Supplementary Information for article

Optical and scintillation properties of hybrid manganese(II) halides with formamidinium and acetamidinium cations

Sergey A. Fateev^a, Vladislava Y. Kozhevnikova^d, Kirill M. Kuznetsov^a, Daria E. Belikova^a, Victor N. Khrustalev^{b, c}, Eugene A. Goodilin^{a,d} and Alexey B. Tarasov^{*a, d}

^a Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University; 1 Lenin Hills, 119991, Moscow, Russia;

^b Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University),
6 Miklukho-Maklay Str., 117198, Moscow, Russia

^c N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prosp., 119991, Moscow, Russia

^d Department of Chemistry, Lomonosov Moscow State University; 1 Lenin Hills, 119991, Moscow, Russia

*corresponding author e-mail: <u>alexey.bor.tarasov@yandex.ru</u>.

Phase	Ac ₂ MnBr ₄	FA ₃ MnBr ₅	(i-PrOH) ₄ MnBr ₂	
Empirical formula	$C_4H_{14}Br_4MnN_4$	C ₃ H ₁₅ Br ₅ MnN ₆	$C_{12}H_{32}Br_2MnO_4$	
M, g/mol	492.73	589.65	455.12	
Crystal system	Triclinic	Orthorombic	Monoclinic	
Space group	pĪ	Pnma	$P2_1/c$	
a, Å	7.87110(7)	11.2782(4)	5.78966(8)	
b, Å	7.97838(9)	15.3630(4)	10.52718(16)	
c, Å	12.90853(12)	9.5551(2)	16.74863(19)	
a, deg.	72.6600(9)	90	90	
β, deg.	78.5236(7)	90	97.3885(12)	
γ, deg.	67.0044(10)	90	90	
V, Å ³	709.158(14)	1655.58(8)	1012.33(2)	
Ζ	2	4	2	
D (calc), g/cm ³	2.307	2.366	1.493	
μ, mm ⁻¹	20.549	20. 517	9.980	
F(000)	462	1100	462	
Crystal size, mm	0.18×0.05×0.04	0.34×0.24×0.22	0.10×0.10×0.10	

Table S1. Parameters of the crystal structure refinement.

Θ range for data				
collection, deg.	3.603 - 77.991	3.88 – 77.58	4.974 - 77.759	
concerton, ueg.				
Index ranges	$-9 \le h \le 9$	$-14 \le h \le 13$	$-7 \le h \le 7$	
	$-10 \le k \le 9$	$-17 \le k \le 19$	$-13 \le k \le 12$	
	$-16 \le l \le 16$	$-8 \le l \le 12$	$-21 \le l \le 20$	
Reflections	93076/3004	0286/1772	11458/2120	
collected/independent	93070/3004	9200/17/2		
R _{int}	0.0850	0.0978	0.0413	
Reflections with I>2σ(I) 3001		1705	2001	
Goodness-of-fit on F 1.057		1.014	1.076	
Final R indices	$R_1 = 0.0306$	$R_1 = 0.0448$	$R_1 = 0.0268$	
[I>2σ(I)]	$wR_2 = 0.0826$	$wR_2 = 0.1100$	$wR_2 = 0.0601$	
R indices (all data)	$R_1 = 0.0306$	$R_1 = 0.0466$	$R_1 = 0.0297$	
	$wR_2 = 0.0827$	$wR_2 = 0.1117$	$wR_2 = 0.0613$	
T_{\min}/T_{\max}	0.036 / 0.404	0.006 / 0.084	0.352 / 1.000	
Largest diff. peak/hole,	1.689/-0.879	1.137/-0.609	0 520 / -0 445	
e/Å ³			0.5207-0.775	

Figure S1. X-ray powder pattern fitting for FAMnBr₃. The observed and calculated patterns are shown by black dots and green solid line respectively. The vertical marks show positions calculated for Bragg

reflections. The red trace on the bottom is a plot of the difference between calculated and observed intensities.

Figure S2. X-ray powder pattern fitting for AcMnBr₃. The observed and calculated patterns are shown by black dots and green solid line respectively. The vertical marks show positions calculated for Bragg reflections. The red trace on the bottom is a plot of the difference between calculated and observed intensities.

Figure S3. TG mass loss curve of the (FA)MnBr₃ and (AcA)MnBr₃.

Figure S4. Fitted PL decay curve of the AcMnBr₃ powder.

Figure S5. Fitted PL decay curve of the FAMnBr₃ powder.

Figure S6. Fitted PL decay curve of the Ac₂MnBr₄ powder.

Figure S7. Fitted PL decay curve of the FA₃MnBr₅ powder.

Table S2. Optical properties of the studied phases: photoluminescence excitation maxima (PLE_{max}), photoluminescence maxima (PL_{max}), fullwidth at half maximum (FWHM), Stokes shift, photoluminescence quantum yields (PLQY) and photoluminescence decay times (τ).

Phase	PLE _{max} , nm/eV	PL _{max} , nm/eV	FWHM, nm/meV	Stokes Shift, nm/eV	PLQY, %	τ, μs
AcMnBr ₃	372/3.33	660/1.88	97/279	120/1.45	43	139.0
FAMnBr ₃	373/3.32	654/1.90	94/262	118/1.42	4	84.6
Ac ₂ MnBr ₄	272/4.56	525/2.36	52/249	72/2.2	21	126.4
FA ₃ MnBr ₅	277/4.48	518/2.39	53/264	63/2.09	7	96.7