Electronic Supporting Information

Synthesis and catalytic activity of tetradentate β -diketiminato

rare-earth metal monoalkyl complexes in tandem Oppenauer

oxidation and cross-aldol condensation

Haiyan Zou,^a Ziqian Wang,^a Dianjun Guo,^a Lijun Zhang,^a Shaowu Wang^{a,b} and Xiancui Zhu^{*a}

^{*a*}Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China

^bAnhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China

Table of contents

1. Crystallographic data of complexes	.S2
Table S1. Crystallographic data for 1a-1d.	.S2
Table S2. Crystallographic data for 2a-2d.	.S3
2. Molecular structures of complexes 1b-2d	.S4
3. Characterization data of the catalytic products	.S6
4. Copies of NMR Spectra	\$15
Fig. S7-S14 Copies of the proligandsS	\$15
Fig. S15-S22 Copies of rare-earth metal complexesS	\$19
Fig. S23-S46 Copies of ketonesS	23
Fig. S47-S98 Copies of benzylidene ketonesS	\$35
5. ¹ H NMR Monitoring the catalytic reaction	\$61
6. A gram-scale preparation of 4k S	\$62
7. ReferencesS	363

	1a (Y)	1b (Gd)	1c (Yb)	1d (Lu)
CCDC	2296626	2296627	2296628	2296629
Empirical formula	C ₃₆ H ₅₂ N ₃ OSiY	$C_{36}H_{52}N_3OSiGd$	$C_{36}H_{52}N_3OSiYb$	C ₃₆ H ₅₂ N ₃ OSiLu
Formula weight	659.80	728.14	743.93	745.86
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	Pī	$P2_{1}/n$	Pī	Pī
<i>a</i> (Å)	11.0699(9)	12.8562(12)	11.0453(14)	11.017(7)
<i>b</i> (Å)	11.5878(9)	20.653(2)	11.5867(15)	11.593(7)
<i>c</i> (Å)	14.7859(12)	14.1698(13)	14.7165(19)	14.734(9)
α (°)	87.2450(10)	90	87.403(2)	87.665(6)
β(°)	81.8270(10)	93.4440(10)	81.877(2)	82.008(15)
γ (°)	79.6000(10)	90	79.435(2)	79.438(8)
$V(\text{\AA}^3)$	1846.1(3)	3755.6(6)	1832.5(4)	1832(2)
Z	2	4	2	2
$D_{\text{calcd}} (\text{mg m}^{-3})$	1.187	1.288	1.348	1.352
μ (mm ⁻¹)	1.641	1.826	2.614	2.757
F (000)	700	1500	762	764
θ range (°)	1.392 to 27.580	1.745 to 27.703	1.398 to 27.490	1.396 to 27.502
Reflections collected	21694	41986	21106	21469
Data/restraints/parameters	8420/30/388	8723/6/388	8264/12/388	8291/48/376
Goodness-of-fit on F ²	0.960	1.010	1.016	1.051
R(int)	0.0515	0.0514	0.0393	0.0309
$R_1, wR_2 (I > 2\sigma(I))$	0.0512, 0.1100	0.0389, 0.0795	0.0345, 0.0803	0.0334, 0.0777
Largest diff peak/hole (e Å ⁻³)	0.428 and -0.309	0.605 and -0.668	1.050 and -0.746	1.317 and -0.757

Table S1. Crystallographic data of complexes 1a-1d

	2a (Y)	2b (Gd)	2c (Yb)	2d (Lu)
CCDC	2296630	2296631	2296632	2296633
Empirical formula	$C_{102}H_{150}N_9O_3Si_3Y_3$	$C_{68}H_{100}N_6O_2Si_2~Gd_2$	$C_{68}H_{100}N_6O_2Si_2Yb_2$	C34H50N3OSiLu
Formula weight	1901.30	1404.21	1435.79	719.83
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pī	C2/c	C2/c	C2/c
<i>a</i> (Å)	14.531(4)	35.524(3)	35.46(5)	35.237(9)
<i>b</i> (Å)	20.424(5)	22.8423(16)	23.07(3)	22.966(6)
<i>c</i> (Å)	20.587(5)	23.6243(16)	23.60(3)	23.494(6)
α (°)	117.206(3)	90	90	90
β(°)	92.833(3)	129.8560(10)	129.797(13)	129.875(3)
γ (°)	100.856(3)	90	90	90
$V(\text{\AA}^3)$	5272(2)	14716(18)	14828(33)	14592(6)
Z	2	8	8	16
$D_{\text{calcd}} (\text{mg m}^{-3})$	1.198	1.268	1.286	1.311
μ (mm ⁻¹)	1.721	1.862	2.581	2.766
F (000)	2016	5776	5872	5888
θ range (°)	1.154 to 25.499	1.163 to 27.528	1.157 to 27.730	1.163 to 27.613
Reflections collected	52223	86252	81118	81424
Data/restraints/paramet	19585/84/1099	16880/142/781	16820/169/781	16616/286/766
Goodness-of-fit on F ²	0.950	1.013	1.029	0.991
R(int)	0.1448	0.0630	0.0663	0.1559
$R_1, wR_2 (I > 2\sigma(I))$	0.0620, 0.0929	0.0394, 0.0774	0.0435, 0.1007	0.0761, 0.1948
Largest diff peak/hole (e Å ⁻³)	0.453 and -0.656	0.700 and -0.826	0.809 and -0.458	3.391 and -1.735

Table S2. Crystallographic data of complexes 2a-2d

Molecular structures of complexes 1b-2d.

