ELECTRONIC SUPPLEMENTARY INFORMATION

for

Coupling Between two Ru(bda) Catalysts Bridged by a trans-dicyano Complex

Pedro O. Abate, a,b Virginia M. Juárez, a,b and Luis M. Baraldo a,b

a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
b CONICET – Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
Fig. S1 500 MHz 1H-NMR spectrum of $\text{trans-Ru(tbupy)}_4(\text{CN})_2$ dissolved in $(\text{CD}_3)_2\text{CO}$.

Fig. S2 125 MHz 13C-NMR spectrum of $\text{trans-Ru(tbupy)}_4(\text{CN})_2$ dissolved in $(\text{CD}_3)_2\text{CO}$.
Fig. S3 2D 1H-13C HSQC spectrum of trans-Ru(tbupy)$_4$(CN)$_2$ dissolved in (CD$_3$)$_2$CO.
Fig. S4 500 MHz 1H-NMR spectrum of $[\text{RuRu(tbupy)}_4\text{Ru}]$ dissolved in CD$_3$OD.
Fig. S5 1H-DOSY spectrum of [RuRu(tbupy)$_4$Ru] in CDCl$_3$ at 298K. The diffusion coefficient is 5.31×10^{-6} cm2/s.
Fig. S6 500 MHz 1H-NMR spectrum of [RuRu(py)$_4$Ru] dissolved in D$_2$O.
Fig. S7 2D 1H-1H COSY spectrum of [RuRu(py)$_4$Ru] dissolved in D$_2$O.
Fig. S8 125 MHz 13C-NMR spectrum of [RuRu(py)$_4$Ru] dissolved in D$_2$O.
Fig. S9 2D $^1\text{H}^{13}\text{C}$ HSQC spectrum of [RuRu(py)$_4$Ru] dissolved in D$_2$O.
Fig. S10 2D 1H-15N HSQC spectrum of $[\text{RuRu(py)}_4\text{Ru}]$ dissolved in D$_2$O.

Fig. S11 1H-DOSY spectrum of $[\text{RuRu(py)}_4\text{Ru}]$ in D$_2$O at 298K. The diffusion coefficient is 2.48×10^{-6} cm2/s.
Fig. S12 Absorbance decay monitored at 360 nm in aqueous solution as a function of time for different [RuRu(py)$_4$Ru] concentrations (top) and for different Ce(IV) concentrations (center). Plot of the rate constant vs [RuRu(py)$_4$Ru] concentrations (bottom). Conditions: pH = 1.0 (aqueous 0.1 M triflic acid) and $T = 298$ K.

Calculation of the number of transferred electrons

Fig. S13 shows the fit of the plot of i_p vs the $v^{1/2}$ used for the calculation of the number of transferred electrons according with the Randles-Ševčík equation (1) where i_p is the anodic peak current α, n is the
number of transferred electrons, \(F \) is the Faraday constant (96500 C), \(A \) is the active area of the working electrode (0.0707 cm\(^2\)), \(C \) is the catalyst concentration in mol cm\(^{-3}\), \(v \) is the scan rate in V s\(^{-1}\), \(D \) is the diffusion coefficient (cm\(^2\) s\(^{-1}\)) calculated from \(^1\)H-DOSY experiments, \(T \) is the temperature in kelvin and \(R \) is the ideal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)).

\[
 i_p = 0.4463 nFAC \left(\frac{nFvD}{RT} \right)^{1/2}
\]

(1)

Fig. S13 Left: CV of [RuRu(tbupy)\(_4\)Ru] in CH\(_2\)Cl\(_2\) (0.2 M TBAPF\(_6\)) at different scan rates. Right: plot of the anodic current \(i_p \) (Ru\(^{III/II} \)) vs square root of the scan rate \((v^{1/2})\). Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag wire) and [C] = 0.41 mM.
Fig. S14 Upper graph: CV of [RuRu(py)$_4$Ru] in 0.1 M triflic acid (pH = 1) at different scan rates. Lower graphs: Plots of the anodic current i_p (Ru$^{III/II}$) vs square root of the scan rate ($v^{1/2}$) for the first oxidation (left) and the second oxidation (right) process. Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag/AgCl 3M NaCl) and [C] = 1.28 mM.

Fig. S15 SWV of [RuRu(py)$_4$Ru] at different pH’s (left). Potential vs pH diagram (right). Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag/AgCl 3M NaCl). v = 100 mV/s.
Fig. S16 Anodic scan of the CVs for [RuRu(py)$_4$Ru] in H$_2$O and D$_2$O at in 0.1 M triflic acid (pH = 1 and pD = 1). [RuRu(py)$_4$Ru] = 1.20 mM.

Fig. S17 Plot of calculated the k_{WNA} and k_D vs complex concentration [RuRu(py)$_4$Ru].

Fig. S18 UV-visible spectra of complexes trans-Ru(tbupy)$_4$(CN)$_2$ (olive trace) and [RuRu(tbupy)$_4$Ru] (black trace) in CH$_2$Cl$_2$ and [RuRu(py)$_4$Ru] (red trace) in 0.1 M triflic acid (pH = 1) at 298 K.
Fig. S19 UV-Vis spectroelectrochemistry for $[\text{RuRu(tbupy)}_{4}\text{Ru}]$ in CH$_2$Cl$_2$ (0.2 M TBAH). The arrows indicate observed changes. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).

