Supporting Information

NaMoO₃(IO₃)(H₂O): Water Molecule Introduction Induces Strong Second Harmonic Generation Response, Widened Band Gap and Large Anisotropy.

Contents

Table S1. Atomic coordinates $(\times 10^4)$, equivalent isotropic displacement Table S3. Band gap and birefringence data for some representative inorganic oxide Table S4. The calculated dipole moments of anionic groups within a unit cell of Table S5. Calculated SHG coefficients of NaMoO₃(IO₃)(H₂O).....7 Figure S1. The calculated (Dark Cyan) and experimental (The colors orange and LT Magenta represent fresh samples and samples exposed to humid air for more than 3 months, respectively) powder X-ray diffraction patterns of Figure S2. EDS analysis of NaMoO₃(IO₃)(H₂O)......8 Figure S3. The coordination environment of Na atoms in the structure of NaMoO₃(IO₃)(H₂O)9 Figure S4. The Na-O line consisted by [Na(1)O₇] polyhedra......9 Figure S5. The connection mode of $[MoO_6]$ octahedra and $[IO_3]$ pyramids within Figure S6. The comparison of layer orientation and distance within the structures of NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).....10 Figure S7. The degree of torsion for adjacent [MoO₆] octahedron in Mo-O chain for NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).....10 Figure S8. The different dihedral angle between two [IO₃] groups in NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).10 Figure S9. Infrared spectrum of NaMoO₃(IO₃)(H₂O).....11 Figure S10. TG and DSC curves of NaMoO₃(IO₃)(H₂O).....11 Figure S11. The powder X-ray diffraction patterns of the intermediate after calcination at 300 °C of NaMoO₃(IO₃)(H₂O).12 Figure S12. The powder X-ray diffraction patterns of the residue after calcination at 600 °C of NaMoO₃(IO₃)(H₂O).....12

	Х	у	Z	U(eq)	BVS
I(1)	5189(2)	2668(3)	3298(2)	12(1)	5.00
I(2)	4794(2)	7669(3)	3198(2)	12(1)	5.38
Mo(1)	7678(3)	4999(3)	5652(4)	7(1)	6.14
Mo(2)	2306(3)	9980(3)	4339(4)	7(1)	6.18
Na(1)	7505(15)	-190(30)	6000(20)	47(6)	0.98
Na(2)	2479(16)	4690(30)	4690(20)	41(5)	1.01
O(1)	8870(20)	30(30)	3740(40)	23(6)	-
O(2)	1120(20)	4940(30)	6840(40)	27(6)	-
O(3)	5990(30)	600(40)	3420(30)	28(7)	1.93
O(4)	3830(20)	2110(30)	4200(30)	20(5)	2.28
O(5)	5960(20)	3420(30)	5600(30)	17(5)	2.27
O(6)	8630(20)	3320(30)	6260(30)	22(5)	1.86
O(7)	7240(20)	5620(30)	8050(30)	15(5)	1.82
O(8)	8700(20)	6610(30)	5580(40)	32(6)	1.88
O(9)	6110(20)	7120(30)	4680(40)	27(6)	2.58
O(10)	3980(30)	5640(30)	2870(40)	31(7)	2.01
O(11)	4020(20)	8420(30)	5150(30)	21(5)	1.88
O(12)	1360(20)	8290(30)	4480(30)	24(6)	1.85
O(13)	1280(20)	11600(30)	3780(40)	28(6)	1.86
O(14)	2760(20)	9460(30)	1940(30)	12(5)	1.88

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and BVS for NaMoO₃(IO₃)(H₂O).

bond	length	bond	length
I(1)-O(3)	1.83(3)	Na(1)-O(1)	2.40(3)
I(1)-O(4)	1.77(2)	Na(1)-O(1)#5	2.30(3)
I(1)-O(5)	1.84(2)	Na(1)-O(3)#5	2.62(3)
I(2)-O(9)	1.70(3)	Na(1)-O(3)	2.37(3)
I(2)-O(10)	1.81(3)	Na(1)-O(6)	2.99(3)
I(2)-O(11)	1.86(2)	Na(1)-O(8)#6	2.85(3)
Mo(1)-O(5)	2.24(2)	Na(1)-O(9)#6	2.68(3)
Mo(1)-O(6)	1.68(3)	Na(2)-O(2)#1	2.36(3)
Mo(1)-O(7)	1.95(2)	Na(2)-O(2)	2.33(3)
Mo(1)-O(7)#1	1.94(2)	Na(2)-O(4)	2.56(3)
Mo(1)-O(8)	1.68(3)	Na(2)-O(10)#7	2.62(3)
Mo(1)-O(9)	2.40(2)	Na(2)-O(10)	2.39(4)
Mo(2)-O(4)#2	2.36(2)	Na(2)-O(13)#6	2.77(3)
Mo(2)-O(11)	2.23(2)	O(1)-H(1A)	0.97
Mo(2)-O(12)	1.68(2)	O(1)-H(1B)	0.97
Mo(2)-O(13)	1.69(2)	O(2)-H(2A)	0.97
Mo(2)-O(14)	1.93(2)	O(2)-H(2B)	0.97

