Supporting Information

Influence of organic cation on the formation of hexahalotechnetates: X-ray, thermal and comparative analysis of non-valent interactions

Anton P. Novikov^a, Karim A. Zagidullin^a*, Mikhail A. Volkov^a, Konstantin E. German^a, Iurii M. Nevolin^a, Mikhail S. Grigoriev^a

^{a.} Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Russian Federation, Moscow, 31 Bldg 4, Leninsky prosp, 119071

* zagidullink@Yandex.ru

Table of contents

Table of contents	2
1. Experimental methods	3
1.1 Electron absorption spectroscopy and IR-spectroscopy of 1 and 2	3
1.2 Thermal analysis	3
1.3 XAFS spectroscopy of 13	3
1.4 Powder X-ray diffraction (PXRD)	3
1.5 Measurements of technetium concentration in saturated solutions. Beta spectrometry	3
2. Crystal structure data	4
3. Solubility of some Tc(Hal) ₆ ²⁻ compounds	22
4. Thermal analysis	23
5. X-ray phase analysis of thermolysis products and some initial substances	26
6. Hirshfeld surface analysis	30

1. Experimental methods

1.1 Electron absorption spectroscopy and IR-spectroscopy of 1 and 2

UV-Vis spectroscopy of a stock solution of compound 4 was carried out on an Agilent Cary 100 spectrophotometer in the range of 200-800 nm. A quartz cell 1 = 1.01 mm was used.

Infrared spectroscopy was carried out on a Nicolet Magna 550 FTIR instrument.

1.2 Thermal analysis

We performed thermal gravimetry with simultaneous differential thermal analysis (TG-DTA) using a Netzsch STA Jupiter 449 F3 thermoanalytical complex. Heating was carried out at a rate of 10 °C/min in the temperature range 40–1000 °C. Al₂O₃ crucibles and W-Re sample carrier were used; the atmosphere was the Ar-1.5% H₂ mixture with a purity of ω (Ar + H₂) = 99.999%.

1.3 XAFS spectroscopy of 13

The X-ray absorption spectra (EXAFS, XANES) on the Tc K-edge were taken with the Structural Materials Science Station (Russian Research Centre Kurchatov Institute) transmission geometry in the using а Si(111) monoblock monochromator with a slit and two ionization chambers filled with an argon-xenon mixture. The EXAFS spectra were processed with Athena and Artemis programs from the IFEFFIT package¹. The multisphere fitting of normalized EXAFS curves $\gamma(k)$ was performed in the photoelectron wavenumber Å–1 with range k 4.0 - 15.0the *k*3 weight scheme using the photoelectron theoretical phases and scattering amplitudes calculated with FEFF program². As reference sample we used a polycrystalline powder of technetium metal.

1.4 Powder X-ray diffraction (PXRD)

PXRD measurements were performed using a Panalytical Aeris X-ray diffractometer with Cu K α radiation and PIXcel3D detector. Diffraction patterns were recorded with a step of $2\theta = 0.011^{\circ}$ in the Bragg-Brentano geometry. Powders were placed on a zero-background silicon holder and covered with shellac.

1.5 Measurements of technetium concentration in saturated solutions. Beta spectrometry

The concentration of technetium in saturated solutions of various hexahalogenotechnetates was assessed by adding a sample of the dry compound into a 1.5 ml glass vial with 500 μ l of solvent, which was placed in a thermostat. An aliquot was taken to determine the activity of the solution for those samples where a precipitate of the original substance remained at the bottom of the vials. If the precipitate was completely dissolved in the vial, then an additional portion of

the dry compound was added. Measurements of the activity of solutions were carried out after keeping the solvent above the sediment for at least 7 days. The experimental results are given in the SI Table S36

Activity measurements in solutions were carried out on a Tri-Carb 3180 TR/SL instrument (Perkin Elmer) using the liquid scintillation spectrometry (LSC) method. An aliquot of the analyzed solvent was mixed with HiSafe-3 liquid scintillator (Perkin Elmer) in a ratio of 1:20. The activity of technetium was taken to be $635Bk/\mu g^{43}$.

2. Crystal structure data

The crystal structures of all synthesized substances were determined by Xray structural analysis using an automatic four-circle area-detector diffractometer Bruker KAPPA APEX II with MoK α radiation. The cell parameters were refined over the entire data set together with data reduction by using SAINT-Plus software³. Absorption corrections were introduced using the SADABS program⁴. The structures were solved by using the SHELXT-2018/2 program⁵ and refined by full-matrix least squares on F^2 in the anisotropic approximation for all nonhydrogen atoms (SHELXL-2018/3⁶). The C-H in all structures and N-H in **5** bonded hydrogen atoms were placed in geometrically calculated positions and refined in an idealized geometry with isotropic temperature factors equal to $1.2U_{eq}(C, N)$ for CH-groups, and $1.5U_{eq}(C)$ for CH₃-groups. N-H and O-H bonded hydrogen atoms were objectively located from the difference Fourier synthesis and refined with isotropic temperature factors equal to $1.2U_{eq}(N)$ and $1.5 U_{eq}(O)$.

Crystal data, data collection, and structure refinement details are summarized in Table S1. Tables S2–S32 represent all other crystallographic parameters of structures 1 - 8. The atomic coordinates were deposited at the Cambridge Crystallographic Data Centre, CCDC No 2298414-2298421 for 1-8. Table S1. Crystal data and structure refinement for 1-8.

Identific ation	1	2	3	4	5	6	7	8
code								
CCDC	22984	22984	22984	22984	22984	22984	22984	22984
number	20	14	17	15	21	18	19	16
Empirica l formula	$\begin{array}{c} C_{16}H_{24}\\ Br_6N_8\\ O_5Tc \end{array}$	$\begin{array}{c} C_{16}H_{22} \\ Cl_{6}N_{8} \\ O_{4}Tc \end{array}$	$\begin{array}{c} C_{28}H_{32} \\ Cl_8N_4 \\ O_4S_4T \\ c \end{array}$	$\begin{array}{c} C_{14}H_{16} \\ Cl_6N_2 \\ O_2S_2T \\ c \end{array}$	$\begin{array}{c} C_{48}H_{66} \\ Cl_{20}N_2 \\ {}_4O_3Tc_2 \end{array}$	$\begin{array}{c} C_{12}H_{14}\\ Br_6N_4\\ O_2Tc \end{array}$	$\begin{array}{c} C_8H_{24}\\ Br_6N_2\\ Tc \end{array}$	$\begin{array}{c} C_8H_{24}\\ Cl_6N_2\\ Tc \end{array}$
Formula weight	985.89	701.11	998.41	619.11	1932.2 4	823.73	725.75	458.99
Tempera ture/K	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal	monoc	triclini	triclini	triclini	monoc	monoc	monoc	monoc