Fig S1. Molecular structure of 1b. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Gd(1)-N(1) 2.354(3), Gd(1)-N(2) 2.335(3), Gd(1)-C(1) 2.467(4), Gd(1)-C(33) 2.411(4), Gd(1)-O(1) 2.414(3), C(33)-Gd(1)-N(2) 117.77(14), C(33)-Gd(1)-C(1) 115.60(16).

Fig S2. Molecular structure of **1c**. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Yb(1)–N(1) 2.318(2), Yb(1)–N(2) 2.279(3), Yb(1)–C(1) 2.362(4), Yb(1)–C(33) 2.325(4), Yb(1)–O(1) 2.318(2), C(33)–Yb(1)–N(2) 118.55(15), C(33)–Yb(1)–C(1) 116.82(16).

Fig S3. Molecular structure of 1d. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Lu(1)–N(1) 2.267(3), Lu(1)–N(2) 2.272(3), Lu(1)–C(1) 2.355(4), Lu(1)–C(33) 2.311(4), Lu(1)–O(1) 2.308(3), C(33)–Lu(1)–N(2) 118.70(15), C(33)–Lu(1)–C(1) 116.80(16).

Fig S4. Molecular structure of **2b**. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Gd(1)–N(1) 2.349(3), Gd(1)–N(2) 2.361(3), Gd(1)–C(1) 2.439(4), Gd(1)–C(33) 2.409(4), Gd(1)–O(1) 2.419(2), C(33)–Gd(1)–N(2) 127.33(13), C(33)–Gd(1)–C(1) 107.68(15).

Fig S5. Molecular structure of **2c**. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Yb(1)–N(1) 2.285(5), Yb(1)–N(2) 2.308(5), Yb(1)–C(1) 2.370(6), Yb(1)–C(33) 2.339(6), Yb(1)–O(1) 2.365(5), C(33)–Yb(1)–N(2) 125.8(2), C(33)–Yb(1)–C(1) 108.8(2).

Fig S6. Molecular structure of 2d. All the hydrogen atoms are omitted and 2,6-diisopropyl phenyl group was depicted in wireframe style for clarity. Selected bond lengths (Å) and angles (9: Lu(1)-N(1) 2.262(8), Lu(1)-N(2) 2.292(8), Lu(1)-C(1) 2.360(11), Lu(1)-C(33) 2.310(10), Lu(1)-O(1) 2.326(7), C(33)-Lu(1)-N(2) 126.3(4), C(33)-Lu(1)-C(1) 109.2(4).

Characterization data of the catalytic products

Colorless oil.¹ 95% yield (114.09 mg, 0.95 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.96 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.57 (t, *J* = 7.5 Hz, 1H, Ar*H*), 7.47 (t, *J* = 7.5 Hz, 2H, Ar*H*), 2.61 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.6 (*C*=O), 137.5, 133.5, 129.0, 128.7 (Ar*C*), 27.1 (*C*H₃).

Colorless oil.¹ 91% yield (136.68 mg, 0.91 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.89 (d, J = 9.0 Hz, 2H, Ar*H*), 6.89 (d, J = 9.0 Hz, 2H, Ar*H*), 3.82 (s, 3H, OCH₃), 2.51 (s, 3H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 197.1 (*C*=O), 163.8, 130.9, 130.7, 114.0 (Ar*C*), 55.8 (OCH₃), 26.7 (*C*H₃).

Colorless oil.² 87% yield (130.67 mg, 0.87 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.54 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.49 (s, 1H, Ar*H*), 7.37 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.11 (dd, *J* = 2.5, 8.0 Hz, 1H, Ar*H*), 3.86 (s, 3H, OCH₃), 2.60 (s, 3H, CH₃). ¹³C{¹H} NMR

(125 MHz, CDCl₃, ppm): δ 198.4 (*C*=O), 160.2, 138.9, 130.0, 121.5, 120.1, 112.7 (Ar*C*), 55.8 (OCH₃), 27.1 (*C*H₃).

Colorless oil.² 76% yield (114.15 mg, 0.76 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.73 (dd, J = 2.0, 7.5 Hz, 1H, Ar*H*), 7.48–7.45 (m, 1H, Ar*H*), 7.01–6.96 (m, 2H, Ar*H*), 3.92 (s, 3H, OC*H*₃), 2.62 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 200.3 (*C*=O), 159.3, 134.0, 130.8, 128.7, 121.0, 111.9 (Ar*C*), 55.9 (OCH₃), 32.2 (*C*H₃).

