Electronic Supporting Information

Table of Contents

1.	Materials and methods	S2
2.	Experimental details and characterization	S2
3.	Crystallographic details	S18
4.	Computational details	527
5.	References	S39

1. Materials and methods

All manipulations were carried out under an inert atmosphere of dry nitrogen using standard glovebox and Schlenk techniques. All solvents were taken from the solvent purification machine MB SPS-800 of the company MBRAUN. The ligand complexes $[Cp_2Mo_2(CO)_4(\mu,\eta^2-E_2)]^{[1]}(E = P(A), As(B), Sb(C), Cp(A))$ = C_5H_5), $[Cp_2Mo_2(CO)_4(\mu,\eta^2-PE)]^{[1]}$ (E = As (D), E = Sb (E), Cp = C_5H_5)) and Ag salts [Ag(CH₂Cl₂)][Al{OC(CF₃)₃]₄]^[2] (Ag[TEF]) and [Cu(CH₃CN)₄][Al{OC(CF₃)₃]₄]^[3] (Cu[TEF]) were prepared according to literature procedures. Solid state IR spectra were recorded using a ThermoFisher Nicolet iS5 FT-IR spectrometer with an ATR-Ge disc. The NMR spectra were recorded on a Bruker Avance III HD 400 spectrometer (¹H: 400 MHz, ¹³C: 100 MHz, ¹⁹F: 376 MHz, ³¹P: 162 MHz) with dichloromethane d_2 or acetonitirile- d_3 as solvent at room temperature. The chemical shifts (δ) are presented in parts per million ppm and coupling constants (J) in Hz. The following samples were used as external reference: TMS (¹H, ¹³C), CFCl₃ (¹⁹F), 85% H₃PO₄ (³¹P). ¹³C, ¹⁹F, ³¹P and spectra were decoupled from the protons. The ESI-MS (ESI = Electrospray ionization) spectra were recorded on a Finnigan Thermoquest TSQ 7000 mass spectrometer with dichloromethane as solvent. Due to the experimental setup of the ESI-MS experiments, traces of CH₃CN are present in the device causing species containing CH₃CN. Elemental analyses were performed on an Elementar Vario EL III apparatus by the microanalytical laboratory of the University of Regensburg.

2. Experimental details and characterization

2.1. General synthetic protocol for compounds 3-6:

A solution of Ag[TEF] (35 mg, 0.03 mmol, 2 eq.) in 4 mL of CH₂Cl₂ was slowly added to a vigorously stirred solution of $[Cp_2Mo_2(CO)_4(\mu,\eta^2-P_2)]$ (**A**) (30 mg, 0.06 mmol, 4 eq.) in 4 mL of CH₂Cl₂. The orange solution was stirred for 30 minutes at room temperature, after which, a solution of a homo- ($[Cp_2Mo_2(CO)_4(\mu,\eta^2-E_2)]^{[1]}$ (**E** = As (**B**), Sb (**C**)) or-hetero- ($[Cp_2Mo_2(CO)_4(\mu,\eta^2-PE)]$ (**E** = As (**D**), E = Sb (**E**)) dipnictogen ligand complex (**B**-E) (0.03 mmol, 2 eq.) in 4mL of CH₂Cl₂ was slowly added to the reaction mixture. The red solution was stirred for 30 minutes at room temperature, after which, it was carefully layered with 45 mL of *n*-pentane. Within four to ten days, red crystals of products were obtained, washed with *n*-pentane and dried *in vacuo*. Yield (**3** (47 mg, 72%), **4** (45 mg, 67%), **5** (22 mg, 35%), **6** (25 mg, 38%)). Noteworthy, in the crystal structures of compounds **5-6** a partial disorder of the complexes **D** or **E** with the complex **A** indicates the presence of the all-phosphorus complex $[(\eta^2-A)_2(\eta^{1:1}-A)_2Ag_2][TEF]$ (**1**). For additional information see the crystallographic details section.