system	linic	c	c	c	linic	linic	linic	linic
Space group	$P2_1/n$	P-1	P-1	P-1	$P2_1/c$	$P2_1/n$	$P2_1/n$	$P2_1/n$
a/Å	13.428	7.898(7.1584	7.2136	28.562	8.3100	9.1485	8.8583
a/A	(2)	3)	(4)	(5)	3(9)	(11)	(5)	(7)
h/Å	14.292	8.106(9.3884	8.0612	12.861	10.801	10.749	10.434
0/A	(3)	3)	(5)	(6)	6(4)	3(15)	7(6)	0(8)
c/Å	15.242	10.452	15.484	9.8742	22.092	11.899	9.9767	9.6725
U/A	(3)	(4)	6(8)	(7)	3(7)	2(16)	(5)	(8)
a/°	00	96.572	76.369	98.062	00	00	00	00
u/	90	(16)	(2)	(3)	90	90	90	90
ß/o	106.82	91.809	79.704	100.83	108.19	101.54	92.386	92.915
p/	3(7)	(15)	(2)	0(3)	10(10)	9(6)	(2)	(3)
or/°	00	112.38	81.477	92.071	00	00	00	00
· · · · · · · · · · · · · · · · · · ·	90	2(14)	(2)	(3)	90	90	90	90
Volume/	2800.0	612.7(988.92	557.23	7710.1	1046.4	980.29	892.85
Å ³	(9)	4)	(9)	(7)	(4)	(2)	(9)	(12)
Z	4	1	1	1	4	2	2	2
$\rho_{calc}g/cm$	2.339	1.900	1.676	1.845	1.665	2.614	2.459	1.707
µ/mm ⁻¹	9.120	1.285	1.155	1.566	1.108	12.158	12.948	1.688
F(000)	1876.0	351.0	503.0	307.0	3888.0	766.0	678.0	462.0
Crystol	0.1 ×	0.1 ×	0.2 ×	0.13 ×	0.3 ×	0.12 ×	0.28 ×	0.22 ×
cize/mm ³	$0.04 \times$	$0.08 \times$	0.1 ×	0.12 ×	0.26 ×	0.1 ×	0.2 ×	0.18 ×
	0.03	0.05	0.07	0.04	0.2	0.09	0.14	0.17
	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Radiatio	$(\lambda =$	(λ=	$(\lambda =$	$(\lambda =$	(λ=	(λ=	$(\lambda =$	$(\lambda =$
n	0.7107	0.7107	0.7107	0.7107	0.7107	0.7107	0.7107	0.7107
	3)	3)	3)	3)	3)	3)	3)	3)
20 range	8 384	8 964	8 1 7 8	8 406	8 2 9 6	8 3 1 8	8 1 7 8	6.038
for data	to	to	to	to	to	to	to	to
collectio	59.998	59.998	59.99	59.998	69.992	59.996	59.992	60.398
<u>n/o</u>	10.1		0.1				10.11	
	-18≤h	$-II \leq h$	-9≤h	$-10 \le h$	$-45 \le h$	-11 ≤ h	$-12 \le h$	$-12 \le h$
T 1	$\leq 18, -$	$\leq 11, -$	$\leq 10, -$	$\leq 9, -$	$\leq 43, -$	$\leq 9, -$	$\leq 12, -$	$\leq 12, -$
Index	$20 \le K$	$\prod \leq K$	$13 \leq K$	$ I \leq K$	$20 \le k$	$15 \le K$	$14 \leq K$	$14 \leq K$
ranges	$\leq 20, -$	$\leq 11, -$	$\leq 13, -$	$\leq 11, -$	$\leq 20, -$	$\leq 15, -$	$\leq 15, -$	$\leq 14, -$
	$21 \leq 1$	$14 \leq 1$	$21 \leq 1$	$13 \leq 1$	$35 \leq 1$	$16 \le 1$	$14 \leq 1$	$13 \leq 1$
	≤ 21	≤ 14	≤ 21	≤ 13	≤ 34	≤ 16	≤ 14	≤ 13
Reflectio ns collected	43761	10321	19290	11493	20507 0	18373	20326	15015
Independ	8150	3569	5751	3237	33002	3039	2839	2620
ent	$[R_{int} =$	$[R_{int} =$	$ [R_{int} =$	$ [R_{int} =$	$[R_{int} =$	$ [R_{int} =$	$[R_{int} =$	$ [R_{int} =$

reflectio	0.1817	0.0950	0.0267	0.0397	0.0529	0.1211	0.0448	0.0512
ns	,	,	,	,	,	,	,	,
	R _{sigma}							
	=	=	=	=	=	=	=	=
	0.1617	0.1230	0.0299	0.0477	0.0453	0.1010	0.0300	0.0372
]]]]]]]]
Data/rest	8150/4	3569/0	5751/0	3237/4	33002/	3039/3	2839/0	2620/0
raints/par	/326	/166	/241	/133	9/892	/124	/85	/127
ameters	7520	/100	/271	/155	7/072	/127	705	/12/
Goodnes								
s-of-fit	0.986	0.969	1.037	1.020	1.020	0.997	1.006	1.038
on F ²								
Final R	$\mathbf{R}_1 =$							
indexes	0.0610	0.0585	0.0230	0.0364	0.0358	0.0454	0.0218	0.0231
$II >= 2\sigma$,	,	,	,	,	,	,	,
$[1^{2}-20]$	$wR_2 =$							
	0.1058	0.1238	0.0493	0.0760	0.0640	0.0649	0.0406	0.0450
	$\mathbf{R}_1 =$							
Final R	0.1664	0.0951	0.0291	0.0519	0.0643	0.1057	0.0305	0.0321
indexes	,	,	,	,	,	,	,	,
[all data]	$wR_2 =$							
	0.1380	0.1418	0.0516	0.0827	0.0735	0.0792	0.0425	0.0485
Largest								
diff.	1.54/-	1.21/-	0.41/-	0.78/-	0.69/-	0.98/-	0.55/-	0.43/-
peak/hol	1.92	2.62	0.29	0.56	0.60	1.28	0.59	0.38
e / e Å-3								

 Table S2. Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Br1	2.4871(12)	N1	C2	1.414(10)
Tc1	Br2	2.5132(11)	N1	C10	1.489(10)
Tc1	Br3	2.5334(12)	N3	C12	1.469(10)
Tc1	Br4	2.5034(12)	N3	C4	1.346(9)
Tc1	Br5	2.5159(12)	N3	C2	1.373(10)
Tc1	Br6	2.5038(12)	N23	C24	1.356(10)
013	C6	1.230(9)	N23	C22	1.387(10)
O31	C22	1.213(10)	N23	C32	1.475(10)
011	C2	1.221(9)	N9	C4	1.361(10)
N7	C5	1.380(9)	N9	C8	1.341(11)
N7	C14	1.444(10)	N27	C25	1.380(9)
N7	C8	1.330(11)	N27	C28	1.319(10)
N21	C26	1.406(10)	N27	C34	1.479(10)
N21	C22	1.384(11)	O33	C26	1.244(10)

N21	C30	1.477(10)	C5	C6	1.419(11)
N29	C24	1.369(9)	C5	C4	1.354(11)
N29	C28	1.334(10)	C25	C24	1.354(11)
N1	C6	1.405(10)	C25	C26	1.405(11)

Table S3. Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Br1	Tc1	Br2	89.47(4)	C8	N9	C4	107.8(8)
Br1	Tc1	Br3	89.20(4)	C25	N27	C34	127.7(7)
Br1	Tc1	Br4	89.85(4)	C28	N27	C25	107.2(7)
Br1	Tc1	Br5	90.18(4)	C28	N27	C34	125.1(7)
Br1	Tc1	Br6	179.75(5)	N7	C5	C6	129.6(8)
Br2	Tc1	Br3	88.63(4)	C4	C5	N7	107.7(7)
Br2	Tc1	Br5	90.19(4)	C4	C5	C6	122.7(7)
Br4	Tc1	Br2	178.72(4)	013	C6	N1	120.7(8)
Br4	Tc1	Br3	90.28(4)	013	C6	C5	127.9(8)
Br4	Tc1	Br5	90.90(4)	N1	C6	C5	111.5(7)
Br4	Tc1	Br6	90.37(4)	N27	C25	C26	131.9(8)
Br5	Tc1	Br3	178.67(4)	C24	C25	N27	107.7(7)
Br6	Tc1	Br2	90.31(4)	C24	C25	C26	120.4(7)
Br6	Tc1	Br3	90.68(4)	N23	C24	N29	127.8(8)
Br6	Tc1	Br5	89.93(4)	C25	C24	N29	107.3(7)
C5	N7	C14	127.1(8)	C25	C24	N23	124.9(7)
C8	N7	C5	107.1(7)	033	C26	N21	120.3(7)
C8	N7	C14	125.7(8)	033	C26	C25	126.2(8)
C26	N21	C30	116.5(7)	C25	C26	N21	113.4(8)
C22	N21	C26	126.1(7)	N3	C4	N9	129.0(8)
C22	N21	C30	117.4(7)	N3	C4	C5	123.4(7)
C28	N29	C24	107.5(7)	C5	C4	N9	107.6(7)
C6	N1	C2	126.3(7)	011	C2	N1	121.2(8)
C6	N1	C10	119.0(7)	011	C2	N3	122.1(8)
C2	N1	C10	114.6(7)	N3	C2	N1	116.6(7)
C4	N3	C12	119.5(7)	N27	C28	N29	110.4(7)
C4	N3	C2	119.4(7)	031	C22	N21	121.5(8)
C2	N3	C12	120.7(7)	031	C22	N23	121.5(8)
C24	N23	C22	118.0(7)	N21	C22	N23	117.0(8)
C24	N23	C32	121.0(6)	N7	C8	N9	109.8(7)
C22	N23	C32	120.5(7)				