Colorless oil.¹ 93% yield (124.80 mg, 0.93 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.85 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.25 (d, *J* = 8.0 Hz, 2H, Ar*H*), 2.57 (s, 3H, C*H*₃), 2.41 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.3 (*C*=O), 144.3, 135.1, 129.6, 128.8 (Ar*C*), 26.9 (*C*H₃), 22.0 (*C*H₃).

Colorless oil.¹ 89% yield (137.59 mg, 0.89 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.89 (d, J = 8.5 Hz, 2H, Ar*H*), 7.43 (d, J = 8.5 Hz, 2H, Ar*H*), 2.58 (s, 3H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 197.2 (C=O), 139.9, 135.8, 130.1, 129.3 (Ar*C*), 26.9 (*C*H₃).

White solid.¹ M.p.: 48–50 °C. 85% yield (169.19 mg, 0.85 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.81 (d, J = 8.5 Hz, 2H Ar*H*), 7.59 (d, J = 8.5 Hz, 2H, Ar*H*), 2.58 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 197.4 (*C*=O), 136.2, 132.3, 130.2, 128.7 (Ar*C*), 26.9 (*C*H₃).

Colorless oil.³ 95% yield (138.89 mg, 0.95 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.02 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.56 (t, *J* = 7.5 Hz, 1H, Ar*H*), 7.47 (t, *J* = 7.5 Hz, 2H, Ar*H*), 2.70–2.66 (m, 1H, C*H*), 1.26–1.23 (m, 2H, C*H*₂), 1.06–1.02 (m, 2H, C*H*₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 201.1 (*C*=O), 138.4, 133.1, 128.9, 128.4 (Ar*C*), 17.5 (*C*H), 12.0 (*C*H₂).

White solid.¹ M.p.: 52–53 °C. 92% yield (167.64 mg, 0.92 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.81 (d, J = 7.0 Hz, 4H, Ar*H*), 7.60 (t, J = 7.5 Hz, 2H, Ar*H*), 7.49 (t, J = 7.5 Hz, 4H, Ar*H*). ¹³C{¹H} NMR (126 MHz, CDCl₃, ppm): δ 197.2 (*C*=O), 138.0, 132.8, 130.5, 128.7 (Ar*C*).

Colorless oil.¹ 90% yield (153.18 mg, 0.90 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.48 (s, 1H, Ar*H*), 8.04 (dd, *J* = 1.5, 8.5 Hz, 1H, Ar*H*), 7.97 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.89 (t, *J* = 8.5 Hz, 2H, Ar*H*), 7.62–7.55 (m, 2H, Ar*H*), 2.74 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.5 (*C*=O), 136.0, 134.9, 132.9, 130.6, 129.9, 128.9, 128.8, 128.2, 127.2, 124.3 (Ar*C*), 27.1 (*C*H₃).

Yellow solid.² M.p.: 81–82 °C. 94% yield (169.39 mg, 0.94 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 194.3 (*C*=O), 144.8, 135.1, 134.5, 129.5, 124.7, 120.7 (Ar*C*).

Colorless oil.² 96% yield (140.35 mg, 0.96 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.04 (d, *J* = 7.5 Hz, 1H, Ar*H*), 7.47 (t, *J* = 7.5 Hz, 1H, Ar*H*), 7.31 (t, *J* = 7.5 Hz, 1H, Ar*H*), 7.25 (d, *J* = 7.5 Hz, 1H, Ar*H*), 2.97 (t, *J* = 6.0 Hz, 2H, C*H*₂), 2.66 (t, *J* = 6.0 Hz, 2H, C*H*₂), 2.17–2.12 (m, 2H, C*H*₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.9 (*C*=O), 144.9, 133.8, 133.0, 129.2, 127.6, 127.0 (Ar*C*), 39.6, 30.1, 23.7 (*C*H₂).

Colorless oil.⁴ 84% yield (122.80 mg, 0.84 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.56–7.50 (m, 2H, Ar*H*), 7.41 (d, *J* = 16.0 Hz, 1H, ArC*H*=CH), 7.41 (t, *J* = 3.5 Hz, 3H, Ar*H*), 6.73 (d, *J* = 16.0 Hz, 1H, C*H*), 2.39 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.5 (*C*=O), 143.5 (Ar*C*H=CH), 134.4, 130.6, 129.0, 128.3, 127.2 (*C*H), 27.6 (*C*H₃).

Colorless oil.⁵ 81% yield (129.76 mg, 0.81 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.49 (d, *J* = 16.5 Hz, 1H, ArC*H*=CH), 7.44 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.21 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.68 (d, *J* = 16.5 Hz, 1H, C*H*), 2.38 (s, 3H, C*H*₃), 2.37 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.9 (*C*=O), 143.9 (ArCH=CH), 141.4, 132.0, 130.1, 128.7, 126.6 (CH), 27.8 (CH₃), 21.9 (CH₃).

