ NPs-25min at different magnifications. Reticular planes are visible in (b). (c, d) FFT diffraction pattern along the [2-51] zone axis from the region marked out by the white rectangle in (c). Global indexing in (d) was obtained using the structural model deduced from XRD (Table S3)
Figure S7. (a) EDS spectrum of the chosen particle of BaZn₃ NPs-7h displayed in (b). (c,d,e) EDS mapping analysis of Ba, Zn and V elements, respectively
Figure S8. (a) EDS spectrum of the chosen particle of BaZn₃ NPs-25min displayed in (b). (c,d,e) EDS mapping analysis of Ba, Zn and V elements, respectively11

Figure S1. Portion of the Rietveld refinement plot for $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$ showing observed, calculated and difference patterns. Data were taken and refined from $2\theta = 10^\circ$ to $2\theta = 90^\circ$.

S.G (P^{3m}): a (Å) = 6.0698(2), c (Å) = 7.1986(5), Cryst. Size = 109(2) nm					
Atom	Х	у	Z	SOF	U _{iso} Equiv (Ų)
Zn ₁	1/2	0	0	1	0.031(2)
V_1	0	0	0.2506(8)	1	0.019(2)
O_1	2/3	1/3	0.878(3)	1	0.023(4)
O ₂	0.1533(13)	0.307(3)	0.826 (2)	1	0.023
O ₃	0	0	1/2	1	0.023
O_4	0.733(6)	0.367(3)	0.498(11)	0.333	0.023
H_1	2/3	1/3	0.75*	1	0.07599*
GOF = 1.4, Rwp = 15.73, and Rp = 11.73					

Table S1. Structural parameters, crystallite size, and final agreement factors for $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$ derived from our Rietveld refinement.

*not refined

ADP harmonic parameters

Aniso. ADP (Å ²)	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Zn ₁	0.031(3)	0.025(4)	0.035(3)	0.012(2)	0.008(4)	0.016(8)
V_1	0.020(3)	0.020	0.017(4)	0.010(2)	0	0

Figure S2. SEM image of $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$.

Figure S3. Rietveld refinement plot for BaZn₃ NPs-25min showing observed, calculated and difference patterns.

S.G (R^{3m}) : a (Å) = 5.9608(5), c (Å) = 21.062(2),					
	Cryst. Si	ize = 26.0(8) n	m // [001], 37((2) nm \perp [00	1]
	Х	У	Z	SOF	U _{iso}
Ba ₁	2/3	1/3	5/6	1	0.042(3)
Zn ₁	5/6	2/3	2/3	1	0.040(4)
V ₁	1/3	2/3	0.7561(4)	1	0.011(4)
O ₁	1/3	2/3	0.8347(12)	1	0.007(4)
O ₂	0.493(2)	0.507(2)	0.7322(6)	1	0.007
O ₃	1	1	0.704(2)	1	0.007
H ₁	1	1	0.7494*	1	0.008*
GOF = 2.28, Rwp = 4.05, and Rp = 2.73					

Table S2. Structural parameters, crystallite sizes, and final agreement factors for BaZn₃ NPs-7h.

*not refined

ADP harmonic parameters

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ba ₁	0.051(4)	0.051	0.023(5)	0.026(2)	0	0
Zn ₁	0.044(4)	0.053(5)	0.026(6)	0.027(2)	0.004(2)	0.008(4)
V_1	0.005(4)	0.005	0.023(7)	0.003(2)	0	0

	S.G (<i>R</i> ³ <i>n</i>	n): $a(Å) =$	5.9675(10), c	(Å) = 21.100	0(4),
	Cryst. Si	ze = 13.1(4) n	m // [001], 19.	$3(1) \operatorname{nm} \perp [0]$	01]
	Х	У	Z	SOF	U_{iso}
Ba ₁	2/3	1/3	5/6	1	0.069(4)
Zn ₁	5/6	2/3	2/3	1	0.070(4)
V_1	1/3	2/3	0.7574(5)	1	0.016(4)
O ₁	1/3	2/3	0.8411(13)	1	0.019(4)
O ₂	0.490(2)	0.510(2)	0.7324(7)	1	0.019
O ₃	1	1	0.709(2)	1	0.019
H ₁	1	1	0.7494*	1	0.008*
GOF = 1.38, Rwp = 4.86, and Rp = 3.58					

Table S3. Structural parameters, crystallite sizes, and final agreement factors forBaZn3 NPs-25 min.