Table S4. Hydrogen Bonds for 1.

D	H	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N29	H29	O13 ¹	0.87(2)	1.93(4)	2.716(9)	150(7)
01	H1B	O1 ²	0.84(2)	2.50(8)	3.134(15)	133(9)

N9	H9	O1	0.87(2)	1.94(4)	2.754(10)	154(7)
C14	H14B	O31	0.98	2.47	3.216(11)	132.2
C28	H28	O31 ³	0.95	2.44	3.119(10)	128.6
C28	H28	O11 ⁴	0.95	2.40	3.189(9)	140.9
C34	H34B	O31 ³	0.98	2.51	3.343(11)	142.4
C8	H8	O11 ⁵	0.95	2.19	3.066(10)	152.3

¹2-X,1-Y,1-Z; ²2-X,1-Y,2-Z; ³5/2-X,1/2+Y,3/2-Z; ⁴1+X,+Y,+Z; ⁵3/2-X,-1/2+Y,3/2-Z

Table S4. Torsion Angles for 1.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
N7	C5	C6	013	-0.7(13)	C2	N1	C6	C5	0.7(10)
N7	C5	C6	N1	178.1(7)	C2	N3	C4	N9	-179.4(7)
N7	C5	C4	N3	-178.4(7)	C2	N3	C4	C5	0.1(11)
N7	C5	C4	N9	1.2(9)	C14	N7	C5	C6	4.0(13)
N27	C25	C24	N29	-1.5(8)	C14	N7	C5	C4	-176.4(7)
N27	C25	C24	N23	179.0(7)	C14	N7	C8	N9	175.7(7)
N27	C25	C26	N21	178.4(7)	C28	N29	C24	N23	-178.8(7)
N27	C25	C26	033	1.1(14)	C28	N29	C24	C25	1.8(8)
C5	N7	C8	N9	-0.2(9)	C28	N27	C25	C24	0.7(8)
C12	N3	C4	N9	-6.3(11)	C28	N27	C25	C26	-179.4(8)
C12	N3	C4	C5	173.2(7)	C22	N21	C26	033	179.7(8)
C12	N3	C2	011	5.2(11)	C22	N21	C26	C25	2.2(11)
C12	N3	C2	N1	-173.9(6)	C22	N23	C24	N29	-176.0(7)
C6	N1	C2	011	-178.6(7)	C22	N23	C24	C25	3.4(11)
C6	N1	C2	N3	0.4(10)	C34	N27	C25	C24	-178.8(7)
C6	C5	C4	N3	1.2(12)	C34	N27	C25	C26	1.1(13)
C6	C5	C4	N9	-179.2(7)	C34	N27	C28	N29	180.0(7)
C25	N27	C28	N29	0.4(8)	C30	N21	C26	033	-1.1(11)
C24	N29	C28	N27	-1.4(8)	C30	N21	C26	C25	-178.5(7)
C24	N23	C22	031	177.1(7)	C30	N21	C22	031	0.9(12)
C24	N23	C22	N21	-2.8(10)	C30	N21	C22	N23	-179.1(7)
C24	C25	C26	N21	-1.8(11)	C8	N7	C5	C6	179.8(8)
C24	C25	C26	033	-179.1(8)	C8	N7	C5	C4	-0.6(9)
C26	N21	C22	031	-179.8(8)	C8	N9	C4	N3	178.3(7)
C26	N21	C22	N23	0.1(11)	C8	N9	C4	C5	-1.3(9)
C26	C25	C24	N29	178.6(7)	C32	N23	C24	N29	-3.8(11)
C26	C25	C24	N23	-0.9(12)	C32	N23	C24	C25	175.6(7)
C4	N3	C2	011	178.2(7)	C32	N23	C22	031	4.8(12)
C4	N3	C2	N1	-0.8(10)	C32	N23	C22	N21	-175.1(7)
C4	N9	C8	N7	1.0(9)	C10	N1	C6	013	-3.7(10)
C4	C5	C6	O13	179.8(7)	C10	N1	C6	C5	177.4(6)

C4	C5	C6	N1	-1.5(10)	C10	N1	C2	011	4.5(10)
C2	N1	C6	013	179.6(7)	C10	N1	C2	N3	-176.4(6)

Table S5. Bond Lengths for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	C13	2.3380(14)	N1	C2	1.415(6)
Tc1	Cl31	2.3380(14)	N1	C6	1.391(6)
Tc1	Cl2 ¹	2.3490(14)	N1	C10	1.465(5)
Tc1	Cl2	2.3490(14)	N9	C4	1.367(5)
Tc1	Cl1	2.3684(14)	N9	C8	1.335(6)
Tc1	Cl1 ¹	2.3684(14)	N7	C5	1.377(6)
01	C2	1.199(6)	N7	C8	1.336(6)
O2	C6	1.219(5)	N7	C12	1.473(6)
N3	C4	1.341(6)	C4	C5	1.363(6)
N3	C2	1.390(5)	C6	C5	1.445(6)
N3	C11	1.471(6)			

¹2-X,2-Y,1-Z

Table S6. Bond Angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C13	Tc1	Cl3 ¹	180.0	C6	N1	C2	127.1(4)
Cl3 ¹	Tc1	Cl2	90.04(4)	C6	N1	C10	116.5(4)
C13	Tc1	Cl2	89.96(4)	C8	N9	C4	109.0(4)
Cl3 ¹	Tc1	Cl21	89.96(4)	C5	N7	C12	126.6(4)
Cl3	Tc1	Cl21	90.04(4)	C8	N7	C5	107.7(4)
Cl3 ¹	Tc1	Cl1	89.87(4)	C8	N7	C12	125.6(4)
C13	Tc1	Cl1	90.13(4)	N3	C4	N9	129.7(4)
C13	Tc1	Cl11	89.87(4)	N3	C4	C5	123.8(4)
Cl3 ¹	Tc1	Cl1 ¹	90.13(4)	C5	C4	N9	106.5(4)
Cl21	Tc1	Cl2	180.00(6)	01	C2	N3	121.6(4)
Cl2 ¹	Tc1	Cl1	90.73(4)	01	C2	N1	122.2(4)
Cl2	Tc1	Cl1	89.27(4)	N3	C2	N1	116.3(4)
Cl2	Tc1	Cl1 ¹	90.73(4)	02	C6	N1	122.1(4)
Cl2 ¹	Tc1	Cl1 ¹	89.27(4)	02	C6	C5	126.5(5)
Cl1	Tc1	Cl11	180.0	N1	C6	C5	111.4(4)
C4	N3	C2	119.3(4)	N7	C5	C6	130.3(4)
C4	N3	C11	123.6(4)	C4	C5	N7	107.8(4)
C2	N3	C11	117.1(4)	C4	C5	C6	121.9(4)
C2	N1	C10	116.3(4)	N9	C8	N7	108.9(4)

¹2-X,2-Y,1-Z

 Table S7. Hydrogen Bonds for 2.

