Tracking of structural defects induced by Eu-doping in β -Ag₂MoO₄: their influences on electrical properties

Carlos Macchi^a, Guilherme Magalhaes^b Petinardi, Leonardo Almeida Freire^b, Miriam Susana Castro^c, Celso Manuel Aldao^d, Thaís Marcial Luiz^e, Francisco Moura^e, Alexandre Zirpoli Simões^f, Henrique Moreno^{f,g}, Elson Longo^g, Alberto Somoza^a, Marcelo Assis^{h*}, Miguel Adolfo Ponce^a

^{a.} Institute of Materials Physics of Tandil, IFIMAT (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Tandil, Argentina.

^{b.}Functional Materials Development Group (GDMaF), Federal University of Itajubá, (UNIFEI), Itajubá, Brazil. ^{c.}Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina.

^{d.}Institute of Scientific and Technological Research in Electronics (ICYTE), University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina.

^{e.}Advanced Materials Interdisciplinary Laboratory (LIMAV), Federal University of Itajubá (UNIFEI), Itabira, Brazil ^{f.}School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá, Brazil.

^{g.}CDMF, Federal University of São Carlos (UFSCar), São Carlos, Brazil.

^{h.}Department of Physical and Analytical Chemistry, University Jaume I (UJI) Castellón, Spain.

*Corresponding author: marcelostassis@gmail.com

SUPPORTING INFORMATION

Figure S1 - Rietveld refinement fitting of the XRD for the samples a) Pure, b) 4Eu, c)8Eu, and d) 16Eu.

Figure S2 - Williamson-Hall plots for the samples a) Pure, b) 4Eu, c)8Eu, and d) 16Eu.

Figure S3 - Deconvolution of the A_{1g} Raman mode for the samples a) Pure, b) 4Eu, c)8Eu, and d) 16Eu.

Figure S4 - E_{gap} determination for the samples a) Pure, b) 4Eu, c)8Eu, and d) 16Eu.

Figure S5 - Equivalent circuit model for theoretical adjustments of the data for the Nyquist plot combining ideal resistors, capacitors, and inductors. R_{ef} is the contact effective electrical resistance, C_{ef} is the contact effective electrical capacitance. R_{gb} is the grain boundary electrical resistance, C_{gb} is the is the grain boundary electrical capacitance. CPE $_{ef \text{ contact}}$ is the Constant Phase Element (CPE) for the contact and CPE_t the Constant Phase Element (CPE) for the raps.

Sample	Lattice parameters		Rietveld parameters			
	V (ų)	phase (%)	R _{bragg}	R _{wp}	χ²	
Pure	806.73±10	100.0	3.63	12.14	3.55	
4Eu	807.36±23	100.0	0.89	2.27	1.68	
8Eu	807.54±80	100.0	1.16	0.86	0.77	
16Eu	808.18±21	100.0	0.73	0.72	0.74	

Table S1 - Rietveld refinement fitting and lattice parameters for all samples of the $\beta\text{-}Ag_2MoO_4$ system.

Table S2 - XRD and Raman FWHM for all samples of the β -Ag₂MoO₄ system.

Samples	XRD FWHM	Raman FWHM
Pure	0.14	9.8
4Eu	0.17	9.9
8Eu	0.12	10.8
16Eu	0.12	11.0

Table S3 – Atomic coordinates, occupancy factor and anisotropic thermal factor (B_{eq}).

Pure	Site	Np	х	у	Z	Atom	Occupancy	B _{eq}
	Ag1	16	0.62500	0.62500	0.62500	Ag⁺	0.99	3.91
	Eu1	16	0.62500	0.62500	0.62500	Eu ³⁺	0.01	0.01
	Mo1	8	0.00000	0.00000	0.00000	Mo ⁶⁺	1.00	1.99
	01	32	0.36616	0.30897	0.36616	O ²⁻	1.00	20.0
4Eu	Site	Np	х	У	Z	Atom	Occupancy	Beq
	Ag1	16	0.62500	0.62500	0.62500	Ag⁺	0.99	2.75
	Eu1	16	0.62500	0.62500	0.62500	Eu ³⁺	0.01	0.03
	Mo1	8	0.00000	0.00000	0.00000	Mo ⁶⁺	1.00	1.13
	01	32	0.32423	0.38366	0.32423	O ²⁻	1.00	19.9
8Eu	Site	Np	х	у	Z	Atom	Occupancy	Beq
	Ag1	16	0.62500	0.62500	0.62500	Ag⁺	0.99	3.37
	Eu1	16	0.62500	0.62500	0.62500	Eu ³⁺	0.01	0.01
	Mo1	8	0.00000	0.00000	0.00000	Mo ⁶⁺	1.00	1.59
	01	32	0.32436	0.38437	0.32436	O ²⁻	1.00	19.9
16Eu	Site	Np	х	у	Z	Atom	Occupancy	Beq
	Ag1	16	0.62500	0.62500	0.62500	Ag⁺	0.99	3.39
	Eu1	16	0.62500	0.62500	0.62500	Eu ³⁺	0.01	0.12
	Mo1	8	0.00000	0.00000	0.00000	Mo ⁶⁺	1.00	1.72
	01	32	0.32309	0.38490	0.32309	O ²⁻	1.00	19.9

Table S4 – CIE coordinates and CCT of the samples

Samples	х	У	ССТ (К)	Color purity (%)
Pure	0.3832	0.3197	4800	-
4Eu	0.5042	0.3330	3964	30.73
8Eu	0.5213	0.3222	4886	36.46
16Eu	0.5501	0.3200	6130	43.98