Table S2. Bond lengths (Å) for NaMoO₃(IO₃)(H₂O)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z-1/2 #2 x,y+1,z #5 x,-y,z+1/2 #6 x,y-1,z #7 x,-y+1,z+1/2

	Crystal	Band gap (eV)	Birefringence	Ref.
	NH ₄ MoO ₃ (IO ₃)	3.26	0.083 @1064 nm ^{cal}	1
	γ-KMoO ₃ (IO ₃)	3.30	0.087 @1064 nm ^{cal}	2
	KRb[(MoO ₃) ₂ (IO ₃) ₂]	3.32	0.146 @1064 nm ^{cal}	1
Alkali metal	LiMoO ₃ (IO ₃)	2.80	0.178 @1064 nm ^{cal}	3
iodate family crystals	$Cs_2MoO_2F_3(IO_2F_2)$	3.31	0.204 @1064 nm ^{cal}	4
	NaMoO ₃ (IO ₃)	3.19	0.208 @1064 nm ^{cal}	2
	$Rb_2MoO_2F_3(IO_2F_2)$	3.33	0.217 @1064 nm ^{cal}	4
A few commercial crystals	$AMoO_3(IO_3)$ (A= K, Rb, Cs)	3.10	-	5
	δ-KMoO ₃ (IO ₃)	3.34	-	6
	BaB_2O_4		0.122 @532 nm exp	7
	YVO ₄		0.204 @532 nm ^{exp}	8
	CaCO ₃		0.172 @532 nm ^{exp}	9
	ε -La(IO ₃) ₃		0.0295 @visible light exp	10
A few iodate crystals	$K_2Zn(IO_3)_3(I_2O_5(OH))(IO_2(OH))(H_2O)$		0.054 @visible light exp	11
	Ce(IO ₃) ₄		0.052 @546 nm exp	12
	$CeF_2(IO_3)_2$		0.212 @546nm exp	12
This work	NaMoO ₃ (IO ₃)(H ₂ O)	3.44	0.231 @visible light exp	

Table S3. Band gap and birefringence data for some representative inorganic oxide optical crystals.

Delegurit (e unit cell)	Symmetric operation	Dipole moment (D)			
Polar unit (a unit cen)		Х	у	Z	total
I(1)O ₃	x, y, z	-2.7502	-8.5311	13.1336	15.9008
I(1)O ₃	x, 1-y, 0.5+z	-2.7486	8.5315	13.1321	15.8994
I(2)O ₃	x, 1-y, 0.5+z	-0.0127	9.8102	14.1248	17.1974
I(2)O ₃	x, y, z	-0.0134	-9.8106	14.1224	17.1956
Net dipole moment (IO ₃)		-5.5249	0	54.5129	54.7921
Mo(1)O ₆	x, 1-y, -0.5+z	-3.6865	-1.0223	-0.9718	3.9471
Mo(1)O ₆	x, y, z	-3.6878	1.0207	-0.9730	3.9482
Mo(2)O ₆	x, -1+y, z	4.3588	1.4927	0.9377	4.7017
Mo(2)O ₆	x, 1-y, 0.5+z	4.3580	-1.4933	0.9390	4.7014
Net dipole moment (MoO ₆)		1.3424	0	-0.0681	1.3442
Net dipole moment		-4.1825	0	54.4447	54.6052
Cell volume (Å ³)		610.87 (9)			
Dipole moment density		54.6052 /610.87 = 0.0893 D Å ⁻³			
Dipole moment density (IO ₃)		54.7921 /610.87 = 0.0897 D Å ⁻³			

Table S4. The calculated dipole moments of anionic groups within a unit cell of NaMoO₃(IO₃)(H₂O).

SHG tensor components	Values (pm/V)	SHG tensor components	Values (pm/V)
d_{111}	-0.24	<i>d</i> ₁₃₃	-0.31
d_{112}	0	<i>d</i> ₂₂₂	0
<i>d</i> ₁₁₃	-0.89	<i>d</i> ₂₂₃	-0.38
d_{122}	-0.32	<i>d</i> ₂₃₃	0
<i>d</i> ₁₂₃	0	<i>d</i> ₃₃₃	-2.29

Table S5. Calculated SHG coefficients of NaMoO₃(IO₃)(H₂O).

Figure S1. The calculated (Dark Cyan) and experimental (The colors orange and LT Magenta represent fresh samples and samples exposed to humid air for more than 3 months, respectively) powder X-ray diffraction patterns of NaMoO₃(IO₃)(H₂O).

