Electronic Supplementary Material (ESI) for

Ligand Redox Controlled Amine Dehydrogenation and Imine Hemilability in Singlet Diradical Azo-aromatic Ni(II) Complexes: Characterization of the Electron Transfer Series of Azo-imine Complexes of Ni(II)

Bappaditya Goswami,^{†a} Manas Khatua,^{†a,c} Ambika Devi,^b Shivali Hans,^b Robindo Chatterjee,^b Subhas Samanta^{*b}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research

Kolkata, Mohanpur, Nadia, West Bengal 741246, India

^bDepartment of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India

°Current Affiliation: Central Instrumentation Facility, Indian Institute of Technology

(IIT) Jammu, Paloura, Jammu, Jammu and Kashmir 181121, India

*Correspondence: Dr. Subhas Samanta, <u>subhas.samanta@iitjammu.ac.in</u> †These authors contributed equally to this work and share first authorship.

Table of Contents

Contents page						
A. Synthesis of ligands						
Figure S1 . ¹ H NMR spectra of ligand, L^2 in CDCl ₃ in 500 MHz at 298K						
Figure S2 . ¹³ C{ ¹ H} NMR spectra of ligand, L^2 in CDCl ₃ in 500 MHz at 298K						
Figure S3. ESI-MS of ligand L^2 in methanol						
Figure S4. ¹ H NMR spectra of ligand, L^3 in CDCl ₃ in 500 MHz at 298KS						
Figure S5 . ¹³ C{ ¹ H} NMR spectra of ligand, L^3 in CDCl ₃ in 500 MHz at 298KS						
Figure S6 . ¹⁹ F{ ¹ H} NMR spectra of ligand, L^3 in CDCl ₃ in 500 MHz at 298KS						
Figure S7 . ESI-MS of ligand L^3 in methanol						
Figure S8. Molecular Orbitals of Complex [1]						
Figure S9. ¹ H NMR spectra of complex [1] in CDCl ₃ in 500 MHz at 298KS10						
Figure S10. ¹³ C{ ¹ H} NMR spectra of complex [1] in CDCl ₃ in 500 MHz at 298KS10						
Figure S11. Time-dependent UV-vis spectrum of [1] in acetonitrile solution upon exposure to air at 298K S11						
B. Procedure for the reaction of complex [1] with O ₂ S12						
Scheme S1. The reaction of complex [1] with O2S12						
Figure S12 . ¹ H NMR of the reaction mixture of complex [1] upon exposure to O ₂ S13						
Figure S13. FESEM images, EDS-mapping images for different elements, and FT-IR spectrum of Ni(OH) ₂						
Figure S14. ¹ H NMR spectra of complex [2] in DMSO-d ₆ in 500 MHz at 298K						
Figure S15. ${}^{13}C{}^{1}H$ NMR spectra of complex [2] in CDCl ₃ in 500 MHz at 298K.S14						
Figure S16. Molecular Orbitals of Complex [2]						

Figure	5	S17 .	Molecular	Orbital	s of		Complex	[3a] (ClO ₄) ₂
Figure S	5 18. Op	timized Str	ructure of the	complexes	• • • • • • • • • • • • • • • • • • • •			S16
Figure S	519 . Mo	olecular Or	bitals of Com	plex [3b](ClC	D ₄) ₂			S18
Figure S	520 . Mo	olecular Or	bitals of Com	plex [3c](ClC	0 ₄) ₂			S19
Figure	S21 .	TDDFT	Calculated	absorption	spectrum	of	[3a](ClO ₄) ₂	S20
Figure	S22 .	TDDFT	Calculated	absorption	spectrum	of	[3a](ClO ₄)	
Figure	S23 .	TDDFT	Calculated	absorption	spectrum	of	[2]	
Figure S24. Cyclic voltammogram of complex [2] in dichloromethane solution at different scan rates								
Tables								page
Table S	1. TDD	FT calcula	ted major exci	ted state tran	sitions of [3	a](Cl(D ₄) ₂ with Osc.	. Strength and λ _{ex}
Table S	2. TDD	FT calcula	ted major exc	ited state tran	sitions of [3	a](Cl	O ₄) with Osc.	Strength and λ_{ex} .
Table S	5 3. TDI	OFT calcul	lated major e	excited state	transitions	of [2]	with Osc. S	Strength and λ_{ex} .
C. Refe	rences.							S24

A. Synthesis of Ligands

The ligands, L^2 and L^3 were prepared and purified according to our reported literature procedure.¹⁻⁵ Their yields and characterization data are as follows:

L²: Yield: 83%; ESI-MS m/z 317.1403 amu; IR (KBr): $v = 1501 \text{ cm}^{-1}$ (N=N), 1627 cm⁻¹ (C=N); UV-vis: ε_{240nm} , 41779 M⁻¹ cm⁻¹, ε_{351} nm, 59288 M⁻¹ cm⁻¹; ε_{443} nm, 863 M⁻¹ cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.34 (dd, J = 7.6, 0.9 Hz, 1H), 8.10-8.08 (m, 2H), 8.01-7.97 (m, 1H), 7.86 (dd, J = 7.9, 1.0 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 7.6 Hz, 2H), 7.06-7.02 (m, 3H), 3.91 (s, 3H); ¹³C{¹H} NMR (500 MHz, CDCl₃) δ 163.27 (C), 163.22 (C), 160.25 (C), 154.34 (C-H), 150.64 (C), 146.69 (C-H), 138.83 (C-H), 129.27 (C-H), 126.92 (C-H), 125.90 (C-H), 122.34 (C-H), 121.20 (C-H), 114.84 (C-H), 114.32 (C-H), 55.63 (CH₃).

L³: Yield: 78%; ESI-MS m/z 305.1202 amu; IR (KBr): v = 1504 cm⁻¹ (N=N), 1628 cm⁻¹ (C=N); UV-vis: ε_{226nm} , 50976 M⁻¹ cm⁻¹, ε_{324} nm, 58050 M⁻¹ cm⁻¹, ε_{461} nm, 1103 M⁻¹ cm⁻¹; ¹⁹F{¹H} NMR (500 MHz, CDCl₃) δ -115.29; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.36 (d, J = 7.6 Hz, 1H), 8.09-8.07 (m, 2H), 8.01 (t, J = 7.8 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.57-7.53 (m, 3H), 7.35-7.31 (m, 2H), 7.12 (t, J = 8.7 Hz, 2H); ¹³C{¹H} NMR (500 MHz, CDCl₃) δ 162.94 (C), 160.86 (C), 159.69 (C), 154.34 (C-H), 152.19 (C), 146.52 (C-H), 138.96 (C), 132.48 (C-H), 129.18 (C-H), 123.69 (C-H), 122.80 (C-H), 116.17 (C-H), 115.99 (C-H), 115.16 (C-H).

Figure S1: ¹H NMR spectra of ligand L^2 in CDCl₃ in 500 MHz at 298K.

Figure S2: ${}^{13}C{}^{1}H$ NMR spectra of ligand L² in CDCl₃ in 500 MHz at 298K.

Figure S3: ESI-MS of ligand L^2 in methanol.

Figure S5: ${}^{13}C{}^{1}H$ NMR spectra of ligand L³ in CDCl₃ in 500 MHz at 298K.

Figure S6: ${}^{19}F{}^{1}H$ NMR spectra of ligand L³ in CDCl₃ in 500 MHz at 298K.

Figure S7: ESI-MS of ligand L^3 in methanol.

S8|Supplementary Material

Figure S8. Molecular Orbitals of Complex [1] (*isosurface value* = 0.06)

Figure S9. ¹H NMR spectra of complex [1] in CDCl₃ in 500 MHz at 298K.

Figure S10. ¹³C{¹H} NMR spectra of complex [1] in CDCl₃ in 500 MHz at 298K.

Figure S11. Time-dependent UV-vis spectrum of [1] in acetonitrile solution upon exposure to air at 298K.

B. Procedure for the reaction of complex [1] with O₂

In 10 mL of dry degassed acetonitrile, 100 mg (0.15 mmol) of compound **1** was dissolved in a 25 mL of Schlenk tube. Subsequently, the molecular oxygen was bubbled by a balloon over a period of 10 minutes into the solution. The colour of the reaction mixture immediately changed from dark brown to orange red. After 10 minutes of stirring at room temperature, the reaction mixture was evaporated under reduced pressure. The crude product was extracted thrice using 5 mL of diethyl ether. The combined ether solution was filtered through a cellite pad, and the filtrate was collected. The solvent was evaporated under reduced pressure and the product was characterized by ¹H NMR. Analysis of the product showed that 90% of L¹ (major) and 10% of H₂L (minor).

Scheme S1. Reaction of the complex [1] with O₂

Figure S12. ¹H NMR of the reaction mixture of complex [1] upon exposure to O_2

Figure S13. FESEM images (A-C); EDS-mapping images for different elements (D, E); FT-IR spectrum of Ni(OH)₂ (F).

Figure S14. ¹H NMR spectra of complex [**2**] in DMSO-d₆ in 500 MHz at 298K.

Figure S15. ¹³C{¹H} NMR spectra of complex [**2**] in CDCl₃ in 500 MHz at 298K.

Figure S16. Molecular Orbitals of Complex [2] (*isosurface value* = 0.06)

S15 | Supplementary Material

Figure S17. Molecular Orbitals of Complex [3a](ClO₄)₂(*isosurface value* = 0.06)

Figure S18. Optimized Structure of the complexes [1], [2], [3a](ClO₄)₂, [3a](ClO₄), [2]⁻, [2]²⁻, [3b](ClO₄)₂ and [3c](ClO₄)₂.