Colorless oil.⁵ M.p.: 70–72 °C. 80% yield (140.96 mg, 0.80 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.49 (d, J = 7.5 Hz, 2H, Ar*H*), 7.47 (d, J = 16.5 Hz, 1H, Ar*CH*=CH), 6.91 (d, J = 9.0 Hz, 2H, Ar*H*), 6.60 (d, J = 16.5 Hz, 1H, C*H*), 3.84 (s, 3H, OC*H*₃), 2.36 (s, 3H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.8 (*C*=O), 162.0, 143.6 (Ar*C*H=CH), 130.3, 127.4, 125.4 (*C*H), 114.8, 55.8 (O*C*H₃), 27.8 (*C*H₃).

Colorless oil.¹ 78% yield (146.85 mg, 0.78 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.52–7.47 (m, 3H, ArC*H*=CH and Ar*H*), 7.26 (d, *J* = 8.5 Hz, 2H, Ar*H*), 6.69 (d, *J* = 16.5 Hz, 1H, C*H*), 2.93 (sept, *J* = 6.5 Hz, 1H, C*H*(CH₃)₂), 2.38 (s, 3H, C*H*₃), 1.26 (d, *J* = 6.5 Hz, 6H, CH(CH₃)₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.9 (*C*=O), 152.3, 143.9 (ArCH=CH), 132.4, 128.8, 127.5, 126.7 (CH), 34.5 (CH(CH₃)₂), 27.8 (CH₃), 24.1 (CH(CH₃)₂).

White solid.⁶ M.p.: 54–56 °C. 44% yield (79.46 mg, 0.44 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.48–7.44 (m, 3H, ArCH=CH and ArH), 7.37 (d, J = 8.5 Hz, 2H, ArH), 6.68 (d, J = 16.5 Hz, 1H, CH), 2.37 (s, 3H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.5 (*C*=O), 142.3 (ArCH=CH), 136.8, 133.3, 129.8, 129.6, 127.8 (*C*H), 123.9, 28.1 (*C*H₃).

White solid.⁶ M.p.: 78–79 °C. 48% yield (108.05 mg, 0.48 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.53 (d, J = 8.5 Hz, 2H, Ar*H*), 7.43 (d, J = 16.5 Hz, 1H, ArC*H*=CH), 7.39 (d, J = 8.5 Hz, 2H, Ar*H*), 6.70 (d, J = 16.5 Hz, 1H, C*H*), 2.37 (s, 3H C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 198.5 (*C*=O), 142.3 (Ar*C*H=CH), 133.7, 132.6, 130.0, 127.9 (*C*H), 125.2, 28.1 (*C*H₃).

Yellow solid.⁷ M.p.: 112–113 °C. 62% yield (58.11 mg, 0.25 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.75 (d, J = 16.0 Hz, 2H, ArCH=CH), 7.63–7.61 (m, 4H, ArH), 7.42–7.41 (m, 6H, ArH), 7.10 (d, J = 16.0 Hz, 2H, ArCH=CH). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.3 (*C*=O), 143.7 (Ar*C*=CH), 135.2, 130.9, 129.4, 128.8 (Ar*C*), 125.8 (ArC=CH).

Yellow solid.⁷ M.p.: 172–174 °C. 65% yield (68.20 mg, 0.26 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.72 (d, *J* = 15.5 Hz, 2H, ArC*H*=CH), 7.52 (d, *J* = 8.0 Hz, 4H, Ar*H*), 7.22 (d, *J* = 8.0 Hz, 4H, Ar*H*), 7.04 (d, *J* = 15.5 Hz, 2H, ArCH=C*H*), 2.39 (s, 6H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.5 (*C*=O), 143.6 (Ar*C*=CH), 141.4, 132.5, 130.1, 128.8 (Ar*C*), 125.0 (ArC=CH), 21.9 (*C*H₃).

Yellow solid.⁷ M.p.: 124–125 °C. 61% yield (71.81 mg, 0.24 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.70 (d, *J* = 16.0 Hz, 2H, ArC*H*=CH), 7.57 (d, *J* = 8.5 Hz, 4H, Ar*H*), 6.95 (d, *J* = 16.0 Hz, 2H, ArCH=C*H*), 6.93 (d, *J* = 8.5 Hz, 4H, Ar*H*), 3.86 (s,

6H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.3 (*C*=O), 161.9, 143.1 (Ar*C*=CH), 130.5, 128.0, 123.9 (ArC=*C*H), 114.8 (Ar*C*), 55.8 (OCH₃).

Yellow solid. M.p.: 73–75 °C. 38% yield (48.41 mg, 0.15 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.72 (d, *J* = 16.0 Hz, 2H, ArC*H*=CH), 7.56 (d, *J* = 8.0 Hz, 4H, Ar*H*), 7.27 (d, *J* = 8.0 Hz, 4H, Ar*H*), 7.04 (d, *J* = 16.0 Hz, 4H, ArCH=C*H*), 2.94 (sept, *J* = 7.0 Hz, 2H, C*H*(CH₃)₂), 1.27 (d, *J* = 7.0 Hz, 12H, C*H*₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.5 (*C*=O), 152.2, 143.6 (Ar*C*=CH), 132.9, 128.9, 127.5 (Ar*C*), 125.1 (ArC=*C*H), 34.5 (*C*H(CH₃)₂), 24.2 (*C*H₃). HRMS (APCI): calcd for C₂₃H₂₆O [M+H]⁺: 319.2056, found 319.2055.

