ARTICLE

Supplementary information

Core-shell ZnO@TiO₂ hexagonal prism heterogeneous structures as photoanodes for boosting the efficiency of quantum dot sensitized solar cells

Quanhang Li, Tingting Zhang, Donghui Cui, Lin Xu and Fengyan Li*

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

* Corresponding authors.

E-mail addresses: lify525@nenu.edu.cn.

Fig. S1 FTIR spectra of (a)TiO₂,ZnO and Zn@Ti-2; (b) local magnification of FTIR spectra of ZnO and Zn@Ti-2.

Fig. S2 SEM images of(a)Zn@Ti-2; (b) Zn@Ti-2 loaded with Mn@CdS/CdSe QDs; (c-f) EDS element mapping of Zn@Ti-2 loaded with Mn@CdS/CdSe QDs; TEM and HRTEM images of (g) Mn@CdS QDs; (h) Mn@CdS/CdSe QDs.

Fig. S3 Nitrogen adsorption-desorption isotherms of (a) ZnO; (b) Zn@Ti-2 (illustration shows pore size distributions of ZnO and Zn@Ti-2).

Fig.S4 (a) J-V curves of QDSSCs with different photoanodes; (b) transient photocurrent responses; (c) OCVD curves; (d) comparison of average *Jsc* and *PCE*; (e) comparison of average *FF* and *Voc*; (f) IPCE comparison chart.

Fig. S5 PCE distribution histogram of 10 cells measured for ZnO and Zn@Ti-2.

Fig. S6 (a) Nyquist curve of QDSSCs with different photoanodes; (b) Partial magnification of Nyquist curve; (c) Time function curves of *Voc* and *Jsc* corresponding to ZnO and Zn@Ti-2; (d) Tafel curve of QDSSCs with different photoanodes; (e)Bode phase curve; (f) Time function curves of *PCE* and *FF* corresponding to ZnO and Zn@Ti-2.

Fig. S7 Ultraviolet photoelectron spectra of (a) ZnO; (b)Zn@Ti-2.

Fig. S8 (a) PL spectra of ZnO and Zn@Ti-2; and (b) time-resolved PL attenuation spectra of ZnO and Zn@Ti-2.

Table. S1 Comparisons of present photovoltaic values in this study with other reports of similar Photoanode and QDs.

Photoanode	QDs	PCE	<i>Jsc</i> (mA/cm²)	Voc (V)	FF	Year	Ref
RGO@TiO ₂ NRs	CdS	2.20%	11.7	0.45	0.42	2019	1
ZnO	CdSe	3.05%	9.28	0.63	0.74	2021	2
TiO ₂	CdS@CdSe	5.70%	18.3	0.51	0.54	2023	3
RGO@TiO ₂ NRs	CdS	2.20%	11.7	0.45	0.42	2019	4
TiO ₂ /ZnO inverse opal	CdS@CdSe	8.18%	31.2	0.57	0.46	2022	5
TiO ₂	Zn@CdS@CdSe	5.59%	21.5	0.52	0.50	2022	6
TiO ₂	CdS@CdSe	4.05%	14.0	0.48	0.60	2023	7

Table S2 Photovoltaic parameters of QDSSCs corresponding to different photoanodes.

	<i>Jsc</i> (mA/cm²)	Voc (V)	PCE	FF
P25	22.6	0.63	5.7%	0.37
ZnO	24.1	0.63	6.8%	0.45
Zn@Ti-1	24.5	0.65	7.3%	0.46
Zn@Ti-2	25.4	0.71	8.5%	0.49
Zn@Ti-3	24.8	0.69	8.2%	0.48
Zn@Ti-4	24.6	0.68	7.7%	0.46

Table S3 Performance parameters of EIS corresponding to different anodes.

	<i>Rs</i> (Ω)	<i>Rct</i> (Ω)	J ₀ (mA/cm ²)	τ _e (ms)
P25	3.2	55.86	0.49	7.35
ZnO	2.5	38.13	0.90	7.22
Zn@Ti-1	2.3	26.32	1.82	7.05
Zn@Ti-2	1.98	14.40	2.45	6.40
Zn@Ti-3	2.02	16.45	2.22	6.65
Zn@Ti-4	2.1	20.12	2.01	6.80

ARTICLE

References

- 1 T. Huang, X. Zhang, H. Wang, X. Chen, L. Wen, M. Huang, Y. Zhong, H. Luo, G. Tang and L.Zhou, *Superlattices and Microstructures*, 2019, **126**, 17-24.
- 2 M. Ramya, T. K. Nideep, V. P. N. Nampoori and M. Kailasnath, *Journal of Materials Science: Materials inElectronics*, 2021, **32**, 17837-17847.
- 3 B. B. Jin, X. J. Liu, L. C. Dong, X. X. Zhong, M. Y. Liang, J. Gan, M. Chen and F. Guo, *Solar Energy Materials and Solar Cells*, 2023, **255**, 112293.
- 4 Y. Liu, Z. Wang, L. Li, S. Gao, D. Zheng, X. Yu, Q. Wu, Q. Yang, D. Zhu, W. Yang and Y. Xiong, *Electrochimica Acta*, 2022, **412**, 140145.
- 5 W. Lv, Y. Lei, J. Deng, J. Fang and W. Huang, *Solar Energy*, 2022, **232**, 398-408.
- 6 S. Monika, M. Mahalakshmi and M. S. Pandian, Ceramics International, 2023, 49, 8820-8826.
- 7 Y. Deng, S. Lu, Z. Xu, J. Zhang, F. Ma and S. Peng, Science China Materials, 2020, 63, 516-523.