Fig. S20 UV-Vis spectroelectrochemistry of $[\text{RuRu(py)}_{4}\text{Ru}]$ in 0.1 M triflic acid (pH = 1). The arrows indicate changes during the reduction process. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).

Fig. S21 UV-Vis spectroelectrochemistry of $[\text{RuRu(py)}_{4}\text{Ru}]$ in 0.1 M triflic acid (pH = 1). The arrows indicate observed changes. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).
Table S1. Energies values and percentual group contributions of selected MOs of complex [RuRu(tbupy)$_4$Ru] in their singlet ground state.

<table>
<thead>
<tr>
<th>MOs</th>
<th>Energy (eV)</th>
<th>Ru$_{tbupy}$</th>
<th>Ru$_{bda}$</th>
<th>tbupy</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-1.06</td>
<td>2</td>
<td>1</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-1.23</td>
<td>5</td>
<td>0</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>L+8</td>
<td>-1.32</td>
<td>1</td>
<td>1</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>L+7</td>
<td>-1.37</td>
<td>4</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>L+6</td>
<td>-1.49</td>
<td>3</td>
<td>1</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>L+5</td>
<td>-1.87</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+4</td>
<td>-1.88</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+3</td>
<td>-2.16</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+2</td>
<td>-2.16</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+1</td>
<td>-2.55</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>LUMO</td>
<td>-2.55</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.35</td>
<td>25</td>
<td>54</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>H-1</td>
<td>-5.41</td>
<td>22</td>
<td>57</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>H-2</td>
<td>-5.48</td>
<td>31</td>
<td>50</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>H-3</td>
<td>-5.58</td>
<td>81</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>H-4</td>
<td>-5.59</td>
<td>33</td>
<td>48</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>H-5</td>
<td>-5.83</td>
<td>6</td>
<td>66</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>H-6</td>
<td>-5.96</td>
<td>7</td>
<td>66</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>H-7</td>
<td>-6.16</td>
<td>41</td>
<td>33</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>H-8</td>
<td>-6.25</td>
<td>36</td>
<td>39</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>H-9</td>
<td>-6.77</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>H-10</td>
<td>-6.78</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>94</td>
</tr>
</tbody>
</table>

Fig. S22 Molecular orbital diagram and partial density of states (PDOS) of complex [RuRu(tbupy)$_4$Ru] in their singlet ground state.
Table S2. Energies values and percentual group contributions of selected alpha MOs of complex [RuIIIRuII(tbupy)$_4$RuIII]$^{2+}$ in their triplet ground state.

<table>
<thead>
<tr>
<th>Alpha orbitals</th>
<th>Energy (eV)</th>
<th>Ru$_{tbupy}$</th>
<th>Ru$_{bda}$</th>
<th>tbupy</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.01</td>
<td>3</td>
<td>1</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.66</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>L+8</td>
<td>-2.67</td>
<td>5</td>
<td>60</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>L+7</td>
<td>-2.69</td>
<td>1</td>
<td>62</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>L+6</td>
<td>-2.74</td>
<td>14</td>
<td>56</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.02</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.02</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.23</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+2</td>
<td>-3.23</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+1</td>
<td>-3.72</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>LUMO</td>
<td>-3.72</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.28</td>
<td>81</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>H-1</td>
<td>-6.49</td>
<td>85</td>
<td>5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>H-2</td>
<td>-6.5</td>
<td>85</td>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.55</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>H-4</td>
<td>-7.56</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>H-5</td>
<td>-7.68</td>
<td>6</td>
<td>50</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>H-6</td>
<td>-7.71</td>
<td>6</td>
<td>45</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>H-7</td>
<td>-7.74</td>
<td>3</td>
<td>46</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>H-8</td>
<td>-7.75</td>
<td>3</td>
<td>46</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>H-9</td>
<td>-7.86</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>H-10</td>
<td>-7.86</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>97</td>
</tr>
</tbody>
</table>
Table S3. Energies values and percentual group contributions of selected beta MOs of complex [RuIIIRuII(tbupy)\textsubscript{4}RuIII]2+ in their triplet ground state.

<table>
<thead>
<tr>
<th>Beta orbitals</th>
<th>eV</th>
<th>Ru\textsubscript{tbupy}</th>
<th>Ru\textsubscript{bda}</th>
<th>tbupy</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.83</td>
<td>2</td>
<td>4</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.89</td>
<td>18</td>
<td>54</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>L+8</td>
<td>-3.29</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>L+7</td>
<td>-3.29</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>L+6</td>
<td>-3.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.98</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.98</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+2</td>
<td>-4.94</td>
<td>1</td>
<td>72</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>L+1</td>
<td>-4.95</td>
<td>1</td>
<td>72</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>LUMO</td>
<td>-5.88</td>
<td>79</td>
<td>0</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>HOMO</td>
<td>-7.73</td>
<td>13</td>
<td>53</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>H-1</td>
<td>-7.81</td>
<td>7</td>
<td>49</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>H-2</td>
<td>-7.84</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.85</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>H-4</td>
<td>-8.03</td>
<td>25</td>
<td>46</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>H-5</td>
<td>-8.11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>H-6</td>
<td>-8.12</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>H-7</td>
<td>-8.19</td>
<td>8</td>
<td>55</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>H-8</td>
<td>-8.49</td>
<td>51</td>
<td>5</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>H-9</td>
<td>-8.57</td>
<td>35</td>
<td>12</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td>H-10</td>
<td>-8.68</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>98</td>
</tr>
</tbody>
</table>

