Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Immobilization of Isolated Dimethyltin Species on Crystalline Silicates through Surface Modification of Layered Octosilicate

Masashi Yatomi,^a Takuya Hikino,^b Seiji Yamazoe,^c Kazuyuki Kuroda,^{a, d} Atsushi Shimojima*^{a, d}

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan).

- ^bDepartment of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan).
- ^cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397 (Japan).

^dKagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051 (Japan).

Contents

Table S3 Integral intensity ratios of the ²⁹ Si MAS NMR signals (Fig. S9) and the degree	ee
of silylation for Me ₂ Si-Oct	.9
Fig. S10 Powder XRD pattern of Me ₂ Si-Oct.	.9
Scheme S2 (a) A possible mechanism that explains the limited degree of dimethylti	n-
modification (approximately 50%). (b) A possible structure of Me ₂ Sn-Oct_10	10
Fig. S11 UV–Vis spectrum of dimethyltin oxide	11
Table S4 The values of the absorption edge for each spectrum	11
Fig. S12 A structural model of dimethyltin oxide	12
Fig. S13 A structural model of Me ₂ Sn-Oct_X	12
References	13

Fig. S1 Powder XRD patterns of (a) Na-Oct, (b) C₁₆TMA-Oct, and (c) H-Oct.

Fig. S2 FT-IR spectra of (a) Na-Oct, (b) $C_{16}TMA$ -Oct, and (c) H-Oct.

Fig. S3 ²⁹Si MAS NMR spectra of (a) Na-Oct, (b) C₁₆TMA-Oct, and (c) H-Oct.

Samples	Chamical	Shift (nnm)	Integral intensity
	Cilcinical	Sinit (ppin)	ratio
	Q ³	Q ⁴	Q ³ /Q ⁴
Na-Oct	-100	-111	1.00
C ₁₆ TMA-Oct	-100	-111	1.00
H-Oct	-98	-110	1.00

Table S1 Chemical shifts and integral intensity ratios of the ²⁹Si MAS NMR signals (Fig. S3) for Na-Oct, C₁₆TMA-Oct, and H-Oct.

Oct, and Me ₂ Si-Oct.				
Samples	C / wt%	N / wt%	Si/wt%	Na / wt%
Na-Oct	-	-	30.6	5.4
C ₁₆ TMA-Oct	36.8	2.4	18.7	0.3
H-Oct	-	-	41.9	0.5
Me ₂ Si-Oct	5.2	0.3	40.6	-

Table S2 Carbon, nitrogen, silicon, and sodium contents in Na-Oct, C₁₆TMA-Oct, H-

Fig. S4 ¹³C CP/MAS NMR spectrum of C_{16} TMA-Oct. The signals were assigned according to the previous report.¹

Fig. S5 FT-IR spectra of (black line) Me₂Sn-Oct_10 and (red line) Me₂Sn-Oct_10 after drying.

Scheme S1 Possible reaction scheme for the elimination of two $C_{16}TMA^+$ cations by the reaction of one Me_2SnCl_2 molecule.

Fig. S6 ²⁹Si MAS NMR spectra of (a) H-Oct and (b) H-Oct_heat.

Fig. S7 ¹³C CP/MAS NMR spectrum of H-Oct_heat.

Fig. S8 Powder XRD patterns of (a) H-Oct and (b) H-Oct_heat.

H-Oct and H-Oct_heat were analyzed by ¹³C CP/MAS NMR (Fig. S7) and powder XRD (Fig. S8). The presence of acetone in H-Oct_heat was confirmed by ¹³C NMR spectrum. The basal spacing of H-Oct_heat increased from that of H-Oct, which was generally consistent with the profile of the XRD pattern for acetone-adsorbed H-octosilicate reported previously.² These results suggested that acetone as a washing solvent was intercalated between the layers.

Fig. S9 ²⁹Si MAS NMR spectrum of Me₂Si-Oct.

Table S3 Integral intensity ratios of the ²⁹Si MAS NMR signals (Fig. S9) and the degree of silylation for Me₂Si-Oct.

Samples	Integral intensity ratio		y ratio	Degree of silylation
-	D ²	Q ³	Q4	/ %
Me ₂ Si-Oct	0.43	0.12	1.88	88

Fig. S10 Powder XRD pattern of Me₂Si-Oct.

Scheme S2 (a) A possible mechanism that explains the limited degree of dimethyltinmodification (approximately 50%). (b) A possible structure of Me₂Sn-Oct_10.

Fig. S11 UV–Vis spectrum of dimethyltin oxide.

Samples	Absorption edges / eV
Sn foil	29195.0
SnO	29196.8
SnO_2	29200.6
DMTO	29198.6
$Me_2Sn-Oct_0.1$	29197.2
$Me_2Sn-Oct_0.25$	29197.1
$Me_2Sn-Oct_0.5$	29197.2
Me ₂ Sn-Oct_10	29197.2

Table S4 The values of the absorption edge for each spectrum.

Fig. S12 A structural model of dimethyltin oxide.

Fig. S13 A structural model of Me₂Sn-Oct_X.

References

- 1 B. B. Kharkov and S. V. Dvinskikh, J. Phys. Chem. C, 2013, 117, 24511–24517.
- M. Borowski, O. Kovalev and H. Gies, *Microporous Mesoporous Mater.*, 2008, 107, 71–80.