2.2. General synthetic protocol for compounds 7-8:

A solution of Cu[TEF] (36 mg, 0.03 mmol, 2 eq.) in 4 mL of CH₂Cl₂ was slowly added to a vigorously stirred solution of $[Cp_2Mo_2(CO)_4(\mu,\eta^2-P_2)]$ (**A**) (30 mg, 0.06 mmol, 4 eq.) in 4 mL of CH₂Cl₂. The orange solution was stirred for 30 minutes at room temperature, after which, a solution of $[Cp_2Mo_2(CO)_4(\mu,\eta^2-E_2)]^{[1]}$ (E = As (**B**), Sb (**C**)) (0.03 mmol, 2 eq.) in 4mL of CH₂Cl₂ was slowly added to the reaction mixture. The red solution was stirred for 30 minutes at room temperature, after which, it was carefully layered with 45 mL of toluene*. Within four to ten days, red crystals of were obtained, washed with *n*-pentane and dried *in vacuo*. Yield (**7** (36 mg, 48%), **8** (33 mg, 38%). Noteworthy, in the crystal structures of compounds **7-8** a partial disorder of the complexes **B** or **C** with the complex **A** indicates the presence of the all-phosphorus complex $[(\eta^2-A)_2(\eta^{1:1}-A)_2Ag_2]$ [TEF] (**1**). For additional information see the crystallographic details section.

* Reaction also yields the mixed dimer if pentane is used (different cell) but the crystal quality is not sufficient for the full experiment.

2.3. Characterization data for compounds 3-8:

2.3.1. [{{CpMo(CO)₂}₂{ μ , η^{2} -As₂}₂{{CpMo(CO)₂}₂{ μ , η^{1} : η^{1} -P₂}₂Ag₂][Al{OC(CF₃)₃}₄]₂ (3)

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 5.29 (s, 10H, H_{Cp}), 5.34 (s, 10H, H_{Cp}).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 85.7 (s, C_{Cp}), 87.5 (s, C_{Cp}), 121.3 (q, $J_{(C,F)}$ = 292 Hz; C_{CF3}), 222.7 (broad s, C_{CO}), 222.8 (broad s, C_{CO}).

³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -90.0 (broad s, $\omega_{1/2}$ = 470 Hz).

¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}₄]⁻).

ESI-MS (CH₂Cl₂) negative mode: m/z = 966.9 (100%, [Al{OC(CF₃)₃]₄]⁻).

Elemental analysis (%) calculated for $(C_{88}H_{40}Ag_2Al_2F_{72}Mo_8O_{24}P_4As_4)$ (4310.04 g·mol⁻¹): C, 24.52; H, 0.94; found: C, 24.35; H, 0.60.

IR (ATR-Ge): $\tilde{v} = 2356$ (w), 2066 (m), 2040 (m), 2008 (s), 1997 (s), 1969 (s), 1945 (s), 1351 (m), 1298 (m), 1276 (s), 1241 (s), 1216 (s), 1168 (m), 1067 (w), 973 (s), 824 (m), 763 (s), 727 (s).

$2.3.2. \ [\{ CpMo(CO)_2\}_2 \{\mu, \eta^2 - Sb_2\} \}_2 \{ CpMo(CO)_2\}_2 \{\mu, \eta^1 : \eta^1 - P_2\} \}_2 Ag_2] [AI \{ OC(CF_3)_3\}_4]_2 \ (4)$

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 5.25 (s, 10H, H_{Cp}), 5.36 (s, 10H, H_{Cp}).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 83.7 (s, C_{Cp}), 87.6 (s, C_{Cp}), 121.2 (q, $J_{(C,F)}$ = 291 Hz; C_{CF3}), 221.7 (s, C_{Co}), 222.5 (s, C_{Co}).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -95.7 (broad s, $ω_{1/2}$ = 163 Hz).

¹⁹**F{**¹**H**} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}₄]⁻).

ESI-MS (CH₂Cl₂) negative mode: m/z = 966.9 (100%, [Al{OC(CF₃)₃]₄]).

Elemental analysis (%) calculated for $(C_{88}H_{40}Ag_2Al_2F_{72}Mo_8O_{24}P_4Sb_4)$ (4497.39 g·mol⁻¹): C, 23.50; H, 0.90; found: C, 23.84; H, 0.59.

