Achieving excellent energy storage performance with thermal stability in lead-free AgNbO₃ ceramics

Wenna Chao^{a,b}, Juan Du^a, Peng Li^a, Wei Li^a, Tongqing Yang^{b,*}

a College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.

b Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.

Email: yangtongqing@tongji.edu.cn

Fig. S1 The full hysteresis loops of the SANx ceramics

Fig. S2 Phase diagram of SANx ceramics.

Composition (<i>x</i>)	R _{A-site} (Å)	R _{B-site} (Å)	Tolerance factor
0	1.280	0.64	0.927
0.05	1.142	0.64	0.880
0.06	1.114	0.64	0.870
0.07	1.087	0.64	0.860
0.08	1.059	0.64	0.851

Table S1 The average ionic radii of A and B-sites cations and tolerance factor of SANx ceramics.

Table S2 The crystal and refined parameters of SANx ceramics.

Compositions (<i>x</i>)	0	0.05	0.06	0.07	0.08
Space group	Pbcm	Pbcm	Pbcm	Pbcm	Pbcm
Unit cell dimensions	a=5.5465Å b=5.6025 Å c=15.6370 Å	a=5.5427Å b=5.5819 Å c=15.6675 Å	a=5.5345Å b=5.5789 Å c=15.6743 Å	a=5.5324Å b=5.5693 Å c=15.6813 Å	a=5.5258Å b=5.56 Å c=15.6882 Å
Volume	485.90Å ³	484.7Å ³	484Å ³	483.2Å ³	482Å ³
Refining parameters	R_{wp} =0.0650 R_{p} =0.0450	$R_{wp}=0.0731$ $R_{p}=0.0537$	$R_{wp}=0.0633$ $R_{p}=0.0462$	R_{wp} =0.0650 R_{p} =0.0478	R_{wp} =0.0686 R_{p} =0.0492

Fig. S3 (a)-(e) The Rietveld refinement based on space group of Pbcm of SAN*x* ceramics, showing observed (cross), calculated (line) and difference (lower) profiles; (f) The cell volume as a function of Sm³⁺ content.

Fig. S4 P_{max} and P_{r} at different (a) temperatures and (b) frequencies.