Supporting Information

Promoting CO₂ electroreduction to CO by a graphdiyne

stabilized Au nanoparticles catalyst

Guodong Shi,*^a De Guo,^c Jun-Tao Wang,^a Yanwei Luo,^a Zhiwei Hou,^a Zixiong Fan,^b Mei Wang^{*c} and Mingjian Yuan^b

^a College of Science, Henan University of Technology, Zhengzhou 450001 (China)

^b Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, (China)

^c School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, (China)

Figure S1. TEM image of GDY.

Figure S2. (a)TEM and (b) HRTEM images of Au/GO composite.

Figure S3. XRD patterns for Au/GDY and Au/GO.

Figure S4. High-resolution XPS spectra of C 1s for GDY.

Figure S5. High-resolution XPS spectra of Au 4f for Au/GO

Figure S6. $FE_{\rm H2} \, of \, GDY, \, Au/GO \, and \, Au/GDY$

Figure S7. GC-MS result of ¹³CO produced over Au/GDY from ¹³CO₂ isotope experiment

Figure S8. Exchange current density (j₀) of Au/GDY and Au/GO

Figure S9. Typical cyclic voltammograms at different scan rates. Au/GDY (left) and Au/GO (right) with scan rates ranging from 20 mV s⁻¹ to 100 mV s⁻¹.

Figure S10. The capacitive currents as a function of scan rates

Figure S11. The equivalent circuit model of Au/GDY

Figure S12. The time-dependent current density curve of Au/GDY at -0.75 V

Figure S13. TEM images of Au/GDY after stability test

Table S1. Au loading and ECSA for Au/GDY and Au/C

	Au/GDY	Au/C
Au (wt.%)	28	25

Table S2. Summary of Au electrocatalysts studied for electrochemical reduction of CO_2 to CO

Catalyst	Electrolyte	Potential (V vs. RHE)	FE _{CO}	j _{co} (mA cm ⁻²)	Ref
Au/GDY	0.5 M KHCO ₃	-0.75	94.6%	16	This work
Au-CeOx/C	0.1 M KHCO ₃	-0.59	72%	12.9	[1]
NGQDs- SCAu	0.5 M KHCO ₃	-0.65	91%	~11.4	[2]
Au-C ₃ N ₄	0.5 M KHCO ₃	-0.6	91%	~9	[3]

Au-CDots- C ₃ N ₄	0.5 M KHCO ₃	-0.6	75%	4.8	[4]
Au-2@CN	0.5 M KHCO ₃	-0.58	88%	1.06	[5]
8 nm Au NPs	0.5 M KHCO ₃	-0.67	90%	NA	[6]
Au-Cb NPs	0.1 M KHCO ₃	-0.57	83%	~9.5	[7]
AuNPs/GDL	0.5 M NaHCO ₃	-0.55	77%	~11.6	[8]
AuNP GNR	0.5 M NaHCO ₃	-0.57	90%	NA	[9]
Au/Py- CNTs-O	0.1 M KHCO ₃	-0.58	93%	~6.5	[10]

- D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G.Wang,
 X. Bao, J. Am. Chem. Soc., 2017, 139, 5652-5655.
- [2] J. Fu, Y. Wang, J. Liu, K. Huang, Y. Chen, Y. Li, J. Zhu, ACS Energy Lett., 2018, 3, 946-951.
- [3] L. Zhang, F. Mao, L. Zheng, H. Wang, X. Yang, H. Yang, ACS Catal., 2018, 8, 11035-11041.

[4] S. Zhao, Z. Tang, S. Guo, M. Han, C. Zhu, Y. Zhou, L. Bai, J. Gao, H. Huang, Y. Li, Y.Liu, Z. Kang, ACS Catal., 2017, 8, 188-197.

[5] L. Jin, B. Liu, P. Wang, H. Yao, L. A. Achola, P. Kerns, A. Lopes, Y. Yang, J. Ho, A. Moewes, *Nanoscale*, 2018, **10**, 14678-14686.

[6] W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S.Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.

[7] Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A.Reimer,
P. Yang, C. J. Chang, *J. Am. Chem. Soc.*, 2016, **138**, 8120-8125.

[8] T. N. Huan, P. Prakash, P. Simon, G. Rousse, X. Xu, V. Artero, E. Gravel, E. Doris, M. Fontecave, *ChemSusChem*, 2016, 9, 2317-2320.

[9] C. Rogers, W. S. Perkins, G. Veber, T. E. Williams, R. R. Cloke, F. R. Fischer, J. Am. Chem. Soc., 2017, **139**, 4052-4061.

[10] Z. Q. Ma, C. Lian, D. F. Niu, L. Shi, S. Z. Hu, X. S. Zhang, H. L. Liu, *ChemSusChem*, 2019, 12, 1724.