# Supporting Information

An improved method for the synthesis and formation mechanism of  $M_2B_{10}H_{14}$  based on the reactions of  $B_{10}H_{14}$ with  $MNH_2BH_3$  (M = Na, K)

Xi-Meng Chen,<sup>a</sup> Xing-Chao Yu,<sup>a</sup> Jing-Xian Chi,<sup>a</sup> Yi Jing,<sup>b</sup> Hongju Wang,<sup>c</sup> Na Zhang,<sup>a</sup> Chen Zhang,<sup>a</sup> Yi-Wen Ge,<sup>a</sup> and Xuenian Chen<sup>\*a,b</sup> <sup>a</sup>School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China <sup>b</sup>College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China <sup>c</sup>School of Environment, Henan Normal University, Xinxiang, Henan 453007, China

### 1. Experimental section :

1.1. General Procedures. All manipulations were carried out on a Schlenk line or in a glovebox filled with high-purity nitrogen. The <sup>11</sup>B NMR and <sup>11</sup>B {<sup>1</sup>H} NMR spectra were recorded on a 193 MHz spectrometer and externally referenced to BF<sub>3</sub>·OEt<sub>2</sub> in  $C_6D_6$  ( $\delta = 0.00$  ppm). The <sup>1</sup>H NMR and <sup>1</sup>H {<sup>11</sup>B} NMR spectra were obtained by a 600 MHz spectrometer. X-ray diffraction data were obtained with a Rigaku D/max 2500 diffractometer by using Cu-Ka radiation ( $\lambda = 0.1542$  nm, 40 kV, 100 mA). IR spectra were measured by Spectrum 400F.

 $B_{10}H_{14}$  was used as received. NaH and KH was washed with tetrahydrofuran (THF) and n-hexane and then dried in vacuo. NaNH<sub>2</sub>BH<sub>3</sub>, KNH<sub>2</sub>BH<sub>3</sub>, NaB<sub>10</sub>H<sub>13</sub>, and NaB<sub>10</sub>H<sub>15</sub> were prepared according to the literature methods.<sup>1-3</sup> All solvents were distilled from standard drying agents and degassed before use.

**1.2.** Synthesis of Na<sub>2</sub>B<sub>10</sub>H<sub>14</sub>. B<sub>10</sub>H<sub>14</sub> (0.73 g, 6 mmol) and NaNH<sub>2</sub>BH<sub>3</sub> (0.63 g, 12 mmol) were added to a 100 mL Schlenk flask. The flask was connected to a Schlenk line and 50 mL THF was injected. The reaction solution was stirred at room temperature for 30 min. During this time, a small amount of [NH<sub>2</sub>BH<sub>2</sub>]<sub>n</sub> precipitate was formed and then filtered out (Fig. S1). Then, 1,4-dioxane was added to the filtrate and formed a white precipitate Na<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>x</sub>B<sub>10</sub>H<sub>14</sub> (Fig. S2). After filtration, THF and 1,4-dioxane were removed from the filtrate under a dynamic vacuum to leave a white power formed NH<sub>3</sub>BH<sub>3</sub> (Fig. S3). And then, containing the the precipitate  $Na_2(C_4H_8O_2)_xB_{10}H_{14}$  was washed with  $CH_2Cl_2$  (3 × 20 mL) and then dried under vacuum to yield a white powder product  $Na_2B_{10}H_{14}$  (0.84 g, 83%). <sup>11</sup>B NMR (193 MHz,  $(CD_3)_2SO$ ):  $\delta -7.5$  (d, J = 126 Hz), -22.1 (d, J = 122 Hz), -34.2 (t, J = 112 Hz), -40.8 (d, J = 129 Hz) ppm (Fig. 2a). <sup>11</sup>B{<sup>1</sup>H} NMR (193 MHz, (CD<sub>3</sub>)<sub>2</sub>SO):  $\delta$  -7.5 (s), -22.1 (*s*), -34.2 (*s*), -40.8 (*s*) ppm (Fig. 2b). <sup>1</sup>H NMR (600 MHz, (CD<sub>3</sub>)<sub>2</sub>SO): δ 1.44 (*m*, 2H), 0.68 (m, 4H), 0.47 (m, 4H), -2.03 (m, 2H), -4.96 (br, 2H) ppm (Fig. 3a). <sup>1</sup>H{<sup>11</sup>B} NMR (600 MHz, (CD<sub>3</sub>)<sub>2</sub>SO): δ 1.44 (s, 2H), 0.68 (s, 4H), 0.47 (s, 4H), -2.03 (s, 2H), -4.96 (s, 2H) ppm (Fig. 3b). IR: 2520 (m), 2478 (m), 2425 (s), 2369 (s), 2332 (m), 2134 (w),