D	H	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N9	H9	Cl1	0.84(5)	2.45(5)	3.275(4)	168(5)
C10	H10B	O 1 ¹	0.98	2.42	3.345(6)	157.6

¹1-X,-Y,2-Z

Table S8. Torsion Angles for 2.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
O2	C6	C5	N7	-0.5(8)	C5	N7	C8	N9	0.3(5)
O2	C6	C5	C4	177.6(4)	C8	N9	C4	N3	-178.3(4)
N3	C4	C5	N7	178.6(4)	C8	N9	C4	C5	0.5(5)
N3	C4	C5	C6	0.1(7)	C8	N7	C5	C4	0.0(5)
N1	C6	C5	N7	-179.6(4)	C8	N7	C5	C6	178.3(4)
N1	C6	C5	C4	-1.5(6)	C11	N3	C4	N9	-0.3(7)
N9	C4	C5	N7	-0.3(5)	C11	N3	C4	C5	-178.9(4)
N9	C4	C5	C6	-178.8(4)	C11	N3	C2	01	-1.5(6)
C4	N3	C2	01	175.8(4)	C11	N3	C2	N1	176.6(4)
C4	N3	C2	N1	-6.1(6)	C12	N7	C5	C4	-179.8(4)
C4	N9	C8	N7	-0.5(5)	C12	N7	C5	C6	-1.5(7)
C2	N3	C4	N9	-177.5(4)	C12	N7	C8	N9	-179.8(4)
C2	N3	C4	C5	3.9(6)	C10	N1	C2	01	0.2(6)
C2	N1	C6	O2	179.7(4)	C10	N1	C2	N3	-178.0(4)
C2	N1	C6	C5	-1.1(6)	C10	N1	C6	O2	2.6(6)
C6	N1	C2	01	-177.0(4)	C10	N1	C6	C5	-178.2(4)
C6	N1	C2	N3	4.9(6)					

Table S9. Bond Lengths for 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Cl1	2.3652(4)	N11	C19	1.3936(18)
Tc1	Cl1 ¹	2.3652(4)	C9	C8	1.397(2)
Tc1	Cl2 ¹	2.3684(3)	C9	C4	1.3989(19)
Tc1	Cl2	2.3684(3)	C8	C7	1.380(2)
Tc1	Cl31	2.3574(3)	C14	C15	1.3951(19)
Tc1	C13	2.3575(3)	C14	C19	1.3973(19)
S13	C12	1.6990(16)	C15	C16	1.387(2)
S13	C14	1.7466(14)	C16	C17	1.406(2)
S3	C4	1.7441(15)	C17	C18	1.380(2)
S3	C2	1.6938(16)	C5	C4	1.392(2)
N1	C9	1.3891(19)	C5	C6	1.379(2)
N1	C2	1.3140(19)	C19	C18	1.3959(19)
N11	C12	1.3081(19)	C7	C6	1.407(2)

¹1-X,2-Y,-Z

-		-					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Tc1	Cl1 ¹	180.0	N1	C9	C4	111.13(13)
Cl1 ¹	Tc1	Cl21	88.657(12)	C8	C9	C4	121.49(14)
Cl1 ¹	Tc1	Cl2	91.343(12)	C7	C8	C9	117.11(14)
C11	Tc1	Cl2	88.657(12)	C15	C14	S13	128.85(11)
C11	Tc1	Cl2 ¹	91.343(12)	C15	C14	C19	121.09(12)
Cl21	Tc1	Cl2	180.0	C19	C14	S13	110.01(10)
Cl3 ¹	Tc1	Cl1 ¹	90.001(12)	C16	C15	C14	117.27(14)
C13	Tc1	Cl1 ¹	89.999(12)	C15	C16	C17	121.46(14)
C13	Tc1	Cl1	90.001(12)	C18	C17	C16	121.31(13)
Cl31	Tc1	Cl1	89.998(12)	C6	C5	C4	117.53(13)
C13	Tc1	Cl2	89.828(12)	C9	C4	S3	110.25(11)
C13	Tc1	Cl2 ¹	90.171(12)	C5	C4	S3	128.73(11)
Cl31	Tc1	Cl2 ¹	89.829(12)	C5	C4	C9	121.02(13)
Cl3 ¹	Tc1	Cl2	90.172(12)	N1	C2	S3	113.66(12)
Cl31	Tc1	C13	180.000(17)	N11	C19	C14	111.53(12)
C12	S13	C14	90.31(7)	N11	C19	C18	126.99(14)
C2	S3	C4	90.45(7)	C18	C19	C14	121.46(13)
C2	N1	C9	114.51(13)	C17	C18	C19	117.38(14)
C12	N11	C19	114.11(13)	C8	C7	C6	121.38(14)
N11	C12	S13	113.99(11)	C5	C6	C7	121.47(14)
NI	C9	C8	127.38(13)				

 Table S10. Bond Angles for 3.

¹1-X,2-Y,-Z

 Table S11. Hydrogen Bonds for 3.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
01	H1A	Cl4 ¹	0.83(2)	2.34(2)	3.1683(14)	178(2)
01	H1B	Cl4	0.83(2)	2.35(2)	3.1738(14)	173(2)
O2	H2A	Cl4 ²	0.80(2)	2.48(2)	3.2141(13)	153(2)
O2	H2B	01	0.79(2)	1.88(2)	2.6732(18)	173(2)
N1	H1	Cl4	0.877(18)	2.213(18)	3.0736(13)	166.8(16)
N11	H11	02	0.861(18)	1.803(19)	2.6577(17)	171.3(17)
C12	H12	Cl2 ³	0.95	2.74	3.3970(15)	127.1
C2	H2	Cl2 ⁴	0.95	2.72	3.3435(16)	124.0
C2	H2	$O2^2$	0.95	2.56	3.291(2)	134.4

¹2-X,2-Y,1-Z; ²1-X,2-Y,1-Z; ³1+X,+Y,+Z; ⁴+X,+Y,1+Z

 Table S12. Torsion Angles for 3.

Α	B	С	D	Angle/°		Α	B	С	D	Angle/°
---	---	---	---	---------	--	---	---	---	---	---------

S 1	C1	C1	C1	175.74(11)	C1	C1	C1	C1	0.7(2)
3	4	5	6		4	5	6	7	
S 1	C1	C1	N1	2.29(14)	C1	C1	C1	C1	0.1(2)
3	4	9	1		4	9	8	7	
S 1	C1	C1	C1	-176.56(11)	C1	C1	C1	N1	-179.96(12)
3	4	9	8		5	4	9	1	
N1	C9	C8	C7	-179.85(14)	C1	C1	C1	C1	1.2(2)
					5	4	9	8	
N1	C9	C4	S3	0.02(14)	C1	C1	C1	C1	0.5(2)
					5	6	7	8	
N1	C9	C4	C5	179.95(12)	C1	C1	C1	C1	-0.9(2)
					6	7	8	9	
N1	C1	C1	C1	-178.60(13)	C4	S3	C2	N1	0.14(12)
1	9	8	7						
C1	S 1	C1	C1	-179.36(13)	C4	C9	C8	C7	-0.5(2)
2	3	4	5						
C1	S 1	C1	C1	-1.84(10)	C4	C5	C6	C7	-0.3(2)
2	3	4	9						
C1	N1	C1	C1	-1.66(17)	C2	S3	C4	C9	-0.09(11)
2	1	9	4						
C1	N1	C1	C1	177.11(13)	C2	S3	C4	C5	179.98(13)
2	1	9	8						
C9	N1	C2	S3	-0.16(16)	C2	N1	C9	C8	179.51(15)
C9	C8	C7	C6	0.1(2)	C2	N1	C9	C4	0.09(17)
C8	C9	C4	S3	-179.45(11)	C1	N1	C1	S 1	0.21(16)
					9	1	2	3	
C8	C9	C4	C5	0.5(2)	C1	C1	C1	C1	-1.5(2)
					9	4	5	6	
C8	C7	C6	C5	0.3(2)	C6	C5	C4	S3	179.82(11)
$\overline{C1}$	S 1	C1	N1	0.96(11)	C6	C5	C4	C9	-0.1(2)
4	3	2	1						