IR (ATR-Ge): $\tilde{v} = 2356$ (w), 2066 (m), 2041 (m), 2016 (s), 1990 (s), 1963 (s), 1944 (s), 1921 (s), 1905 (s), 1352 (m), 1297 (m), 1274 (s), 1238 (s), 1218 (s), 1168 (m),972 (s), 827 (s), 748 (m), 726 (s).

2.3.3. [{{CpMo(CO)₂}₂{ μ , η^{2} -PAs}}₂{{CpMo(CO)₂}₂{ μ , η^{1} : η^{1} -P₂}₂Ag₂]_{0.86}[Al{OC(CF₃)₃}₄]₂ (5)

¹**H NMR** (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 5.30 (s, 10H, H_{Cp}), 5.32 (s, 11.6H, H_{Cp}).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 86.5 (s, C_{Cp}), 87.5 (s, C_{Cp}), 121.2 (q, $J_{(C,F)}$ = 291 Hz; C_{CF3}), 222.1 (s, C_{Co}), 222.5 (s, C_{Co}), 223.0 (s, C_{Co}).

³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -91.1 (broad s, $\omega_{1/2}$ = 123 Hz), 30.9 (broad s, $\omega_{1/2}$ = 24 Hz). ¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}₄]).

ESI-MS (CH₂Cl₂) positive mode: $m/z = 1144.45(100\%, [{Cp₂(CO)₄Mo₂PAs}{Cp₂(CO)₄Mo₂P₂}Ag]⁺), 1100.5 (88\%, [{Cp₂(CO)₄Mo₂PAs}₂Ag]⁺), 1188.4 (58\%, [{Cp₂(CO)₄Mo₂PAs}₂Ag]⁺).$

ESI-MS (CH₂Cl₂) negative mode: m/z = 966.9 (100%, [Al{OC(CF₃)₃}₄]⁻).

Elemental analysis (%) calculated for $C_{88}H_{40}Ag_2Al_2As_{1.72}F_{72}Mo_8O_{24}P_{6.28}$ (4209.84 g·mol⁻¹): C, 25.11; H 0.96; found: C, 25.51; H, 1.01.

IR (ATR-Ge): $\tilde{v} = 1972$ (bs), 1945 (s), 1351 (w), 1298 (m), 1276 (s), 1241 (s), 1216 (s), 1170 (w), 973 (s), 828 (w), 727 (s), 560 (w).

$2.3.4. \ [\{ CpMo(CO)_2\}_2 \{\mu, \eta^2 - PSb \} \}_2 \{ CpMo(CO)_2\}_2 \{\mu, \eta^1 : \eta^1 - P_2 \} \}_2 Ag_2]_{0.81} [AI \{ OC(CF_3)_3\}_4]_2 \ (6)$

¹**H NMR** (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 5.30 (s, 10H, H_{Cp}), 5.32 (s, 12H, H_{Cp}).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 85.9 (s, C_{Cp}), 87.4 (s, C_{Cp}), 121.2 (q, $J_{(C,F)}$ = 291 Hz; C_{CF3}), 221.3 (s, C_{C0}), 222.8 (s, C_{C0}), 222.9 (s, C_{C0}).

³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -85.3 (broad s, $ω_{1/2}$ = 103 Hz), -36.3 (broad s, $ω_{1/2}$ = 24 Hz). ¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}]₄]).

ESI-MS (CH₂Cl₂) negative mode: $m/z = 966.9 (100\%, [AI{OC(CF_3)_3}_4])$.

Elemental analysis (%) calculated for $C_{88}H_{40}Ag_2Al_2F_{72}Mo_8O_{24}P_{6.38}Sb_{1.62}$ (4281.32 g·mol⁻¹): C, 24.69; H 0.94; found: C, 25.17; H, 0.92.

IR (ATR-Ge): \tilde{v} = 1970 (bs), 1945 (s), 1351 (w), 1298 (w), 1276 (m), 1240 (s), 1216 (s), 1164 (w), 973 (s), 836 (w), 828 (w), 817 (w), 727 (s), 558 (w).