Fig. S23 Molecular orbital diagram and partial density of states (PDOS) of complex [RuIIIRuII(tbupy)\textsubscript{4}RuIII]2+ in their triplet ground state.
Fig. S24 Molecular orbitals of complex [Ru^{III}Ru^{II}(tbupy)_{4}Ru^{III}]^{2+} involved in MM´CT transitions.

Table S4. Energies values and percentual group contributions of selected alpha MOs of complex [Ru^{III}Ru^{III}(tbupy)_{4}Ru^{III}]^{3+} in their quartet ground state.

<table>
<thead>
<tr>
<th>Alpha orbitals</th>
<th>eV</th>
<th>Ru_{tbupy}</th>
<th>Ru_{bda}</th>
<th>tbupy</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.87</td>
<td>2</td>
<td>1</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-3.03</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>L+8</td>
<td>-3.05</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>L+7</td>
<td>-3.11</td>
<td>13</td>
<td>56</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>L+6</td>
<td>-3.25</td>
<td>17</td>
<td>49</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.31</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.32</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+2</td>
<td>-3.51</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+1</td>
<td>-4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>LUMO</td>
<td>-4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>HOMO</td>
<td>-7.82</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>H-1</td>
<td>-7.83</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>H-2</td>
<td>-8</td>
<td>10</td>
<td>48</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>H-3</td>
<td>-8.05</td>
<td>4</td>
<td>44</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>H-4</td>
<td>-8.08</td>
<td>4</td>
<td>41</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>H-5</td>
<td>-8.1</td>
<td>2</td>
<td>36</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>H-6</td>
<td>-8.12</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>H-7</td>
<td>-8.13</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>H-8</td>
<td>-8.33</td>
<td>21</td>
<td>49</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>H-9</td>
<td>-8.44</td>
<td>8</td>
<td>53</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>H-10</td>
<td>-8.69</td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>75</td>
</tr>
</tbody>
</table>
Table S5. Energies values and percentual group contributions of selected beta MOs of complex \([\text{Ru}^{III}\text{Ru}^{III}(\text{tbupy})_4\text{Ru}^{III}]^{3+}\) in their quartet ground state.

<table>
<thead>
<tr>
<th>Beta orbitals</th>
<th>eV</th>
<th>Ru$_{\text{tbupy}}$</th>
<th>Ru$_{\text{bda}}$</th>
<th>tbupy</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.83</td>
<td>2</td>
<td>4</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.89</td>
<td>18</td>
<td>54</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>L+8</td>
<td>-3.29</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>L+7</td>
<td>-3.29</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>L+6</td>
<td>-3.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.98</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.98</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+2</td>
<td>-4.94</td>
<td>1</td>
<td>72</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>L+1</td>
<td>-4.95</td>
<td>1</td>
<td>72</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>LUMO</td>
<td>-5.88</td>
<td>79</td>
<td>0</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>HOMO</td>
<td>-7.73</td>
<td>13</td>
<td>53</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>H-1</td>
<td>-7.81</td>
<td>7</td>
<td>49</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>H-2</td>
<td>-7.84</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.85</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>H-4</td>
<td>-8.03</td>
<td>25</td>
<td>46</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>H-5</td>
<td>-8.11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>H-6</td>
<td>-8.12</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>H-7</td>
<td>-8.19</td>
<td>8</td>
<td>55</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>H-8</td>
<td>-8.49</td>
<td>51</td>
<td>5</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>H-9</td>
<td>-8.57</td>
<td>35</td>
<td>12</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td>H-10</td>
<td>-8.68</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>98</td>
</tr>
</tbody>
</table>