Table S13. Bond Lengths for 4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Cl1	2.3728(6)	N3	C2	1.311(4)
Tc1	Cl1 ¹	2.3728(6)	N3	C4	1.387(3)
Tc1	Cl21	2.3539(6)	C4	C5	1.395(4)
Tc1	Cl2	2.3539(6)	C4	C9	1.398(4)
Tc1	Cl3	2.3283(7)	C5	C6	1.390(4)
Tc1	Cl3 ¹	2.3283(7)	C6	C7	1.396(4)
S 1	C2	1.692(3)	C7	C8	1.378(4)
S 1	C9	1.745(3)	C8	C9	1.403(4)

¹2-X,1-Y,1-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Tc1	Cl1 ¹	180.0	Cl3	Tc1	Cl31	180.0
Cl2	Tc1	Cl1	90.78(2)	C2	S1	C9	90.27(14)
Cl2	Tc1	Cl1 ¹	89.22(2)	C2	N3	C4	114.6(2)
Cl2 ¹	Tc1	Cl1 ¹	90.78(2)	N3	C2	S1	113.8(2)
Cl2 ¹	Tc1	Cl1	89.22(2)	N3	C4	C5	127.5(2)
Cl2	Tc1	Cl21	180.0	N3	C4	C9	111.0(2)
C13	Tc1	Cl1	89.30(2)	C5	C4	C9	121.5(2)
Cl3 ¹	Tc1	Cl1	90.70(2)	C6	C5	C4	117.0(3)
Cl3 ¹	Tc1	Cl1 ¹	89.30(2)	C5	C6	C7	121.3(3)
C13	Tc1	Cl1 ¹	90.70(2)	C8	C7	C6	122.2(3)
C13	Tc1	Cl2	89.50(2)	C7	C8	C9	116.9(3)
Cl3 ¹	Tc1	Cl2 ¹	89.50(2)	C4	C9	S1	110.29(19)
Cl3 ¹	Tc1	Cl2	90.50(2)	C4	C9	C8	121.1(3)
Cl3	Tc1	$Cl2^1$	90.50(2)	C8	C9	S1	128.6(2)

Table S14. Bond Angles for 4.

¹2-X,1-Y,1-Z

Table S15. Hydrogen Bonds for 4.

D	H	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1W	H1WB	Cl1	0.799(17)	2.49(2)	3.259(2)	162(3)
N3	H3	O1W	0.80(3)	1.91(3)	2.711(3)	176(3)

Table S16. Torsion Angles for 4.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
N3	C4	C5	C6	179.9(2)	C5	C4	C9	S 1	179.15(18)
N3	C4	C9	S 1	-0.3(2)	C5	C4	C9	C8	-0.5(3)
N3	C4	C9	C8	-179.9(2)	C5	C6	C7	C8	0.1(4)
C2	S 1	C9	C4	0.07(18)	C6	C7	C8	C9	0.0(4)
C2	S 1	C9	C8	179.7(2)	C7	C8	C9	S 1	-179.41(19)
C2	N3	C4	C5	-179.0(2)	C7	C8	C9	C4	0.2(3)
C2	N3	C4	C9	0.4(3)	C9	S 1	C2	N3	0.2(2)
C4	N3	C2	S 1	-0.4(3)	C9	C4	C5	C6	0.6(3)
C4	C5	C6	C7	-0.4(4)					

Table S17. Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Cl11	2.3668(4)	N16	C30	1.332(2)
Tc1	Cl12	2.3523(4)	N16	C31	1.327(2)
Tc1	Cl13	2.3485(4)	N17	C33	1.328(2)
Tc1	Cl14	2.3503(4)	N17	C36	1.338(2)
Tc1	Cl15	2.3505(4)	N18	C34	1.337(2)

Tc1	C116	2.3641(4)	N18	C35	1.335(2)
Tc2	Cl21	2.3658(4)	N19	C37	1.329(2)
Tc2	C122	2.3564(4)	N19	C40	1.334(2)
Tc2	C123	2.3531(4)	N20	C38	1.330(2)
Tc2	Cl24	2.3448(4)	N20	C39	1.337(2)
Tc2	Cl25	2.3438(4)	N21	C41	1.327(2)
Tc2	C126	2.3647(4)	N21	C44	1.337(2)
N1	C1	1.330(2)	N22	C42	1.333(2)
N1	C4	1.336(2)	N22	C43	1.335(2)
N2	C2	1.336(2)	N23	C45	1.332(2)
N2	C3	1.342(2)	N23	C48	1.325(2)
N3	C5	1.332(2)	N24	C46	1.333(2)
N3	C8	1.333(2)	N24	C47	1.331(2)
N4	C6	1.337(2)	C1	C2	1.377(2)
N4	C7	1.338(2)	C3	C4	1.378(2)
N5	C9	1.328(2)	C5	C6	1.382(3)
N5	C12	1.332(2)	C7	C8	1.379(2)
N6	C10	1.331(2)	C9	C10	1.382(2)
N6	C11	1.333(2)	C11	C12	1.380(3)
N7	C13	1.332(2)	C13	C14	1.386(2)
N7	C16	1.325(2)	C15	C16	1.382(2)
N8	C14	1.331(2)	C17	C18	1.384(2)
N8	C15	1.333(2)	C19	C20	1.376(2)
N9	C17	1.333(2)	C21	C22	1.385(2)
N9	C20	1.339(2)	C23	C24	1.374(2)
N10	C18	1.331(2)	C25	C26	1.383(2)
N10	C19	1.340(2)	C27	C28	1.377(2)
N11	C21	1.328(2)	C29	C30	1.379(3)
N11	C24	1.330(2)	C31	C32	1.387(2)
N12	C22	1.334(2)	C33	C34	1.385(2)
N12	C23	1.339(2)	C35	C36	1.379(2)
N13	C25	1.326(2)	C37	C38	1.384(2)
N13	C28	1.332(2)	C39	C40	1.378(2)
N14	C26	1.328(2)	C41	C42	1.385(2)
N14	C27	1.340(2)	C43	C44	1.376(2)
N15	C29	1.326(2)	C45	C46	1.381(2)
<u>N15</u>	C32	1.324(2)	C47	C48	1.387(2)

Table S18. Bond Angles for 5.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl12	Tc1	Cl11	90.398(14)	C42	N22	C43	117.07(14)
C112	Tc1	Cl16	88.765(13)	C48	N23	C45	121.83(15)
Cl13	Tc1	Cl11	88.847(13)	C47	N24	C46	117.44(14)

