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Simulation model: Modified formulae for the magnetic dipolar force, van der Waals 

force, and hydrodynamic drag force were employed in the simulation model.
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Video S2: With or without sample constantly move under the influence of a magnetic 

field.

Video S3: Observation of the structure of S-Fe3O4@Au/PDA under a rotating 

magnetic field.

Video S4: Observation of the structure of L-Fe3O4@Au/PDA under a rotating 

magnetic field

Video S5: Microscopic Observation of S-Fe3O4@Au/PDA on Biofilm Treatment of 

Staphylococcus aureus Under a Rotating Magnetic Field

Video S6: Microscopic Observation of L-Fe3O4@Au/PDA on Biofilm Treatment of 

Staphylococcus aureus Under a Rotating Magnetic Field



Simulation model

Simulation set-up
Periodic boundary conditions were applied in the x-z and y-z planes, while shear 
boundary conditions were applied in the x-y plane. The number of particles was kept 
constant at N=2,000. Initially, the particles were randomly distributed in the simulation 
box with a fixed direction along the Z-axis. An external magnetic field along the Z-axis 
and a steady shear flow along the X-axis were suddenly applied. The simulation started 
and continued until the shear stress reached an equilibrium state. To reduce 
computational time, the simulation terminated at t=40 ms.

Inter-particle forces

The relationship between magnetization M and external field strength H of super-

paramagnetic Fe3O4 and Fe3O4@Au/PDA can be characterized by the Langevin 

function:
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where x = MsVp/kBT. Ms means the saturation magnetization. Thus, the magnetic 

moment induced by the external field can be determined as:
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where  represents the volume of the particles. .pV H  H

After magnetized by the external field, particle i will generate a magnetic field at the 
position of particle j:
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where  denotes a spatial vector from the center of particle i to the spatial point. r = 𝑟𝑖𝑗

|r| and  = r/r.�̂�

According to the point-dipole model, the magnetic force imposed on particle i exerted 

by particle j is given by:
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Here, the magnetic permeability of the matrix is approximately equal to =4π×10-7 0

N/A2.  is a factor to correct the dipole model when two particles are very close to mc

each other.
The van der Waals force between two particles is expressed as:
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The Hamaker constant is A=3×10-20 J. Lij=max [rij, 1.01d]. d is the average diameter of 

magnetic particles. In order to avoid the overlap of particles, an exponential repulsive 

force is introduced as:
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The random Brownian force acting on each particle is described as:
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where R is a unit random vector whose components are Gaussian numbers with zero 
mean. kB is the Boltzmann constant. The time interval of the Brownian force is chosen 
as δt = 0.1τp. τp = d2ρp/18η is the characteristic time of particles and ρp is the density of 
particles. η is the viscosity of the matrix. It is noted that the integral of this random force 
over a long time is independent on the choice of δt.

Governing equations

In a magnetic fluid, the motion of magnetic particles relative to the matrix belongs to 

Stokes flow with a Reynolds number of Re=0. Therefore, the hydrodynamic drag force 

can be modelled by Stokes law:
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where vi-ui is the velocity of particle i relative to the matrix. In concentrated magnetic 

fluid, the surrounding particles will enlarge the drag force. ch is a correction factor for 

, presented as:
h
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Here, φ is the volume fraction of magnetic fluid. The magnetic torque acting on a single 

particle is so exiguous that the rotational motion is neglectable. Considering the forces 

mentioned above, the equation of motion is constructed as:
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Where mpi is the mass of particle i. 

The modified velocity-Verlet algorithm is employed to solve Eq. 10, in which 

the empirical parameter is chosen as 0.65. The magneto-induced stress tensor σ 

and magnetic potential energy Um are presented as:
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Here, V is the volume of the simulation box. Fij is the total inter-particle force between 

these two particles. Um consists of the particle-external field section and inter-particle 

section.



.

Figure S1. HAADF-STEM images (a) and EDX elemental mapping of Au, Fe, N, O 
and C (b–g) and the EDX spectrum (h) of the S-Fe3O4@Au/PDA. Scale bar is 50 nm.



Table S1. The weight percentage of the Au and Fe elements in the different samples

Au (wt%) Fe (wt%)

L-Fe3O4 53.35

L-Fe3O4@Au/PDA 18.14 33.83

S-Fe3O4 59.25

S-Fe3O4@Au/PDA 19.49 37.07



Figure S2. UV–vis spectra of different concentrations of S-Fe3O4 (a), S-
Fe3O4@Au/PDA (b), L-Fe3O4 (d) and L-Fe3O4@Au/PDA (e) dispersed in aqueous 
solution; (c) and (f) the extinction coefficient of different samples.



Figure S3. Temperature elevation of S-Fe3O4 (a) and L-Fe3O4 (b) with different 
concentrations. Temperature elevation curves of S-Fe3O4 (c) and L-Fe3O4 (d) 
suspension after continuous irradiation and natural cooling and a plot fitting of cooling 
time vs -ln(θ) (100 μg/mL).



Figure S4. Comparison of experimental and simulated results of magnetic field sweep 
test (25 wt%).



Figure S5. Variation in particle chain length of S-Fe3O4@Au/PDA.



Figure S6. Variation in particle chain length of L-Fe3O4@Au/PDA.



Figure S7. OD600 values of S. aureus treated with S-Fe3O4@Au/PDA (a-b) and L-
Fe3O4@Au/PDA (c-d) at different concentrations and durations.



Figure S8. Photographs of E. coli colonies treated with Fe3O4, Fe3O4@PDA and 
Fe3O4@Au/PDA (200 μg/mL) for 10 min under various conditions.



Figure S9. Photographs of S. aureus colonies treated with Fe3O4, Fe3O4@PDA and 
Fe3O4@Au/PDA (200 μg/mL) for 10 min under various conditions.