Yellow solid.⁸ M.p.: 171–172 °C. 43% yield (52.15 mg, 0.17 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.67 (d, *J* = 16.0 Hz, 2H, ArC*H*=CH), 7.55 (d, *J* = 8.5 Hz, 4H, Ar*H*), 7.47 (d, *J* = 8.5 Hz, 4H, Ar*H*), 7.05 (d, *J* = 16.0 Hz, 2H, ArCH=C*H*). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 188.7 (*C*=O), 142.5 (Ar*C*=CH), 134.0, 132.6, 130.1, 126.1 (ArC=*C*H), 125.3 (Ar*C*).

Yellow solid.⁸ M.p.: 189–191 °C. 45% yield (70.58 mg, 0.18 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.69 (d, *J* = 16.0 Hz, 2H, ArC*H*=CH), 7.55 (d, *J* = 8.5 Hz, 4H, Ar*H*), 7.39 (d, *J* = 8.5 Hz, 4H, Ar*H*), 7.03 (d, *J* = 16.0 Hz, 2H, ArCH=C*H*). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 188.7 (*C*=O), 142.5 (Ar*C*=CH), 134.0, 132.6, 130.1, 126.1 (ArC=*C*H), 125.3 (Ar*C*).

Yellow solid. M.p.: 134–136 °C. 50% yield (57.28 mg, 0.20 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.48 (t, J = 7.0 Hz, 6H, Ar*H*), 7.39–7.31 (m, 6H, Ar*H* and C*H*), 7.01–6.92 (m, 4H, C*H*), 6.57 (d, J = 15.5 Hz, 2H, C*H*). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.4 (*C*=O), 143.4 (*C*H), 141.8 (*C*H), 136.5 (*C*H), 129.6, 129.4

(*C*H), 129.2, 127.6 (Ar*C*), 127.4 (*C*H). HRMS (APCI): calcd for $C_{21}H_{18}O$ [M+H]⁺: 287.1430, found 287.1426.

Yellow solid.⁸ M.p.: 116–117 °C. 47% yield (46.30 mg, 0.19 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.85 (d, J = 16.0 Hz, 2H, CH=CHCO), 7.41 (d, J = 5.0 Hz, 2H,), 7.34 (d, J = 3.0 Hz, 2H), 7.08 (dd, J = 3.0, 5.0 Hz, 2H, thiophene*H*), 6.82 (d, J = 16.0 Hz, 2H, CH=CHCO). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 188.1 (*C*=O), 140.7, 136.0 (*C*H), 132.2, 129.2, 128.7 (thiophene*C*), 124.8 (*C*H).

Yellow solid.⁹ M.p.: 116–118 °C. 86% yield (94.37 mg, 0.34 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.81 (s, 2H, CH), 7.47 (d, J = 7.5 Hz, 4H), 7.41 (t, J = 7.5 Hz, 4H), 7.34 (t, J = 7.5 Hz, 2H, ArH), 2.94 (t, J = 5.0 Hz, 4H, CH₂), 1.82–1.77 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.8 (C=O), 137.3 (CH), 136.6 (CH=C), 136.4, 130.8, 129.0, 128.8 (ArC), 28.9 (CH₂), 23.4 (CH₂).

Yellow solid.⁹ M.p.: 168–170 °C. 83% yield (100.39 mg, 0.33 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.78 (s, 2H, CH), 7.38 (d, J = 8.0 Hz, 4H, ArH), 7.22 (d, J = 8.0 Hz, 4H, ArH), 2.93 (t, J =5.0 Hz, 4H, CH₂), 2.39 (s, 6H, CH₃), 1.81–1.76 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.8 (C=O), 139.2, 137.3 (CH), 135.9 (CH=C), 133.6, 130.9, 129.5 (ArC), 28.9 (CH₂), 23.4 (CH₂), 21.8 (CH₃).

Yellow solid.⁹ M.p.: 160–162 °C. 81% yield ((108.34 mg, 0.32 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.76 (s, 2H, CH), 7.46 (d, J = 8.5 Hz, 4H, ArH), 6.94 (d, J = 8.5 Hz, 4H, ArH), 3.85 (s, 6H, CH₃), 2.92 (t, J = 5.0 Hz, 4H, CH₂), 1.83–1.78 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.7 (*C*=O), 160.3 (COMe), 136.9 (CH), 134.7 (CH=C), 132.6, 129.1, 114.3 (ArC), 55.7 (OCH₃), 28.9 (CH₂), 23.4 (CH₂).