Cl13	Tc1	Cl12	90.669(14)	N1	C1	C2	118.57(15)
C113	Tc1	Cl14	89.450(14)	N2	C2	C1	122.61(15)
C113	Tc1	Cl15	177.378(14)	N2	C3	C4	122.52(15)
C113	Tc1	C116	91.388(13)	N1	C4	C3	118.35(15)
C114	Tc1	C111	92.050(14)	N3	C5	C6	118.21(16)
C114	Tc1	C112	177.551(14)	N4	C6	C5	122.65(16)
C114	Tc1	C115	89.875(14)	N4	C7	C8	122.13(15)
Cl14	Tc1	Cl16	88.786(13)	N3	C8	C7	118.78(15)
C115	Tc1	C111	88.646(13)	N5	C9	C10	118.16(16)
Cl15	Tc1	Cl12	90.115(14)	N6	C10	C9	122.60(16)
Cl15	Tc1	Cl16	91.130(13)	N6	C11	C12	122.70(17)
C116	Tc1	Cl11	179.134(15)	N5	C12	C11	118.04(16)
Cl22	Tc2	Cl21	91.080(14)	N7	C13	C14	117.83(15)
Cl22	Tc2	Cl26	89.472(14)	N8	C14	C13	122.43(15)
Cl23	Tc2	Cl21	88.706(14)	N8	C15	C16	122.46(16)
Cl23	Tc2	Cl22	89.985(14)	N7	C16	C15	118.17(15)
Cl23	Tc2	Cl26	91.153(14)	N9	C17	C18	118.08(14)
Cl24	Tc2	Cl21	90.643(14)	N10	C18	C17	122.52(15)
Cl24	Tc2	Cl22	178.270(14)	N10	C19	C20	122.28(15)
Cl24	Tc2	Cl23	90.212(14)	N9	C20	C19	118.33(15)
Cl24	Tc2	Cl26	88.806(14)	N11	C21	C22	118.19(15)
Cl25	Tc2	Cl21	88.798(14)	N12	C22	C21	122.37(16)
Cl25	Tc2	Cl22	89.599(14)	N12	C23	C24	122.66(16)
Cl25	Tc2	Cl23	177.462(14)	N11	C24	C23	118.26(15)
Cl25	Tc2	Cl24	90.279(14)	N13	C25	C26	118.30(15)
Cl25	Tc2	Cl26	91.346(14)	N14	C26	C25	122.15(16)
Cl26	Tc2	Cl21	179.431(15)	N14	C27	C28	122.13(16)
C1	N1	C4	121.26(15)	N13	C28	C27	118.17(15)
C2	N2	C3	116.68(15)	N15	C29	C30	118.24(18)
C5	N3	C8	121.26(15)	N16	C30	C29	122.47(18)
C6	N4	C7	116.96(15)	N16	C31	C32	122.28(17)
C9	N5	C12	121.61(15)	N15	C32	C31	118.21(17)
C10	N6	C11	116.88(16)	N17	C33	C34	118.12(15)
C16	N7	C13	121.94(15)	N18	C34	C33	122.41(15)
C14	N8	C15	117.16(15)	N18	C35	C36	122.58(16)
C17	N9	C20	121.51(14)	N17	C36	C35	118.07(16)
C18	N10	C19	117.28(14)	N19	C37	C38	117.91(16)
C21	N11	C24	121.65(14)	N20	C38	C37	122.39(16)
C22	N12	C23	116.79(14)	N20	C39	C40	122.36(16)
C25	N13	C28	121.79(14)	N19	C40	C39	117.96(16)
C26	N14	C27	117.46(14)	N21	C41	C42	118.26(15)
C32	N15	C29	121.68(16)	N22	C42	C41	122.40(15)
C31	N16	C30	117.13(16)	N22	C43	C44	122.51(15)

C33	N17	C36	121.74(15)	N21	C44	C43	118.32(15)
C35	N18	C34	117.07(14)	N23	C45	C46	118.19(16)
C37	N19	C40	122.02(15)	N24	C46	C45	122.19(16)
C38	N20	C39	117.37(15)	N24	C47	C48	122.22(16)
C41	N21	C44	121.43(14)	N23	C48	C47	118.11(15)

Table S19. Hydrogen Bonds for 5.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1W	H1A	Cl1	0.789(15)	2.297(17)	3.0572(14)	162(2)
O1W	H1B	Cl2	0.828(15)	2.461(17)	3.2502(14)	160(2)
O2W	H2A	Cl7	0.879(16)	2.350(16)	3.1927(17)	161(2)
O2W	H2B	Cl4	0.891(16)	2.287(16)	3.1593(16)	166(2)
O3W	H3A	Cl2	0.801(14)	2.344(16)	3.1135(13)	161(2)
O3W	H3B	Cl1	0.822(14)	2.469(16)	3.2528(14)	159.7(19)
N1	H1	O1W	0.88	1.80	2.6743(19)	170.1
N3	H3	O3W	0.88	1.83	2.6931(19)	164.9
N5	H5	Cl1	0.88	2.16	3.0196(15)	165.7
N7	H7	Cl2	0.88	2.17	3.0112(14)	159.4
N9	H9	Cl3	0.88	2.59	3.2138(13)	128.2
N9	H9	Cl4	0.88	2.43	3.1282(14)	137.1
N11	H11	C13	0.88	2.41	3.1009(14)	135.4
N11	H11	Cl4	0.88	2.68	3.3277(14)	131.7
N13	H13	C13	0.88	2.16	3.0100(14)	161.4
N15	H15	C15	0.88	2.12	2.9697(15)	162.1
N17	H17	C17	0.88	2.55	3.2463(15)	136.7
N17	H17	C18	0.88	2.54	3.1845(14)	130.5
N19	H19	C18	0.88	2.16	3.0182(14)	165.1
N21	H21	Cl7	0.88	2.41	3.1217(14)	137.8
N21	H21	C18	0.88	2.66	3.2794(14)	128.5
N23	H23	C16	0.88	2.18	2.9922(14)	153.9

Table S20. Torsion Angles for 5.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
N1	C1	C2	N2	0.7(3)	C13	N7	C16	C15	-0.3(2)
N2	C3	C4	N1	0.1(2)	C14	N8	C15	C16	0.3(2)
N3	C5	C6	N4	-0.5(3)	C15	N8	C14	C13	0.3(2)
N4	C7	C8	N3	-0.9(3)	C16	N7	C13	C14	0.8(2)
N5	C9	C10	N6	-0.6(3)	C17	N9	C20	C19	-1.0(2)
N6	C11	C12	N5	-0.1(3)	C18	N10	C19	C20	-0.4(2)
N7	C13	C14	N8	-0.8(2)	C19	N10	C18	C17	0.0(2)
N8	C15	C16	N7	-0.3(2)	C20	N9	C17	C18	0.5(2)
N9	C17	C18	N10	0.0(2)	C21	N11	C24	C23	2.5(2)
N10	C19	C20	N9	0.9(2)	C22	N12	C23	C24	-1.8(2)
N11	C21	C22	N12	0.5(3)	C23	N12	C22	C21	1.6(2)