Fig. S25 Molecular orbital diagram and partial density of states (PDOS) of complex \([\text{Ru}^{III}\text{Ru}^{III}(\text{tbupy})_4\text{Ru}^{III}]^{3+}\) in their quartet ground state.
Table S6. (TD)DFT assignments for calculated UV-Vis transitions of complex $[RuRu(tbupy)_4Ru]$ in their singlet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>516.7</td>
<td>0.0184</td>
<td>H-4->L+1 (14%)</td>
<td>d(Rubda,Rutbupy)->π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+2 (14%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+1 (27%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+3 (19%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>506.4</td>
<td>0.0108</td>
<td>H-4->L+1 (17%)</td>
<td>d(Rubda,Rutbupy)->π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+2 (16%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+1 (10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+3 (24%)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>456.0</td>
<td>0.0203</td>
<td>H-5->LUMO (12%)</td>
<td>d(Ruba) -> π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->LUMO (11%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+3 (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+3 (10%)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>406.1</td>
<td>0.0255</td>
<td>H-4->L+5 (30%)</td>
<td>d(Rubda,Rutbupy)->π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+5 (19%)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>398.1</td>
<td>0.0338</td>
<td>H-6->LUMO (10%)</td>
<td>d(Rubtupy,Rutbupy)->π*(bda,tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+5 (29%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+5 (32%)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>370.0</td>
<td>0.0432</td>
<td>H-3->L+6 (37%)</td>
<td>d(Rubtupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+6 (17%)</td>
<td>d(Ruba) -> π*(bda)</td>
</tr>
<tr>
<td>53</td>
<td>368.4</td>
<td>0.0702</td>
<td>H-6->L+2 (11%)</td>
<td>d(Rubtupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-3->L+6 (12%)</td>
<td>d(Ruba) -> π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+7 (21%)</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>354.8</td>
<td>0.0635</td>
<td>H-3->L+7 (15%)</td>
<td>d(Rubda,Rutbupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+8 (21%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+8 (29%)</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>352.0</td>
<td>0.1255</td>
<td>H-3->L+8 (36%)</td>
<td>d(Rubda,Rutbupy)->π*(tbupy)</td>
</tr>
<tr>
<td>64</td>
<td>351.6</td>
<td>0.1467</td>
<td>H-3->L+7 (11%)</td>
<td>d(Rubda,Rutbupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-3->L+8 (16%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+9 (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+9 (15%)</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>346.2</td>
<td>0.0995</td>
<td>H-4->L+6 (57%)</td>
<td>d(Rubda,Rutbupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+6 (11%)</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>291.3</td>
<td>0.0693</td>
<td>H-21->LUMO (10%)</td>
<td>d(Rubda,Rutbupy)->π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-18->LUMO (12%)</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>282.9</td>
<td>0.1026</td>
<td>H-8->L+8 (27%)</td>
<td>d(Rubda,Rutbupy)->π*(bda,tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4->L+15 (17%)</td>
<td>π(bda)>π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+15 (14%)</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S26 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [RuRu(tbupy)₄Ru] in their singlet ground state. Calculated transition are represented by black vertical bars.

Table S7. (TD)-DFT assignments for calculated UV-Vis transitions of complex [Ru^{III}Ru^{II}(tbupy)₄Ru^{III}]²⁺ in their triplet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>817.7</td>
<td>0.0114</td>
<td>H-8β→LUMOβ (13%)</td>
<td>d(Ru_{tbupy}) → d(Ru_{bda})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-7β→LUMOβ (10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β→LUMOβ (53%)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>811.9</td>
<td>0.0053</td>
<td>H-8β→L+1β (12%),</td>
<td>d(Ru_{tbupy}) → d(Ru_{bda})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-7β→L+1β (11%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β→L+1β (52%)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>536.3</td>
<td>0.0075</td>
<td>H-2α→LUMOα (49%)</td>
<td>d(Ru_{tbupy}) → π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β→L+2β (39%)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>535.2</td>
<td>0.0038</td>
<td>H-2α→L+1α (48%)</td>
<td>d(Ru_{tbupy}) → π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β→L+3β (40%)</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>391.7</td>
<td>0.0122</td>
<td>H-6β→L+2β (21%)</td>
<td>d(Ru_{tbupy}) → π*(bda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-5β→L+3β (27%)</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>355.5</td>
<td>0.0459</td>
<td>HOMO α→L+10α (38%)</td>
<td>d(Ru_{tbupy}) → π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO β→L+12β (42%)</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>345.9</td>
<td>0.0521</td>
<td>H-1α→L+28α (11%)</td>
<td>d(Ru_{tbupy}) → π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO α→L+11α (23%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO β→L+13β (28%)</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>345.8</td>
<td>0.0417</td>
<td>H-1α→L+28α (15%)</td>
<td>d(Ru_{tbupy}) → π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO α→L+11α (20%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO β→L+13β (17%)</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>334.7</td>
<td>0.0799</td>
<td>H-2α→L+10α (13%)</td>
<td>d(Ru_{tbupy}) → π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO α→L+13α (28%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β→L+12β (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO β→L+15β (29%)</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>322.1</td>
<td>0.1031</td>
<td>H-1α→L+13α (42%)</td>
<td>d(Ru_{tbupy}) → π*(tbupy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1β→L+14β (32%)</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>290.9</td>
<td>0.2091</td>
<td>HOMO β→L+16β (13%)</td>
<td>d(Ru_{tbupy}) → π*(bda)</td>
</tr>
</tbody>
</table>
Fig. S27 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [RuIIIRuII(tbupy)\textsubscript{4}RuIII]2+ in their triplet ground state. Calculated transition are represented by red vertical bars.