Figure S2. EDS analysis of NaMoO₃(IO₃)(H₂O).

Figure S3. The coordination environment of Na atoms in the structure of NaMoO₃(IO₃)(H₂O)

Figure S4. The Na-O line consisted by [Na(1)O₇] polyhedra.

Figure S5. The connection mode of $[MoO_6]$ octahedra and $[IO_3]$ pyramids within the structures of $AMoO_3(IO_3)$ (A = NH_4^+ and alkali-metal ions) family.

Figure S6. The comparison of layer orientation and distance within the structures of NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).

Figure S7. The degree of torsion for adjacent [MoO₆] octahedron in Mo-O chain for NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).

Figure S8. The different dihedral angle between two [IO₃] groups in NaMoO₃(IO₃)(H₂O) and α -KMoO₃(IO₃).

Figure S9. Infrared spectrum of NaMoO₃(IO₃)(H₂O).

Figure S10. TG and DSC curves of NaMoO₃(IO₃)(H₂O).

Figure S11. The powder X-ray diffraction patterns of the intermediate after calcination at 300 °C of NaMoO₃(IO₃)(H₂O).

Figure S12. The powder X-ray diffraction patterns of the residue after calcination at 600 °C of $NaMoO_3(IO_3)(H_2O)$.

Notes and references

- 1 Y. Li, G. Han, H. Yu, H. Li, Z. Yang and S. Pan, Two polar molybdenum(VI) iodates(V) with large secondharmonic generation responses, *Chem. Mater.*, 2019, **31**, 2992-3000.
- 2 J. Chen, C. Hu, Y. Li, Q. Chen, B. Li and J. Mao, AMoO₃(IO₃) (A = Na and K): two promising optical materials via properly assembling the Λ-shaped basic building units, *J. Alloys Compd.*, 2022, **894**, 162547.
- 3 X. Chen, L. Zhang, X. Chang, H. Xue, H. Zang, W. Xiao, X. Song and H. Yan, LiMoO₃(IO₃): a new molybdenyl iodate based on WO₃-type sheets with large SHG response, *J. Alloys Compd.*, 2007, **428**, 54-58.
- 4 Y. Hu, X. Jiang, C. Wu, Z. Huang, Z. Lin, M. G. Humphrey and C. Zhang, A₂MoO₂F₃(IO₂F₂) (A=Rb, Cs): strong nonlinear optical responses and enlarged band gaps through fluorine incorporation, *Chem. Mater.*, 2021, **33**,

5700-5708.

- 5 R. E. Sykora, K. M. Ok, P. S. Halasyamani and T. E. Albrecht-Schmitt, Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO₃(IO₃) (A = K, Rb, Cs): a facile route to new polar materials with large SHG responses, *J. Am. Chem. Soc.*, 2002, **124**, 1951-1957.
- 6 Q. Li, H. N. liu, H. W. Yu, Z. G. Hu, J. Y. Wang, Y. C. Wu, and H. P. Wu, Alignment of Λ-shaped basic building units to construct one new KMoO₃(IO₃) polar polymorph, *Inorg. Chem.*, 2023, **62**, 3896-3903.
- 7 G. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng, F. Gan, P. Deng and F. Gan, Growth and spectrum of a novel birefringent α-BaB₂O₄ crystal, *J. Cryst. Growth*, 1998, **191**, 517-519.
- 8 H. T. Luo, T. Tkaczyk, E. L. Dereniak, K. Oka and R. Sampson, High birefringence of the yttrium vanadate crystal in the middle wavelength infrared, *Opt. Lett.*, 2006, **31**, 616-618.
- 9 G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, *Opt. Commun.*, 1999, **163**, 95-102.
- 10 D. Wang, X. Zhang, P. Gong, Z. Lin, Z. Hu and Y. Wu, ε-La(IO₃)₃: a polar iodate with high thermal stability and a large second-harmonic-generation response obtained by a supercritical hydrothermal method, *Inorg. Chem.*, 2023, **62**, 6565-6569.
- 11 J. Chen, P. Yang, H. Yu, Z. Hu, J. Wang, Y. Wu and H. Wu, Designing a strong second-harmonic generation polar iodate by the structure-directing properties of the "Tumbler-like" [Zn(IO₃)(I₂O₅(OH))] polyanions, ACS Mater. Lett., 2023, 1665-1671.
- 12 T. Wu, X. Jiang, C. Wu, H. Sha, Z. Wang, Z. Lin, Z. Huang, X. Long, M. G. Humphrey and C. Zhang, From Ce(IO₃)₄ to CeF₂(IO₃)₂: fluorinated homovalent substitution simultaneously enhances SHG response and bandgap for mid-infrared nonlinear optics, *J. Mater. Chem. C*, 2021, **9**, 8987-8993.