N12	C23	C24	N11	-0.2(3)	C24	N11	C21	C22	-2.7(2)
N13	C25	C26	N14	0.2(2)	C25	N13	C28	C27	-0.8(2)
N14	C27	C28	N13	0.1(2)	C26	N14	C27	C28	0.7(2)
N15	C29	C30	N16	0.1(3)	C27	N14	C26	C25	-0.9(2)
N16	C31	C32	N15	0.6(3)	C28	N13	C25	C26	0.6(2)
N17	C33	C34	N18	0.5(3)	C29	N15	C32	C31	-0.8(2)
N18	C35	C36	N17	0.1(3)	C30	N16	C31	C32	-0.1(3)
N19	C37	C38	N20	0.0(2)	C31	N16	C30	C29	-0.3(3)
N20	C39	C40	N19	0.5(3)	C32	N15	C29	C30	0.5(3)
N21	C41	C42	N22	0.6(2)	C33	N17	C36	C35	1.2(2)
N22	C43	C44	N21	1.2(3)	C34	N18	C35	C36	-1.0(2)
N23	C45	C46	N24	0.8(3)	C35	N18	C34	C33	0.7(2)
N24	C47	C48	N23	-0.6(2)	C36	N17	C33	C34	-1.5(2)
C1	N1	C4	C3	0.1(2)	C37	N19	C40	C39	-1.0(2)
C2	N2	C3	C4	0.2(2)	C38	N20	C39	C40	0.2(3)
C3	N2	C2	C1	-0.6(2)	C39	N20	C38	C37	-0.4(2)
C4	N1	C1	C2	-0.5(2)	C40	N19	C37	C38	0.7(2)
C5	N3	C8	C7	0.6(2)	C41	N21	C44	C43	-1.1(2)
C6	N4	C7	C8	0.4(3)	C42	N22	C43	C44	-0.4(2)
C7	N4	C6	C5	0.2(3)	C43	N22	C42	C41	-0.6(2)
C8	N3	C5	C6	0.0(2)	C44	N21	C41	C42	0.3(2)
C9	N5	C12	C11	-0.7(2)	C45	N23	C48	C47	0.3(2)
C10	N6	C11	C12	0.6(3)	C46	N24	C47	C48	1.0(2)
C11	N6	C10	C9	-0.2(3)	C47	N24	C46	C45	-1.0(2)
C12	N5	C9	C10	1.0(2)	C48	N23	C45	C46	-0.4(2)

Table S21. Bond Lengths for 6.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Br31	2.4932(6)	N1	C2	1.339(7)
Tc1	Br3	2.4933(6)	N2	C7	1.327(8)
Tc1	$Br1^1$	2.5258(7)	C4	C3	1.385(8)
Tc1	Br1	2.5258(7)	C4	C5	1.375(8)
Tc1	Br2	2.5103(7)	C3	C7	1.498(8)
Tc1	Br2 ¹	2.5103(7)	C3	C2	1.376(8)
01	C7	1.239(7)	C5	C6	1.377(9)
N1	C6	1.328(8)			

¹1-X,1-Y,1-Z

 Table S22. Bond Angles for 6.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Br3 ¹	Tc1	Br3	180.0	Br2 ¹	Tc1	Br1	90.12(2)
Br3	Tc1	Br1 ¹	89.536(19)	Br2 ¹	Tc1	Br2	180.00(3)

Br3 ¹	Tc1	Br1	89.536(19)	C6	N1	C2	123.4(6)
Br3 ¹	Tc1	Br1 ¹	90.465(19)	C5	C4	C3	120.0(6)
Br3	Tc1	Br1	90.464(19)	C4	C3	C7	120.5(5)
Br3 ¹	Tc1	Br2 ¹	90.56(2)	C2	C3	C4	118.9(5)
Br3	Tc1	Br2	90.56(2)	C2	C3	C7	120.3(6)
Br3	Tc1	Br2 ¹	89.44(2)	C4	C5	C6	119.3(6)
Br3 ¹	Tc1	Br2	89.44(2)	01	C7	N2	124.5(6)
Br1	Tc1	Br1 ¹	180.0	O1	C7	C3	118.2(6)
Br2	Tc1	Br1 ¹	90.12(2)	N2	C7	C3	117.3(6)
Br2 ¹	Tc1	Br1 ¹	89.88(2)	N1	C6	C5	119.2(6)
Br2	Tc1	Br1	89.88(2)	N1	C2	C3	119.2(6)

¹1-X,1-Y,1-Z

Table S23. Hydrogen Bonds for 6.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1	O1 ¹	0.83(4)	1.85(4)	2.671(7)	173(7)
C4	H4	O1 ²	0.95	2.61	3.225(7)	123.2

¹-1/2+X,3/2-Y,-1/2+Z; ²2-X,2-Y,1-Z

 Table S24. Torsion Angles for 6.

Α	B	С	D	Angle/°	A		B	С	D	Angle/°
C4	C3	C7	01	23.5(9)	C	5	C4	C3	C2	-2.6(9)
C4	C3	C7	N2	-154.5(6)	C	7	C3	C2	N1	174.7(5)
C4	C3	C2	N1	1.6(9)	C	6	N1	C2	C3	-0.5(9)
C4	C5	C6	N1	-1.4(9)	C	2	N1	C6	C5	0.4(9)
C3	C4	C5	C6	2.5(10)	C	2	C3	C7	01	-149.5(6)
C5	C4	C3	C7	-175.8(6)	C	2	C3	C7	N2	32.5(9)

Table S25. Bond Lengths for 7.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Br1	2.5073(2)	Tc1	Br3	2.5145(2)
Tc1	$Br1^1$	2.5073(2)	N1	C1	1.500(3)
Tc1	Br2	2.5149(2)	N1	C3	1.495(3)
Tc1	Br2 ¹	2.5149(2)	C1	C2	1.519(3)
Tc1	Br3 ¹	2.5145(2)	C3	C4	1.515(3)

¹1-X,1-Y,1-Z

Table S26. Bond Angles for 7.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Br1	Tc1	$Br1^1$	180.0	Br2 ¹	Tc1	Br2	180.0

Br1 ¹	Tc1	Br2	90.988(8)	Br31	Tc1	Br2 ¹	90.400(8)
Br1	Tc1	Br2	89.012(8)	Br3	Tc1	Br2	90.400(8)
$Br1^1$	Tc1	Br2 ¹	89.012(8)	Br3	Tc1	$Br2^1$	89.600(8)
Br1	Tc1	$Br2^1$	90.988(8)	Br31	Tc1	Br2	89.600(8)
Br1	Tc1	Br3	90.211(8)	Br3	Tc1	Br3 ¹	180.0
$Br1^1$	Tc1	Br3	89.789(8)	C3	N1	C1	115.17(18)
$Br1^1$	Tc1	Br3 ¹	90.211(8)	N1	C1	C2	109.6(2)
Br1	Tc1	$Br3^1$	89.789(9)	N1	C3	C4	110.5(2)

¹1-X,1-Y,1-Z

 Table S27. Hydrogen Bonds for 7.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1A	Br31	0.92(3)	2.62(3)	3.491(2)	157(2)
N1	H1B	Br1	0.84(3)	2.65(3)	3.407(2)	150(2)
N1	H1B	$Br2^2$	0.84(3)	2.82(3)	3.413(2)	129(2)
C1	H1D	Br2 ¹	0.99	3.07	3.740(2)	126.3
C4	H4B	$Br1^1$	0.98	3.07	3.766(3)	128.8

¹3/2-X,1/2+Y,3/2-Z; ²1-X,1-Y,1-Z

Table S28. Torsion Angles for 7.

Α	B	C	D	Angle/°	Α	B	С	D	Angle/°
C1	N1	C3	C4	-174.4(2)	C3	N1	C1	C2	176.71(19)

Table S29. Bond Lengths for 8.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tc1	Cl1 ¹	2.3586(4)	Tc1	Cl31	2.3562(4)
Tc1	Cl1	2.3586(4)	N1	C3	1.497(2)
Tc1	Cl2	2.3499(4)	N1	C1	1.499(2)
Tc1	Cl21	2.3499(4)	C3	C4	1.507(3)
Tc1	C13	2.3562(4)	C1	C2	1.509(2)

¹1-X,1-Y,1-Z

Table S30. Bond Angles for 8.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Tc1	Cl1 ¹	180.0	Cl21	Tc1	C13	89.907(17)
Cl2	Tc1	Cl1	90.164(16)	Cl31	Tc1	Cl1	89.987(15)
Cl2 ¹	Tc1	Cl1	89.836(15)	C13	Tc1	Cl1 ¹	89.986(16)
Cl2 ¹	Tc1	Cl1 ¹	90.163(15)	C13	Tc1	Cl1	90.013(15)
Cl2	Tc1	Cl1 ¹	89.837(15)	Cl31	Tc1	Cl1 ¹	90.014(16)
Cl2	Tc1	Cl21	180.0	Cl31	Tc1	C13	180.0

Cl2	Tc1	Cl31	89.907(17)	C3	N1	C1	114.35(14)
Cl2	Tc1	C13	90.093(17)	N1	C3	C4	110.05(16)
Cl2 ¹	Tc1	Cl31	90.093(17)	N1	C1	C2	109.55(15)

¹1-X,1-Y,1-Z

Table S31. Hydrogen Bonds for 8.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1A	Cl3 ¹	0.89(2)	2.48(2)	3.3353(16)	160.8(17)
N1	H1B	Cl1	0.93(2)	2.66(2)	3.3179(16)	128.9(16)
N1	H1B	Cl2	0.93(2)	2.48(2)	3.3172(15)	150.0(17)

¹1/2+X,3/2-Y,1/2+Z

 Table S32. Torsion Angles for 8.