Table S8. (TD)DFT assignments for calculated UV-Vis transitions of complex [RuIIIRuII(tbupy)\textsubscript{4}RuIII]3+ in their quartet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
</table>
| 12 | 676.3 | 0.0033 | H-9 β ->LUMO β (43%)
H-4 β ->LUMO β (51%) | d(Ru\textsubscript{tbupy}),π(bda)->d(Ru\textsubscript{tbupy}) |
| 23 | 521.8 | 0.0066 | H-20 β ->LUMO β (82%) | π (tbupy)->d(Ru\textsubscript{tbupy}) |
| 34 | 481.8 | 0.083 | H-22 β ->LUMO β (83%) | π(tbupy)->d(Ru\textsubscript{tbupy}) |
| 35 | 478.7 | 0.0733 | H-21 β ->LUMO β (75%) | π(tbupy)->d(Ru\textsubscript{tbupy}) |
| 94 | 373.9 | 0.043 | H-26 β ->L+2 β (40%)
H-14 β ->L+2 β (19%) | π(tbupy,bda)->d(Ru\textsubscript{tbupy}) |
| 97 | 370.0 | 0.0117 | H-26 β ->L+2 β (11%)
H-14 β ->L+2 β (67%) | π(tbupy) ->d(Ru\textsubscript{bda}) |
| 257 | 291.2 | 0.0804 | H-12 α ->L+1 α (13%)
H-2 α ->L+3 α (12%)
H-4 β ->L+8 β (10%) | d(Ru\textsubscript{bda}) ->π^* (bda) |
| 269 | 288.1 | 0.0869 | H-3 β ->L+13 β (10%)
H-2 β ->L+9 β (16%) | π(bda) -> d(Ru\textsubscript{bda}) |
Fig. S28 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex $\text{[Ru}^\text{III}_2\text{Ru}^\text{III}(\text{tbupy})_4\text{Ru}^\text{III}]^{3+}$ in their quartet ground state. Calculated transition are represented by green vertical bars.

Table S9. Energies values and percentual group contributions of selected MOs of complex $\text{[Ru}^\text{II}_2\text{Ru}^\text{II}(\text{py})_4\text{Ru}^\text{II}]$ in their singlet ground state.

<table>
<thead>
<tr>
<th>MO’s</th>
<th>Energy (eV)</th>
<th>Ru$_{\text{py}}$</th>
<th>Ru$_{\text{bda}}$</th>
<th>py</th>
<th>bda</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-1.2</td>
<td>1</td>
<td>1</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-1.5</td>
<td>6</td>
<td>0</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>L+8</td>
<td>-1.6</td>
<td>2</td>
<td>1</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+7</td>
<td>-1.61</td>
<td>3</td>
<td>0</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>L+6</td>
<td>-1.63</td>
<td>2</td>
<td>1</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+5</td>
<td>-1.93</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+4</td>
<td>-1.94</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>L+3</td>
<td>-2.2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+2</td>
<td>-2.21</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>L+1</td>
<td>-2.57</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>LUMO</td>
<td>-2.58</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.48</td>
<td>19</td>
<td>59</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>H-1</td>
<td>-5.54</td>
<td>10</td>
<td>67</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>H-2</td>
<td>-5.61</td>
<td>37</td>
<td>47</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>H-3</td>
<td>-5.73</td>
<td>32</td>
<td>49</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>H-4</td>
<td>-5.81</td>
<td>83</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>H-5</td>
<td>-5.94</td>
<td>6</td>
<td>67</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>H-6</td>
<td>-6.05</td>
<td>7</td>
<td>68</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>H-7</td>
<td>-6.31</td>
<td>48</td>
<td>28</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>H-8</td>
<td>-6.39</td>
<td>43</td>
<td>34</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>H-9</td>
<td>-6.91</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>H-10</td>
<td>-6.92</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>94</td>
</tr>
</tbody>
</table>
Fig. S29 Molecular orbital diagram and partial density of states (PDOS) of complex $[\text{Ru}^{II}\text{Ru}^{II}(\text{py})_4\text{Ru}^{II}]$ in their singlet ground state.

Table S10. Energies values and percentual group contributions of selected alpha MOs of the complex $[\text{Ru}^{III}\text{Ru}^{II}(\text{py})_4\text{Ru}^{III}]^{2+}$ in their triplet ground state.

<table>
<thead>
<tr>
<th>MOs</th>
<th>Energy (eV)</th>
<th>Ru$_{py}$</th>
<th>Ru$_{bda}$</th>
<th>py</th>
<th>bda</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-1.74</td>
<td>2</td>
<td>1</td>
<td>97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.23</td>
<td>15</td>
<td>57</td>
<td>0</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>L+8</td>
<td>-2.3</td>
<td>14</td>
<td>57</td>
<td>0</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>L+7</td>
<td>-2.49</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>L+6</td>
<td>-2.5</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>L+5</td>
<td>-2.56</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>L+4</td>
<td>-2.57</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>L+3</td>
<td>-2.73</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>L+2</td>
<td>-2.74</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>L+1</td>
<td>-3.24</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>LUMO</td>
<td>-3.24</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.02</td>
<td>83</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-1</td>
<td>-6.18</td>
<td>86</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H-2</td>
<td>-6.18</td>
<td>87</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H-3</td>
<td>-6.84</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>43</td>
<td>10</td>
</tr>
<tr>
<td>H-4</td>
<td>-6.84</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>43</td>
<td>10</td>
</tr>
<tr>
<td>H-5</td>
<td>-7.22</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>H-6</td>
<td>-7.23</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>H-7</td>
<td>-7.32</td>
<td>5</td>
<td>50</td>
<td>1</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>H-8</td>
<td>-7.37</td>
<td>6</td>
<td>44</td>
<td>3</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>H-9</td>
<td>-7.51</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>H-10</td>
<td>-7.52</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>96</td>
<td>0</td>
</tr>
</tbody>
</table>
Table S11. Energies values and percentual group contributions of selected beta MOs of the complex [RuIIIRuII(py)\textsubscript{4}RuIII]2+ in their triplet ground state.