2.3.5. [{{CpMo(CO)₂}₂{ μ , η^{2} -As₂}}₂{{CpMo(CO)₂}₂{ μ , η^{1} : η^{1} -P₂}₂Cu₂]_{0.81}[Al{OC(CF₃)₃}₄]₂ (7)

 ${}^{1}\text{H NMR} \text{ (400 MHz, CD}_{2}\text{Cl}_{2}\text{, 25 °C): } \delta \text{ [ppm]} = 5.37 \text{ (s, 10H, H}_{\text{Cp}}\text{), 5.20 (s, 16.7H, H}_{\text{Cp}}\text{).}$

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -82.1 (broad s, $ω_{1/2}$ = 385 Hz).

¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}₄]⁻).

ESI-MS (CH₂Cl₂) negative mode: $m/z = 966.9 (100\%, [Al{OC(CF_3)_3}_4]^-)$.

IR (ATR-Ge): \tilde{v} = 1979 (bs), 1946 (bs), 1351 (w), 1298 (w), 1276 (s), 1240 (s), 1216 (s), 1169 (w), 973 (s), 828 (w), 727 (s), 561 (m).

2.3.6. [{{CpMo(CO)₂}₂{ μ , η^{2} -Sb₂}}₂{{CpMo(CO)₂}₂{ μ , η^{1} : η^{1} -P₂}₂Cu₂]_{0.46}[Al{OC(CF₃)₃}₄]₂ (8)

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 5.37 (s, 10H, H_{Cp}), 5.31 (s, 40.0H, H_{Cp}). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -87.5 (broad s, $\omega_{1/2}$ = 360 Hz). ¹⁹F{¹H} NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -75.6 (s, [Al{OC(CF₃)₃}₄]⁻). **ESI-MS** (CH₂Cl₂) positive mode: m/z = 1238.4 (100%, [{Cp₂(CO)₄Mo₂P₂}{Cp₂(CO)₄Mo₂Sb₂}Cu]⁺), 1056.6 (36%, [{Cp₂(CO)₄Mo₂P₂}₂Cu]⁺), 1418.8 (50%, [{Cp₂(CO)₄Mo₂Sb₂}₂Cu]⁺). **ESI-MS** (CH₂Cl₂) negative mode: m/z = 966.9 (100%, [Al{OC(CF₃)₃}₄]⁻). **IR** (ATR-Ge): \tilde{v} = 1943 (s), 1930 (s), 1906 (m), 1876 (s), 1351 (w), 1299 (w), 1276 (s), 1250 (s), 1217 (s), 1162 (w), 974 (s), 828 (m), 805 (w), 728 (s), 569 (m).

Note: For complexes **5-8**, we have realized a slight impact of the homoleptic complex **1** as impurity on the recorded elemental analysis results. For complexes **5** and **6**, this impact is very small and the found %C and %H values fits within the tolerated 0.5% error. For **7** and **8**, although this impact is also small, however, we did not add the elemental analysis data because we realized that variable samples of **7** and **8** includes variable found %C and %H values.

Fig. S3: 1 H NMR spectrum of complex 5 in CD₂Cl₂ at 400 MHz.

Fig. S12: $^{31}\text{P}~^{1}\text{H}$ NMR spectrum of complex 8 in CD_2Cl_2 at 162 MHz.

Fig. S13: ³¹C ¹H NMR spectrum of complex 3 in CD₂Cl₂ at 100 MHz.

Fig. S14: ³¹C ¹H NMR spectrum of complex 4 in CD₂Cl₂ at 100 MHz.

Fig. S16: ${}^{31}C$ ${}^{1}H$ NMR spectrum of complex 6 in CD₂Cl₂ at 100 MHz.

2.5. IR Spectra:

Fig. S17: IR spectrum of complex 3.

Fig. S18: IR spectrum of complex 4.

Fig. S19: IR spectrum of complex 5.

Fig. S20: IR spectrum of complex 6.