Α	B	С	D	Angle/°	Α	B	C	D	Angle/°
C3	N1	C1	C2	177.82(15)	C1	N1	C3	C4	-178.26(15)

Table S33. Parameters of π -stacking interactions.

Structur e	F	Rings	Angle	Centroid -centroid distance	Shift distance
2	C4N3C2N1C6C 5	C4N3C2N1C6C5 (symmetry code: 1- X,1-Y,2-Z)	0.000	3.677	1.550
		C4C5C6C7C8C9 (symmetry code: 2- X,1-Y,1-Z)	6.601	3.650	0.976
3	C14C19C18C17 C16C15	C2S3C4C9N1 (symmetry code: 1- X,1-Y,1-Z)	6.337	3.660	1.619
5		C2S3C4C9N1 (symmetry code: 2- X,1-Y,1-Z)	6.337	3.640	1.366
	C12S13C14C19 N11	C4C5C6C7C8C9 (symmetry code: 2- X,1-Y,1-Z)	9.055	3.857	1.516
4	C9C8C7C6C5C 4	C9C8C7C6C5C4 (symmetry code: 1-	0.000	3.587	1.073

X,-Y,-Z)			
C2S1C9C4N3 (symmetry code: - X,-Y,-Z)	0.515	3.754	1.303
C2S1C9C4N3 (symmetry code: 1- X,-Y,-Z)	0.515	3.709	1.443

Table S34. Distances and angles of anion- π interactions.

Structure	Hal	<i>C_z</i> (centroid of ring)	Distance Hal C _z , Å	Angle α between the ring plane and the Cz…Hal vector, °
	Br4	N1C2N3C4C5C6	3.82	68.2
1	Brb	N21C22N23C24C25C26	3.41	73.5
	DIU	C4C5N7C8C9	3.31	84.7
2	C12	N1C2N3C4C5C6 (symmetry code: 1-X,1-Y,1-Z)	3.63	62.6
	Cl1	C4C5N7C8N9 (symmetry code: 1-X,1-Y,1-Z)	3.46	81.4
	C116	N15C29C30N16C31C32 (symmetry code: X,3/2-Y,- 1/2+Z	3.34	80.7
		N14C27C28N13C25C26	3.28	84.0
-	Cl11	N23C45C46N24C47C48 (symmetry code: X,1+Y,Z	3.51	83.55
5	Cl21	N15C29C30N16C31C32	3.49	84.87
		N14C27C28N13C25C26 (symmetry code: X,1/2- Y,1/2+Z)	3.76	71.3
	C126	N19C37C38N20C39C40 (symmetry code: X,1/2-Y,- 1/2+Z)	3.54	77.4
6	Br3	N1C2C3C4C5C6 (symmetry code: 3/2-X,-1/2+Y,1/2-Z	3.65	70.3
	Br1	N1C2C3C4C5C6 (symmetry code: 1-X,1-Y,1-Z)	3.83	72.0

Table S35. Presence of TcHal₆ structures in ICSD.

	TcF ₆	TcCl ₆	TcBr ₆	TcI ₆
Na	+			
NH ₄	+	+		
K	+	+		+
Rb	+			
Cs	+			
H ₃ O			+	+

3. Solubility of some Tc(Hal)₆²⁻ compounds

Table S36. Technetium concentrations in saturated solutions of hexahalide compounds.

	Concentration of technetium in solution, mg/L*					
Solvent ^{T°}	3	4	K ₂ TcCl ₆	K ₂ TcBr ₆	7	13
Acrylonitrile ⁶					490	
n-propanol ²³	<10	<10				20
n-heptanol ²³	<10	<10				<10
n-Octanol ²³	<10	<10				<10
Decanol ²³	<10	<10				<10
$CH_2Cl_2^6$			<10	140		<10
CH ₂ Cl ₂ -28			<10	30		
H_2O^{23}	5640***	40	91020***	58270***		
H_2O^6	110		28236***	57950***		
CCl4 ²³		<10			70	<10
CCl ₄ ⁶		<10				
CHCl ₃ ²³					480	
CHCl ₃ ⁶					350	<10
MeOH ²³	2830**	2150**	180	920		80
MeOH ⁶	240	200	40	300		
MeOH-28			40	300		
CH3COOH ²³						20

TGF ²³			<10
Acrylonitrile ²³			620**

* Measurement error 5%;

** The substance reacts slowly with the solvent;

*** Hydrolytic processes take place.

4. Thermal analysis

Figure S1. TG and DTA curves of compound 7

Figure S2. TG and DTA curves of compound 2

Figure S3. TG and DTA curves of compound 1

Figure S4. TG and DTA curves of compound 9

Figure S5. TG and DTA curves of compound 10

Figure S6. TG and DTA curves of K₂TcBr₆

Figure S7. TG and DTA curves of K₂TcCl₆

5. X-ray phase analysis of thermolysis products and some initial substances

Figure S8. pXRD of dried compound 5 compared to the theoretical profile calculated from the structure of compound 5

Figure S9. pXRD compound 13

Figure S10. pXRD K₂TcCl₆ with comparing to K₂ReCl₆

Figure S11. pXRD K₂TcBr₆ with comparing to K₂ReBr₆

Figure S12. PXRD of 1, 2, 13, K₂TcCl₆ and K₂TcBr₆ thermolysis products

6. Hirshfeld surface analysis

Figure S13. Percentage contribution of each type of non-valent interactions to the Hirshfeld surface in anions of similar octahedral structure with a transition metal (TRCl_6^{2-}) and a diethylammonium (DEA) cation.

Figure S14. Percentage contribution of each type of non-valent interactions to the Hirshfeld surface in $TcHal_6^{2-}$ anions, described for the first time in this work and found in the CSD.

 Table S37. Two-dimensional fingerprint plots for cations of 1-7.

References

1 M. A. Volkov, A. P. Novikov, M. S. Grigoriev, A. M. Fedoseev and K. E. German, *IJMS*, 2022, **23**, 9461.

A. P. Novikov, M. A. Volkov, A. V. Safonov and M. S. Grigoriev, *Crystals*, 2022, **12**, 271.

J. Chen, Q. Peng, X. Peng, H. Zhang and H. Zeng, *Chem. Rev.*, 2022, **122**, 14594–14678.

4 M. J. Langton, C. J. Serpell and P. D. Beer, *Angew. Chem. Int. Ed.*, 2016, 55, 1974–1987.

5 M. S. Taylor, *Coordination Chemistry Reviews*, 2020, **413**, 213270.

6 R. Xie, N. Shen, X. Chen, J. Li, Y. Wang, C. Zhang, C. Xiao, Z. Chai and S. Wang, *Inorg. Chem.*, 2021, **60**, 6463–6471.