<table>
<thead>
<tr>
<th>MOs</th>
<th>Energy (eV)</th>
<th>Ru\textsubscript{py}</th>
<th>Ru\textsubscript{bda}</th>
<th>py</th>
<th>bda</th>
<th>H\textsubscript{2}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-1.94</td>
<td>14</td>
<td>59</td>
<td>0</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.24</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>L+8</td>
<td>-2.26</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>L+7</td>
<td>-2.54</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+6</td>
<td>-2.55</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>L+5</td>
<td>-2.73</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>L+4</td>
<td>-2.73</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>L+2</td>
<td>-3.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>L+1</td>
<td>-3.74</td>
<td>0</td>
<td>68</td>
<td>0</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>LUMO</td>
<td>-3.74</td>
<td>0</td>
<td>68</td>
<td>0</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.02</td>
<td>83</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-1</td>
<td>-6.15</td>
<td>84</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H-2</td>
<td>-6.15</td>
<td>84</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.07</td>
<td>83</td>
<td>8</td>
<td>7</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>H-4</td>
<td>-7.14</td>
<td>9</td>
<td>50</td>
<td>3</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>H-5</td>
<td>-7.21</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>H-6</td>
<td>-7.21</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>H-7</td>
<td>-7.36</td>
<td>8</td>
<td>51</td>
<td>2</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>H-8</td>
<td>-7.44</td>
<td>12</td>
<td>54</td>
<td>5</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>H-9</td>
<td>-7.51</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>H-10</td>
<td>-7.51</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. S30 Molecular orbital diagram and partial density of states (PDOS) of complex [RuIIIRuII(py)\textsubscript{4}RuIII]2+ in their triplet ground state.
Fig. S31 Molecular orbitals of complex \([\text{Ru}^{\text{III}}\text{Ru}^{\text{II}}(\text{py})_4\text{Ru}^{\text{III}}]^{2+}\) involved in MM’CT transitions #9 and #10.

Table S12. Energies values and percentual group contributions of selected alpha MOs of the complex \([\text{Ru}^\text{IV}\text{Ru}^{\text{III}}(\text{py})_4\text{Ru}^{\text{IV}}]^{2+}\) in their doublet ground state.

<table>
<thead>
<tr>
<th>MOs</th>
<th>Energy (eV)</th>
<th>(\text{Ru_{py}})</th>
<th>(\text{Ru_{bdaOH}})</th>
<th>(\text{Ru_{bdaO}})</th>
<th>(\text{py})</th>
<th>(\text{bda_{OH}})</th>
<th>(\text{bda}_{\text{O}})</th>
<th>(\text{OH})</th>
<th>(\text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.66</td>
<td>10</td>
<td>1</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+8</td>
<td>-2.72</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+7</td>
<td>-2.86</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L+6</td>
<td>-2.87</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.41</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.43</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.57</td>
<td>1</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>L+2</td>
<td>-3.79</td>
<td>6</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>L+1</td>
<td>-3.9</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>LUMO</td>
<td>-4.39</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.16</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-1</td>
<td>-6.38</td>
<td>88</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-2</td>
<td>-6.4</td>
<td>88</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.33</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H-4</td>
<td>-7.49</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>H-5</td>
<td>-7.61</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-6</td>
<td>-7.7</td>
<td>3</td>
<td>31</td>
<td>0</td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>H-7</td>
<td>-7.78</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>63</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>H-8</td>
<td>-7.79</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-9</td>
<td>-7.8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>90</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-10</td>
<td>-7.87</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>76</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table S13. Energies values and percentual group contributions of selected beta MOs of the complex [RuVII(py)₄RuIV]²⁺ in their doublet ground state.