Figure S19. Molecular Orbitals of Complex [3b](ClO₄)₂ (*isosurface value* = 0.06)

Figure S20. Molecular Orbitals of Complex [3c](ClO₄)₂ (*isosurface value* = 0.06)

S19 | Supplementary Material

Figure S21. TDDFT Calculated absorption spectrum of the complex, [3a](ClO₄)₂

Table S1. TDDFT calculated major excited state transitions of the complex, $[3a](ClO_4)_2$ with Osc. Strength and λ_{ex} .

$\begin{array}{c} \lambda_{ex} (nm) \\ (Exp.)^a \end{array}$	$\lambda_{ex} (nm)$ (Calc.) ^b	Oscillator Strength (f)	Major Transitions ^c
315	323.4	0.2419	H-2 (α) \rightarrow L+3 (α) (20%), H-9 (β) \rightarrow L+1 (β) (14%)
381	396.2	0.1495	H-6 (α) → LUMO (α) (15%), H-4 (α) → L+1 (α) (15%), H-4 (β) → L+1 (β) (32%)
549	588.3	0.0033	H-9 (α) \rightarrow L+1 (α) (24%), H-8 (α) \rightarrow L (α) (20%)
613	665.4	0.0008	H-2(α) → LUMO(α) (17%), H-1(α) → LUMO(α) (11%), H-2(β) → LUMO(β) (17%)
^a Experimental wavelength in dichloromethane. ^b TD-DFT calculated wavelength of the complex,			

[3a] (ClO₄)₂. ^cTransitions with greater than 10% contribution are presented.

Figure S22. TDDFT Calculated absorption spectrum of the complex, [3a](ClO₄)

Table S2. TDDFT calculated major excited state transitions of the complex, $[3a](ClO_4)$ with Osc. Strength and λ_{ex} .

λ _{ex} (nm) (Exp.) ^a	$\lambda_{ex} (nm)$ (Calc.) ^b	Oscillator Strength (f)	Major Transitions ^c	
316	320.6	0.2008	H-12 (α) → LUMO (α) (18%), H-13 (β) → LUMO (β) (10%), H-12 (β) → LUMO (β) (18%)	
379	389.3	0.2231	H-5 (α) \rightarrow LUMO (α) (16%), H-1 (β) \rightarrow L+1 (β) (28%)	
595	613.1	0.0138	H-3 (α) \rightarrow L+1 (α) (14%), HOMO (α) \rightarrow L+1 (α) (69%)	
^a Experimental wavelength in dichloromethane. ^b TD-DFT calculated wavelength of complex, [3a](ClO ₄). ^c Transitions with greater than 10% contribution are presented.				

Figure S23. TDDFT Calculated absorption spectrum of the complex, [2]

Table S3. TDDFT calculated major excited state transitions of the complex, [2] with Osc. Strength and λ_{ex} .

λ _{ex} (nm) (Exp.) ^a	$\lambda_{ex}(nm)$ (Calc.) ^b	Oscillator Strength (f)	Major Transitions ^c	
315	356.9	0.1571	HOMO (β) \rightarrow L+11 (β) (46%), HOMO (β) \rightarrow L+12 (β) (12%)	
381	386.8	0.1187	H-3 (α) \rightarrow L+1 (α) (20%), H-4 (β) \rightarrow LUMO (β) (23%), H-1 (β) \rightarrow L+4 (β) (14%)	
594	542.8	0.0955	H-3(α) \rightarrow LUMO (α) (23%), H-1 (α) \rightarrow LUMO (α) (42%)	
890	917.6	0.0604	HOMO (α) \rightarrow L+2 (α) (17%), HOMO (β) \rightarrow L+1 (β) (60%)	
^a Experimental wavelength in dichloromethane. ^b TD-DFT calculated wavelength of the complex, [2].				

°Transitions with greater than 10% contribution are presented.

Figure S24. Cyclic voltammogram of complex [2] in dichloromethane solution at different scan rate.

C. References:

1. M. Khatua, B. Goswami and S. Samanta, Dalton Trans., 2020, 49, 6816-6831.

2. B. K. Barman, M. Khatua, B. Goswami, S. Samanta and R. K. Vijayaraghavan, *Chem Asian J.*, 2021, **16**, 1545–1552.

3. B. Goswami, M. Khatua and S. Samanta, *Dalton Trans.*, 2022, **51**, 1454–1463.

4. B. Goswami, M. Khatua, R. Chatterjee, Kamal and S. Samanta, *Organometallics*, 2023, **42**(15), 1854–1868.

5. Kamal, M. Khatua, S. Rani, B. Goswami and S. Samanta, J. Org. Chem., 2023, 88(9), 5827-5843.