#### 1388 (w), 1173 (s), 1005 (s), 738 (w) (Fig. S15).

1.3. Synthesis of K<sub>2</sub>B<sub>10</sub>H<sub>14</sub>. B<sub>10</sub>H<sub>14</sub> (0.73 g, 6 mmol) and KNH<sub>2</sub>BH<sub>3</sub> (0.83 g, 12 mmol) were added to a 100 mL Schlenk flask. The flask was connected to a Schlenk line and 50 mL THF was injected. The reaction solution was stirred at room temperature for 12 hours. During this time, a large amount of white precipitate (K<sub>2</sub>B<sub>10</sub>H<sub>14</sub> and [NH<sub>2</sub>BH<sub>2</sub>]<sub>n</sub>) was formed. After the reaction, the reaction solution was examined by <sup>11</sup>B NMR (NH<sub>3</sub>BH<sub>3</sub>, Fig. S6) and then a small amount of water (2 mL) was injected into the solution to destroy the formed  $[NH_2BH_2]_n$ . After filtration, the precipitate  $K_2B_{10}H_{14}$ was washed with THF ( $3 \times 30$  mL) and then dried under vacuum to yield a white powder product K<sub>2</sub>B<sub>10</sub>H<sub>14</sub> (1.07 g, 89%). <sup>11</sup>B NMR (193 MHz, (CD<sub>3</sub>)<sub>2</sub>SO): δ -7.5 (d, J = 126 Hz), -22.1 (*d*, *J* = 117 Hz), -34.2 (*t*, *J* = 105 Hz), -40.9 (*d*, *J* = 129 Hz) ppm (Fig. S7a). <sup>11</sup>B{<sup>1</sup>H} NMR (193 MHz, (CD<sub>3</sub>)<sub>2</sub>SO):  $\delta$  -7.5 (s), -22.1 (s), -34.2 (s), -40.9 (s) ppm (Fig. S7b). <sup>1</sup>H NMR (600 MHz, (CD<sub>3</sub>)<sub>2</sub>SO): δ 1.44 (m, 2H), 0.68 (m, 4H), 0.49 (m, 4H), -2.03 (m, 2H), -4.97 (br, 2H) ppm (Fig. S8a). <sup>1</sup>H{<sup>11</sup>B} NMR (600 MHz, (CD<sub>3</sub>)<sub>2</sub>SO): δ 1.44 (s, 2H), 0.68 (s, 4H), 0.49 (s, 4H), -2.03 (s, 2H), -4.97 (s, 2H) ppm (Fig. S8b). IR: 2521 (s), 2481 (s), 2274 (w), 2200 (w), 1411 (w), 1116 (w), 1027 (m), 928 (w), 718 (w) (Fig. S9).

**1.4.** The reaction of  $B_{10}H_{14}$  with 1 equiv. of NaNH<sub>2</sub>BH<sub>3</sub>.  $B_{10}H_{14}$  (0.24 g, 2 mmol) and NaNH<sub>2</sub>BH<sub>3</sub> (0.11 g, 2 mmol) were added to a 50 mL Schlenk flask. The flask was connected to a Schlenk line and 20 mL THF was injected. The reaction solution was stirred at room temperature for 10 min and then was examined by <sup>11</sup>B NMR spectroscopy (Fig. S10).

**1.5.** The reaction of  $NaB_{10}H_{13}$  with 1 equiv. of  $NaNH_2BH_3$ . The as-synthesized  $NaB_{10}H_{13}$  (0.29 g, 2 mmol) and  $NaNH_2BH_3$  (0.11 g, 2 mmol) were added to a 50 mL Schlenk flask. The flask was connected to a Schlenk line and 20 mL THF was injected. The reaction solution was stirred at room temperature for 30 min and then was examined by <sup>11</sup>B NMR spectroscopy (Fig. S11).

**1.6.** The reaction of  $NaB_{10}H_{15}$  with 1 equiv. of  $NaNH_2BH_3$ . The as-synthesized  $NaB_{10}H_{15}$  (0.29 g, 2 mmol) and  $NaNH_2BH_3$  (0.11 g, 2 mmol) were added to a 50 mL Schlenk flask. The flask was connected to a Schlenk line and 20 mL THF was injected. The reaction solution was stirred at room temperature for 30 min and then was examined by <sup>11</sup>B NMR spectroscopy (Fig. S12).