<table>
<thead>
<tr>
<th>MOs</th>
<th>Energy (eV)</th>
<th>Ru_py</th>
<th>Ru_bdaOH</th>
<th>Ru_bdaO</th>
<th>py</th>
<th>bdaOH</th>
<th>bdaO</th>
<th>OH</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+10</td>
<td>-2.71</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+9</td>
<td>-2.72</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+8</td>
<td>-2.85</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L+7</td>
<td>-2.87</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+6</td>
<td>-3.29</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>L+5</td>
<td>-3.43</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L+4</td>
<td>-3.57</td>
<td>1</td>
<td>52</td>
<td>4</td>
<td>0</td>
<td>29</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>L+3</td>
<td>-3.59</td>
<td>6</td>
<td>4</td>
<td>53</td>
<td>0</td>
<td>2</td>
<td>28</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>L+2</td>
<td>-3.9</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>L+1</td>
<td>-4.17</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>LUMO</td>
<td>-4.68</td>
<td>2</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.15</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-1</td>
<td>-6.38</td>
<td>88</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-2</td>
<td>-6.38</td>
<td>87</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H-3</td>
<td>-7.33</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H-4</td>
<td>-7.51</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-5</td>
<td>-7.61</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-6</td>
<td>-7.7</td>
<td>3</td>
<td>31</td>
<td>0</td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>H-7</td>
<td>-7.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>H-8</td>
<td>-7.78</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>61</td>
<td>3</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>H-9</td>
<td>-7.79</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>91</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H-10</td>
<td>-7.8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>92</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. S32 Molecular orbital diagram and partial density of states (PDOS) of complex [RuVII(py)₄RuIV]²⁺ in their doublet ground state.
Fig. S33 Molecular orbitals of complex $[\text{Ru}^\text{VI}\text{Ru}^\text{II}(\text{py})_4\text{Ru}^\text{IV}]^{2+}$ involved in MM’CT transitions #3.
Table S14. (TD)DFT assignments for calculated UV-Vis transitions of complex \([\text{Ru}^\text{II}\text{Ru}^\text{II}(\text{py})_4\text{Ru}^\text{II}]\) in their singlet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>498.3</td>
<td>0.0151</td>
<td>H-3->L+1 (10%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+2 (22%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+1 (18%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+3 (24%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>489.7</td>
<td>0.0193</td>
<td>H-3->L+1 (27%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+2 (10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+1 (14%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+3 (16%)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>442.0</td>
<td>0.0316</td>
<td>H-5->L+2 (13%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+2 (23%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+3 (17%)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>389.1</td>
<td>0.0292</td>
<td>H-2->L+5 (46%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+5 (16%)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>360.2</td>
<td>0.1275</td>
<td>H-4->L+4 (10%)</td>
<td>(d(\text{Ru}{\text{py}},\text{Ru}{\text{bda}}))->(\pi^*(\text{py}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4->L+7 (13%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4->L+8 (41%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO->L+9 (11%)</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>357.3</td>
<td>0.0839</td>
<td>H-4->L+5 (10%)</td>
<td>(d(\text{Ru}{\text{py}},\text{Ru}{\text{bda}}))->(\pi^*(\text{py}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4->L+7 (28%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4->L+8 (10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+6 (22%)</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>346.3</td>
<td>0.0474</td>
<td>H-5->L+4 (20%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-5->L+5 (29%)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>342.3</td>
<td>0.0119</td>
<td>H-6->L+5 (39%)</td>
<td>(d(\text{Ru}{\text{bda}},\text{Ru}{\text{py}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-3->L+4 (10%)</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>310.7</td>
<td>0.0376</td>
<td>H-2->L+11 (17%)</td>
<td>(d(\text{Ru}{\text{py}},\text{Ru}{\text{bda}}))->(\pi^*(\text{py}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+12 (10%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+13 (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->L+11 (12%)</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>286.6</td>
<td>0.2903</td>
<td>H-18->LUMO (13%)</td>
<td>(\pi(\text{bda}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-18->L+1 (11%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-17->LUMO (11%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-17->L+1 (12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-10->L+4 (13%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-9->L+5 (20%)</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>285.2</td>
<td>0.0875</td>
<td>H-17->L+1 (12%)</td>
<td>(\pi(\text{bda}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-10->L+5 (14%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-9->L+4 (26%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-9->L+5 (25%)</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>247.0</td>
<td>0.1809</td>
<td>H-2->L+18 (22%)</td>
<td>(d(\text{Ru}{\text{py}},\text{Ru}{\text{bda}}))->(\pi^*(\text{bda}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2->L+20 (10%)</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S34 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex $[\text{Ru}^{II}\text{Ru}^{II}(\text{py})_4\text{Ru}^{II}]$ in their singlet ground state. Calculated transition are represented by red vertical bars.