Yellow solid. M.p.: 149–150 °C. 65% yield (93.21 mg, 0.26 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.80 (s, 2H, CH), 7.43 (d, J = 8.0 Hz, 4H, ArH), 7.27 (d, J = 8.0 Hz, 4H, ArH), 2.95–2.93 (m, 6H, CH₂ and CH(CH₃)₂), 1.81–1.76 (m, 2H, CH₂), 1.27 (d, J = 7.0 Hz, 12H, CH₃). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.8 (*C*=O), 150.1, 137.3, 135.9 (CH), 134.0 (CH=C), 131.0, 126.9 (ArC), 34.4, 28.9, 24.2, 23.5. HRMS (APCI): calcd for C₂₆H₃₀O [M+H]⁺: 359.2369, found 359.2360.

Yellow solid.⁹ M.p.: 146–147 °C. 72% yield (98.84 mg, 0.29 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.73 (s, 2H, CH), 7.40–7.35 (m, 8H, ArH), 2.89 (t, J = 5.0 Hz, 4H, CH₂), 1.83–1.78 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.3 (C=O), 136.8 (CH=C), 136.2 (CH), 135.0, 134.7, 132.0, 129.1 (ArC), 28.8 (CH₂), 23.2 (CH₂).

Yellow solid.¹⁰ M.p.: 145–146 °C. 74% yield (127.90 mg, 0.30 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.71 (s, 2H, CH), 7.53 (d, J = 8.5 Hz, 4H, ArH), 7.32 (d, J = 8.5 Hz, 4H, ArH), 2.88 (t, J = 5.0 Hz, 4H, CH₂), 1.82–1.77 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 190.3 (C=O), 136.9 (CH=C), 136.2 (CH), 135.1, 132.2, 132.0, 123.3 (ArCBr), 28.8 (CH₂), 23.2 (CH₂).

Yellow solid.¹⁰ M.p.: 227–228 °C. 75% yield (97.32 mg, 0.30 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.75 (s, 2H, CH), 7.70 (d, J = 8.0 Hz, 4H, ArH), 7.53 (d, J = 8.0 Hz, 4H, ArH), 2.91 (t, J = 5.0 Hz, 4H, CH₂), 1.85–1.80 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.7 (C=O), 140.6, 138.6 (CH=C), 135.6 (CH), 132.5, 131.0 (ArC), 118.9 (CN), 112.4, 28.7 (CH₂), 23.0 (CH₂).

Yellow solid.⁹ M.p.: 125–126 °C. 82% yield (107.06 mg, 0.33 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.50 (t, J = 7.0 Hz, 6H, ArH), 7.36 (t, J = 7.0 Hz, 4H, ArH), 7.30 (t, J = 7.0 Hz, 2H, CH), 7.11–7.06 (m, 2H, CH), 6.98 (d, J = 15.5 Hz, 2H, CH), 2.81 (t, J = 5.5 Hz, 4H, CH₂), 1.91–1.86 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.3 (*C*=O), 141.2, 137.1, 136.7, 135.8, 129.2, 129.1, 127.6 (Ar*C*), 124.1, 27.0 (*C*H₂), 22.5 (*C*H₂).

Yellow solid. M.p.: 153–154 °C. 79% yield (90.50 mg, 0.32 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.00 (s, 2H, CH=C), 7.53 (d, J = 5.0 Hz, 2H, 5-thiophene*H*), 7.38 (d, J = 3.5 Hz, 2H, 3-thiophene*H*), 7.14 (t, J = 5.0 Hz, 2H, 4-thiophene*H*), 2.93 (t, J = 5.5 Hz, 4H, CH₂), 2.00–1.95 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.5 (*C*=O), 139.9 (CH=*C*), 133.4 (*C*H), 133.2, 130.3, 130.1, 128.0 (thiophene*C*), 28.5 (*C*H₂), 22.0 (*C*H₂). HRMS (APCI): calcd for C₁₆H₁₄OS₂ [M+H]⁺: 287.0559, found 289.0557.

Yellow solid.¹¹ M.p.: 143–144 °C. 54% yield (59.68 mg, 0.22 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.71 (s, 2H, CH=C), 8.57–8.56 (m, 2H), 7.62–7.76 (m, 4H), 7.36–7.34 (m, 2H, pyridine*H*), 2.94 (t, *J* = 5.0 Hz, 4H, CH₂), 1.86–1.78 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.6 (*C*=O), 151.6 (2-pyridine*C*), 149.7 (6-pyridine*C*), 138.1 (CH=*C*), 137.4 (CH), 134.0, 132.0, 123.7 (pyridine*C*), 28.7 (CH₂), 23.1 (CH₂).