**1.7.** The reaction of  $B_{10}H_{14}$  with 0.5 equiv. of NaNH<sub>2</sub>BH<sub>3</sub>.  $B_{10}H_{14}$  (0.24 g, 2 mmol) and NaNH<sub>2</sub>BH<sub>3</sub> (0.05 g, 1 mmol) were added to a 50 mL Schlenk flask. The flask was connected to a Schlenk line and 20 mL THF was injected. The reaction solution was stirred at room temperature for 1 hour and then was examined by <sup>11</sup>B NMR spectroscopy (Fig. S13). After filtration, THF was removed from the filtrate under dynamic vacuum to leave an oily product, which was washed with methylbenzene (2 × 30 mL), and then dried under vacuum to yield a white powder product NaB<sub>10</sub>H<sub>15</sub> which was not very pure (Fig. S14).

## 2. Supporting results:



Fig. S1 IR spectrum of the formed  $[NH_2BH_2]_n$  in the reaction of  $B_{10}H_{14}$  with 2 equiv. of NaNH<sub>2</sub>BH<sub>3</sub>.



Fig. S2 <sup>1</sup>H NMR (a) and <sup>1</sup>H{<sup>11</sup>B} NMR (b) spectra of the 1,4-dioxane-solvated Na<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>x</sub>B<sub>10</sub>H<sub>14</sub> in (CD<sub>3</sub>)<sub>2</sub>SO.



Fig. S3 X-ray powder diffraction data of the formed  $NH_3BH_3$  (\*) in the reaction of  $B_{10}H_{14}$  with 2 equiv. of  $NaNH_2BH_3$ .



Fig. S4 The integration of the  $^{11}B$  NMR spectrum of the prepared  $Na_2B_{10}H_{14}$  in

 $(CD_3)_2SO.$ 



Fig. S5 The integration of the  ${}^{1}H{{}^{11}B}$  NMR spectrum of the prepared  $Na_2B_{10}H_{14}$  in  $(CD_3)_2SO$ .



Fig. S6 <sup>11</sup>B NMR spectrum of the formed  $NH_3BH_3$  in the reaction of  $B_{10}H_{14}$  with 2 equiv. of  $KNH_2BH_3$ .



Fig. S7  $^{11}B$  NMR (a) and  $^{11}B\{^{1}H\}$  NMR (b) spectra of the prepared  $K_{2}B_{10}H_{14}$  in  $(CD_{3})_{2}SO.$ 



Fig. S8 <sup>1</sup>H NMR (a) and <sup>1</sup>H{<sup>11</sup>B} NMR (b) spectra of the prepared  $K_2B_{10}H_{14}$  in  $(CD_3)_2SO$ .



**Fig. S9** IR spectrum of the prepared  $K_2B_{10}H_{14}$ .



Fig. S10 <sup>11</sup>B NMR spectrum of the reaction solution of  $B_{10}H_{14}$  with 1 equiv. of NaNH<sub>2</sub>BH<sub>3</sub>.



Fig. S11 <sup>11</sup>B NMR spectrum of the reaction solution of  $NaB_{10}H_{13}$  with 1 equiv. of  $NaNH_2BH_3$ .



Fig. S12 <sup>11</sup>B NMR spectrum of the reaction solution of  $NaB_{10}H_{15}$  with 1 equiv. of  $NaNH_2BH_3$ .



Fig. S13 <sup>11</sup>B NMR spectrum of the reaction solution of  $B_{10}H_{14}$  with 0.5 equiv. of NaNH<sub>2</sub>BH<sub>3</sub>.



Fig. S14  $^{11}$ B NMR spectrum of the isolated NaB $_{10}$ H $_{15}$  which is not very pure.



Fig. S15 IR spectrum of the prepared  $Na_2B_{10}H_{14}$ .

# 3. References

- (a) Z. Xiong, G. Wu, Y. S. Chua, J. Hu, T. He, W. Xu and P. Chen, *Energy Environ. Sci.*, 2008, 1, 360–363; (b) Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, *Nat. Mater.*, 2008, 7, 138–141.
- 2 R. Schaeffer and F. Tebbe, *Inorg. Chem.*, 1964, **3**, 1638–1640.
- 3 B. M. Graybill, A. R. Pitochelli and M. F. Hawthorne, *Inorg. Chem.*, 1962, 1, 622–626.