Table S15. (TD)DFT assignments for calculated UV-Vis transitions of the complex $[\text{Ru}^{III}\text{Ru}^{II}(\text{py})_4\text{Ru}^{III}]^{2+}$ in their triplet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>604.0</td>
<td>0.0009</td>
<td>H-8 $\beta \rightarrow$LUMO β(15%)
H-1 $\beta \rightarrow$LUMO β(61%)</td>
<td>$d(\text{Ru}{\text{py}}) \rightarrow d(\text{Ru}{\text{bda}})$</td>
</tr>
<tr>
<td>10</td>
<td>603.8</td>
<td>0.0003</td>
<td>H-8 $\beta \rightarrow$L+1 β(13%)
H-1 $\beta \rightarrow$L+1 β(54%)</td>
<td>$d(\text{Ru}{\text{py}}) \rightarrow d(\text{Ru}{\text{bda}})$</td>
</tr>
<tr>
<td>11</td>
<td>582.2</td>
<td>0.0056</td>
<td>H-4 $\alpha \rightarrow$L+4 α(13%)
H-4 $\alpha \rightarrow$L+6 α(62%)
H-3 $\alpha \rightarrow$L+6 α(11%)</td>
<td>$d(\text{Ru}{\text{bda}}) \rightarrow d(\text{Ru}{\text{bda}})$</td>
</tr>
<tr>
<td>12</td>
<td>579.5</td>
<td>0.0059</td>
<td>H-4 $\alpha \rightarrow$L+7 α(12%)
H-3 $\alpha \rightarrow$L+5 α(10%)
H-3 $\alpha \rightarrow$L+7 α(65%)</td>
<td>$d(\text{Ru}{\text{bda}}) \rightarrow d(\text{Ru}{\text{bda}})$</td>
</tr>
<tr>
<td>28</td>
<td>504.6</td>
<td>0.005</td>
<td>H-1 $\alpha \rightarrow$L+1 α(36%)
H-1 $\beta \rightarrow$L+3 β(33%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{bda})$</td>
</tr>
<tr>
<td>99</td>
<td>375.8</td>
<td>0.0159</td>
<td>H-6 $\alpha \rightarrow$LUMO α(14%)
H-6 $\beta \rightarrow$L+2 β(31%)
H-5 $\beta \rightarrow$L+2 β(13%)</td>
<td>LLCT (DMSO\rightarrowbd)</td>
</tr>
<tr>
<td>123</td>
<td>357.6</td>
<td>0.0468</td>
<td>HOMO $\alpha \rightarrow$L+10 α(35%)
HOMO $\beta \rightarrow$L+12 β(39%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{py})$</td>
</tr>
<tr>
<td>124</td>
<td>356.5</td>
<td>0.0444</td>
<td>HOMO $\alpha \rightarrow$L+11 α(36%)
HOMO $\beta \rightarrow$L+13 β(39%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{py})$</td>
</tr>
<tr>
<td>180</td>
<td>334.2</td>
<td>0.1576</td>
<td>H-1 $\alpha \rightarrow$L+12 α(15%)
H-1 $\alpha \rightarrow$L+13 α(14%)
H-1 $\beta \rightarrow$L+14 β(12%)
H-1 $\beta \rightarrow$L+15 β(14%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{py})$</td>
</tr>
<tr>
<td>182</td>
<td>333.0</td>
<td>0.1204</td>
<td>H-2 $\alpha \rightarrow$L+13 α(19%)
H-2 $\beta \rightarrow$L+15 β(18%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{py})$</td>
</tr>
<tr>
<td>309</td>
<td>287.7</td>
<td>0.107</td>
<td>H-1 $\beta \rightarrow$L+19 β(12%)</td>
<td>$d(\text{Ru}_{\text{py}}) \rightarrow \pi^*(\text{py})$</td>
</tr>
<tr>
<td>380</td>
<td>273.3</td>
<td>0.1078</td>
<td>H-6 $\beta \rightarrow$L+10 β(23%)
H-5 $\beta \rightarrow$L+11 β(14%)</td>
<td>LMCT (DMSO\rightarrowRu$_{bda}$)
LLCT (DMSO\rightarrowbd)</td>
</tr>
</tbody>
</table>
Fig. S35 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru$_{III}$Ru$_{II}$(py)$_4$Ru$_{III}$]$^{2+}$ in their triplet ground state. Calculated transition are represented by red vertical bars.

Fig. S36 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru$_{IV}$Ru$_{II}$(py)$_4$Ru$_{IV}$]$^{2+}$ in their singlet ground state. Calculated transition are represented by red vertical bars.
Table S16. (TD)DFT assignments for calculated UV-Vis transitions of the complex [RuVII(py)₄RuIV]²⁺ in their doublet ground state.

<table>
<thead>
<tr>
<th>No.</th>
<th>Wavelength (nm)</th>
<th>Osc. Strength</th>
<th>Major contributions</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1092.7</td>
<td>0.0275</td>
<td>H-2β->LUMOβ (88%)</td>
<td>d(Rup) -> d(RubdaO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1β->LUMOβ (10%)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>616.1</td>
<td>0.0078</td>
<td>H-4β->LUMOβ (91%)</td>
<td>π(bdaO) -> d(RubdaO)</td>
</tr>
<tr>
<td>125</td>
<td>397.2</td>
<td>0.0482</td>
<td>H-4α->L+2α (21%)</td>
<td>π(bdaO) -> d(RubdaO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4β->L+3β (48%)</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>348.4</td>
<td>0.0561</td>
<td>HOMOα->L+12α (41%)</td>
<td>d(Rup) -> π*(py)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMOβ->L+13β (43%)</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>347.0</td>
<td>0.0623</td>
<td>HOMOα->L+13α (45%)</td>
<td>d(Rup) -> π*(py)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMOβ->L+14β (46%)</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>320.5</td>
<td>0.0477</td>
<td>H-1α->L+15α (10%)</td>
<td>d(Rup) -> π*(py)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-4β->L+5β (11%)</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>320.2</td>
<td>0.0971</td>
<td>H-2α->L+14α (18%)</td>
<td>d(Rup) -> π*(py)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-29β->LUMOβ (20%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-2β->L+15β (13%)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. S37 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [RuVII(py)₄RuIV]²⁺ in their triplet ground state. Calculated transition are represented by red vertical bars.