*not refined

ADP harmonic parameters

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ba ₁	0.094(6)	0.094	0.021(6)	0.047(3)	0	0
Zn ₁	0.075(5)	0.099(6)	0.044(8)	0.049(3)	0.014(3)	0.028(5)
V_1	0.004(5)	0.004	0.039(9)	0.002(2)	0	0

Table S4. Main M-O (M = Ba, Zn, and V) bond distances (Å) and O-V-O angles forBaZn3 MPs, BaZn3 NPs-7h and BaZn3 NPs-25min.

BaZn ₃ MPs	BaZn ₃ NPs-25min	BaZn ₃ NPs-7h
Ba1—O2 (x 6): 2.811(10) Ba1—O1 (x 4): 3.4488(3) Ba1—O1 (x 2): 3.4488(2) Mean: 3.13±0.02	Ba1—O2 (x 6): 2.81(2) Ba1—O1 (x 4): 3.449(2) Ba1—O1 (x 2): 3.4492(14) Mean: 3.13±0.03	Ba1—O2 (x 6): 2.786(12) Ba1—O1 (x 4): 3.4416(9) Ba1—O1 (x 2): 3.4416(4) Mean: 3.11±0.02
$ \begin{array}{c} Zn1 & -O2 \ (x \ 2): \ 2.233(8) \\ Zn1 & -O2 \ (x \ 2): \ 2.233(12) \\ Zn1 & -O3 \ (x \ 2): \ 1.948(11) \\ Mean: \ 2.14 \pm 0.03 \end{array} $	Zn1—O2 (x 2): 2.26(2) Zn1—O2 (x 2): 2.255(12) Zn1—O3 (x 2): 1.94(2) Mean: 2.15 ± 0.05	Zn1—O2 (x 2): 2.235(10) Zn1—O2 (x 2): 2.235(13) Zn1—O3 (x 2): 1.893(13) Mean: 2.12 ± 0.04
$\begin{array}{c} V1 &O1: 1.67(2) \\ V1 &O2 \ (x \ 3): 1.706(11) \\ Mean: 1.70 \pm 0.04 \\ Angles: \\ O1 &V1 &O2 \ (x \ 3): 107.5(4)^{\circ} \\ O2 &V1 &O2 \ (x \ 3): 111.4(6)^{\circ} \end{array}$	$V1-O1: 1.77(3)$ $V1-O2 (x 3): 1.701(14)$ Mean: 1.72 ± 0.05 Angles: $O1-V1-O2 (x 3): 108.0(6)^{\circ}$ $O2-V1-O2 (x 3): 110.9(7)^{\circ}$	$V1-O1: 1.65(3) V1-O2 (x 3): 1.722(11) Mean: 1.70 \pm 0.05 Angles: 01-V1-O2 (x 3): 107.0(5)^{\circ} O2-V1-O2 (x 3): 111.8(5)^{\circ}$

Figure S4. Ball and stick model showing MO_x polyhedra (M = Ba, Zn, and V) in the crystal structure of $BaZn_3(VO_4)_2(OH)_2$. The six long Ba—O1 distances are not visualized for the sake of clarity.

Figure S5. SEM-EDS spectrum acquired on BaZn₃ MPs.

Figure S6. (a, b) TEM images of representative **BaZn₃ NPs-25min** at different magnifications. Reticular planes are visible in (b). (c, d) FFT diffraction pattern along the [2-51] zone axis from the region marked out by the white rectangle in (c). Global indexing in (d) was obtained using the structural model deduced from XRD (Table S3).

Figure S7. (a) EDS spectrum of the chosen particle of **BaZn₃ NPs-7h** displayed in (b). (c,d,e) EDS mapping analysis of Ba, Zn and V elements, respectively.

Figure S8. (a) EDS spectrum of the chosen particle of **BaZn₃ NPs-25min** displayed in (b). (c,d,e) EDS mapping analysis of Ba, Zn and V elements, respectively.