Yellow solid.¹¹ M.p.: 147–149 °C. 67% yield (74.05 mg, 0.27 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.65 (d, *J* = 5.5 Hz, 4H, 2-pyridine*H*), 7.65 (s, 2H, C*H*), 7.27 (d, *J* = 5.5 Hz, 4H, 3-pyridine*H*), 2.91 (t, *J* = 5.0 Hz, 4H, CH₂), 1.84–1.79 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.7 (*C*=O), 150.5 (2-pyridine*C*), 143.4

(4-pyridine*C*), 139.5 (CH=*C*), 134.8 (*C*H), 124.4 (3-pyridine*C*), 28.6 (*C*H₂), 22.8 (*C*H₂). HRMS (APCI): calcd for C₁₈H₁₆N₂O [M+H]⁺: 277.1335, found 277.1345.

Yellow solid.⁹ M.p.: 143–145 °C. 76% yield (77.30 mg, 0.30 mmol). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.56 (d, J = 5.5 Hz, 4H, furanH), 6.67 (d, J = 3.5 Hz, 2H, furanH), 6.52 (s, 2H, CH=C), 3.01 (t, J = 5.5 Hz, 4H, CH₂), 1.91–1.86 (m, 2H, CH₂). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): δ 189.5 (C=O), 153.2 (2-furanC), 144.9 (5-furanC), 133.4 (CH=C), 123.7 (CH), 116.5, 112.7 (furanC), 28.4 (CH₂), 22.0 (CH₂).

Copies of NMR spectra

∠7.596 ∠7.580	7.260 7.7219 7.1188 7.107 7.077 7.077 7.077	4 260 4 2225 4 4 2225 4 4 195 4 1 195 4 1 155 4 1 17 8 11 1111111111	∕3.844 13.754 13.725	C 3.026 3.013 3.000 2.897 2.883	1.959 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.943 1.948 1.748 1.7778 1.7488 1.748 1.748 1.748 1.748 1.748 1.748 1.748 1.748 1.748 1.74
------------------	---	--	----------------------------	---	--

Fig. S7 ¹H NMR spectrum of [1-CH₂-(2-C₄H₇O)]-tryptamine (500 MHz, CDCl₃)

Fig. S9 ¹H NMR spectrum of [1-(CH₂)₂OMe)]-tryptamine (500 MHz, CDCl₃)

Fig. S11 ¹H NMR spectrum of the proligand H_2L^1 (500 MHz, C_6D_6)

Fig. S13 ¹H NMR spectrum of the proligand H₂L² (500 MHz, CDCl₃)

Fig. S15 ¹H NMR spectrum of the complex **1a** (500 MHz, C_6D_6)

Fig. S17 ¹H NMR spectrum of the complex **1d** (500 MHz, C_6D_6)

Fig. S19 ¹H NMR spectrum of the complex **2a** (500 MHz, C_6D_6)

Fig. S21 ¹H NMR spectrum of the complex **2d** (500 MHz, C_6D_6)

Fig. S23 ¹H NMR spectrum of 4a (500 MHz, CDCl₃)

Fig. S25 ¹H NMR spectrum of 4b (500 MHz, CDCl₃)

Fig. S27 ¹H NMR spectrum of 4c (500 MHz, CDCl₃)

Fig. S28 $^{13}C{^{1}H}$ NMR spectrum of 4c (125 MHz, CDCl₃)

Fig. S29 ¹H NMR spectrum of 4d (500 MHz, CDCl₃)

Fig. S30 $^{13}C{^{1}H}$ NMR spectrum of 4d (125 MHz, CDCl₃)

Fig. S31 ¹H NMR spectrum of 4e (500 MHz, CDCl₃)

Fig. S33 ¹H NMR spectrum of 4f (500 MHz, CDCl₃)

Fig. S35 ¹H NMR spectrum of 4g (500 MHz, CDCl₃)

Fig. S37 1 H NMR spectrum of 4h (500 MHz, CDCl₃)

Fig. S39 ¹H NMR spectrum of 4i (500 MHz, CDCl₃)

Fig. S40 $^{13}C{^{1}H}$ NMR spectrum of 4i (125 MHz, CDCl₃)

Fig. S41 ¹H NMR spectrum of 4j (500 MHz, CDCl₃)

Fig. S43 ¹H NMR spectrum of 4k (500 MHz, CDCl₃)

Fig. S45 ¹H NMR spectrum of 4l (500 MHz, CDCl₃)

Fig. S47 ¹H NMR spectrum of 6a (500 MHz, CDCl₃)

Fig. S48 $^{13}C{^{1}H}$ NMR spectrum of 6a (125 MHz, CDCl₃)

Fig. S49 ¹H NMR spectrum of 6b (500 MHz, CDCl₃)

Fig. S51 1 H NMR spectrum of 6c (500 MHz, CDCl₃)

Fig. S53 ¹H NMR spectrum of 6d (500 MHz, CDCl₃)

Fig. S55 ¹H NMR spectrum of 6e (500 MHz, CDCl₃)

Fig. S57 ¹H NMR spectrum of 6f (500 MHz, CDCl₃)

Fig. S59 ¹H NMR spectrum of 7aa (500 MHz, CDCl₃)

Fig. S60 $^{13}C\{^1H\}$ NMR spectrum of 7aa (125 MHz, CDCl₃)

Fig. S61 ¹H NMR spectrum of 7bb (500 MHz, CDCl₃)

