Supplementary Material 1 2 Co-MOF@MWCNTs/GCE for the sensitive detection of TBHQ in food 3 samples 4 Junhui Feng ^a, Chenxin Li ^b, Wan-nai-yi Liu ^a, Xiaoqin Min ^a, Xiaoyun Lin ^{a,*} 5 ^a School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China 6 ^b School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China 7 8 9 1. Effect of drop casting amount 10 11 Fig. S1. (A) The DPV response of 100 µM TBHQ at different modification amounts of Co-12 MOF@MWCNTs electrodes; (B) The relationship between the oxidation peak current of TBHQ and 13 drop casting amount of the Co-MOF@MWCNTs. 14 15 Fig. S1A and B showed the relationship between the amount of Co-MOF@MWCNTs modification 16 and the peak current. As shown in Fig. S1A and B, the peak current increases with the increase of the 17 amount of Co-MOF@MWCNTs modification. When the material modification amount is 5 µL, the 18 peak current reaches the maximum, and then decreases gradually. This is because the effective 19 working area of the modified electrode also increases with the initial amount of Co-20 MOF@MWCNTs, and when the amount of dressing is too large, the large amount of material 21 covering on the electrode surface hinders electron transfer. Therefore, 5 µL Co-MOF@MWCNTs 22 material was selected as the best drop casting amount. 23

¹ In v (mV/s) ² Fig. S2. Plot of the peak potential (E_{pa} and E_{pc}) versus the natural logarithm of scan rates (ln v).

- 3
- 4 Fig. S3. DPV curves of TBHQ at the Co-MOF@MWCNTs: (A) Anti-interference, (B) Repeatability,
- 5 (C) Reproducibility analysis, and (D) stability analysis for 30 days.