Fig. S63 ¹H NMR spectrum of 7cc (500 MHz, CDCl₃)

Fig. S65 ¹H NMR spectrum of 7dd (500 MHz, CDCl₃)

Fig. S67 ¹H NMR spectrum of 7ee (500 MHz, CDCl₃)

Fig. S69 ¹H NMR spectrum of 7ff (500 MHz, CDCl₃)

Fig. S71 ¹H NMR spectrum of 7gg (500 MHz, CDCl₃)

Fig. S73 ¹H NMR spectrum of 7hh (500 MHz, CDCl₃)

Fig. S75 ¹H NMR spectrum of 8aa (500 MHz, CDCl₃)

6.2

5.8

5.4

7.4

7.0

6.6

00 7.8

5.0 4.6 f1 (ppm) 4.2

3.8

3.4

4.09-

3.0

2.6

2.2

2.11

1.8

Fig. S77 1 H NMR spectrum of 8bb (500 MHz, CDCl₃)

Fig. S79 ¹H NMR spectrum of 8cc (500 MHz, CDCl₃)

Fig. S80 $^{13}C\{^1H\}$ NMR spectrum of 8cc (125 MHz, CDCl₃)

Fig. S81 ¹H NMR spectrum of 8dd (500 MHz, CDCl₃)

Fig. S83 ¹H NMR spectrum of 8ee (500 MHz, CDCl₃)

S54

Fig. S87 ¹H NMR spectrum of 8gg (500 MHz, CDCl₃)

Fig. S89 ¹H NMR spectrum of 8hh (500 MHz, CDCl₃)

Fig. S91 ¹H NMR spectrum of 8ii (500 MHz, CDCl₃)

Fig. S93 ¹H NMR spectrum of 8jj (500 MHz, CDCl₃)

Fig. S95 ¹H NMR spectrum of 8kk (500 MHz, CDCl₃)

Fig. S97 ¹H NMR spectrum of 8ll (500 MHz, CDCl₃)

Fig. S98 ¹³C{¹H} NMR spectrum of 8ll (125 MHz, CDCl₃)

Fig. S99 ¹H NMR Monitoring the catalytic reaction of benzyl alcohol (0.2 mmol) and acetone (0.6 mmol) catalyzed by **1a** (0.02 mmol) in C_6D_6 at room temperature.

A gram-scale preparation of 4k

9-Fluorenol (7.0 mmol) and **1a** (0.23 g, 0.35 mmol) were mixed in 10 mL of toluene, and then 1.54 mL of acetone (21.0 mmol) was added. The mixture was stirred at room temperature for 3 h. After that, volatiles of the mixture were removed under reduced pressure. The product was purified by silica gel column chromatography (ethyl acetate:petroleum ether = 1:6) to give the yellow solid **4k** (1.08 g, 86% yield).

Fig. S100 Samples of the catalytic product of 9-fluorenone.

References

- X. H. Yue, X. L. Yan, S. C. Huo, Q. Dong, J. H. Zhang, Z. Q. Hao, Z. G. Han and J. Lin, *Appl. Organometal. Chem.*, 2020, **34**, e5292.
- Q. F. Wang, W. M. Du, T. T. Liu, H. N. Chai and Z. K. Yu, *Tetrahedron Lett.*, 2014, 55, 1585–1588.
- M. G. Coleman, A. N. Brown, B. A. Bolton and H. Guan, *Adv. Synth. Catal.*, 2010, 352, 967–970.
- Z. X. Zhang, Y. H. Wang, M. Wang, J. M. Lu, C. F. Zhang, L. H. Li, J. Y. Jiang and F. Wang, *Catal. Sci. Technol.*, 2016, 6, 1693–1700.
- 5. H. B. Zou, J. Y. Dai and R. W. Wang, Chem. Commun., 2019, 55, 5898–5901.
- C. Cheng, X. L. Ning, Y. M. Luo, C. Tian, X. W. Wang, Y. Guo, J. Y. Liu and Z. L. Zhang, *Med. Chem. Res.*, 2016, 25, 1678–1685.
- M. Soleiman-Beigi, M. Ghalavand, H. G. Venovel and H. Kohzadi, J. Iran. Chem. Soc., 2021, 18, 3267–3279.
- A. A. da Silva, P. I. S. Maia, C. D. Lopes, S. de Albuquerque and M. S. Valle, J. Mol. Struct., 2021, 1232, e130014.
- 9. L. Zhang, S. Wang, E. Sheng and S. Zhou, Green Chem., 2005, 7, 683-686.
- 10. Y. Adachi, K. Kuniyoshi and H. Matsubara, J. Fluor. Chem., 2017, 197, 100-105.
- S. Z. Vatsadze, M. A. Manaenkova, N. V. Sviridenkova, N. V. Zyk, D. P. Krut'ko, A. V. Churakov, M. Yu. Antipin, J. A. K. Howard and H. Lang, *Russ. Chem. Bull.*, 2006, 55, 1184–1194.