Fig. S21: IR spectrum of complex 7.

Fig. S22: IR spectrum of complex 8.

Fig. S23: ESI-MS spectrum of complex 3.

Fig. S24: ESI-MS spectrum of complex 4.

Fig. S28: ESI-MS spectrum of complex 8.

3. Crystallographic details

Suitable crystals were selected and mounted on a Gemini Ultra diffractometer equipped with an Atlas^{S2} CCD detector (**3**, **4**), on a SuperNova Dualflex diffractometer equipped with an Atlas^{S2} CCD detector (**7**, **8**) or on a XtaLAB SynergyR DW diffractometer equipped with an HyPix-Arc 150 detector (**5**, **6**) The crystals were kept at a steady T = 123(1) (**3**, **4**, **6**, **7**, **8**) K or 100(1) K (**5**) during data collection. Data collection and reduction were performed with CrysAlisPro [Version 1.171.41.76a (**3**, **4**), 1.171.41.90a (**7**, **8**), 1.171.41.93a (**6**), 1.171.41.118a (**5**)].^[4] For the compounds **3**, **5**, **6**, **7**, **8** a numerical absorption correction based on a gaussian integration over a multifaceted crystal model and an empirical absorption correction using spherical harmonics, as implemented in SCALE3 ABSPACK scaling algorithm, was applied. For the compound **4** an analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.^[6] and an empirical absorption correction using spherical harmonics, as implemented in SCALE3 ABSPACK scaling algorithm, was applied. For the compound **4** an analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.^[6] and an empirical absorption correction using spherical harmonics, as implemented in SCALE3 ABSPACK scaling algorithm, was applied. Using Olex2,^[6] the structures were solved with ShelXT^[7] and a least-square refinement on F² was carried out with ShelXL^[8] for all structures. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms at the carbon atoms were located in idealized positions and refined isotropically according to the riding model.

Figures were created with Olex2.^[6]

Compound 3: The asymmetric unit contains one unit of $[(\eta^2-B)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, two molecules of the anion $[Al\{OC(CF_3)_3\}_4]^-$ and two CH_2Cl_2 solvent molecules. In the unit $[(\eta^2-B)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$ one $CpMo(CO)_2$ group of one complex **A** is disordered over two positions. One of the CH_2Cl_2 solvent molecules is disordered over two positions. For the anions $[Al\{OC(CF_3)_3\}_4]^-$ five $\{OC(CF_3)_3\}_4$ groups are disordered over two and one over three positions respectively. The restraints SADI, SIMU and DFIX were applied to describe these disorderes.

Compound 4: The asymmetric unit contains one unit of $[(\eta^{2}-C)_{2}(\eta^{1:1}-A)_{2}Ag_{2}]^{2+}$, two molecules of the anion $[Al\{OC(CF_{3})_{3}\}_{4}]^{-}$ and 3 CH₂Cl₂ solvent molecules. In the unit $[(\eta^{2}-C)_{2}(\eta^{1:1}-A)_{2}Ag_{2}]^{2+}$ three CpMo(CO)₂ groups of two complexes **A** are disordered over two positions. Two CH₂Cl₂ solvent molecules are disordered over two positions each. For the anions $[Al\{OC(CF_{3})_{3}\}_{4}]^{-}$ ten CF₃ groups of four $\{OC(CF_{3})_{3}\}$ groups are disordered over two positions. Moreover, two more $\{OC(CF_{3})_{3}\}$ groups are disordered over two positions. The restraints SADI, SIMU, DFIX and ISOR were applied to describe these disorders. Further was compound X4 refined as a 2-component inversion twin (BASF 0.38(2)).

Compound 5: The asymmetric unit contains one unit of $[(\eta^2-D)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, two molecules of $[Al\{OC(CF_3)_3\}_4]^-$ and two CH₂Cl₂ solvent molecules. Both of the η^2 -coordinated ligand complexes show a disorder of the PAs units over two positions. However, the too high total phosphorus content indicates an additional substitutional disorder of the PAs units with P₂ units. The occupancy of each mixed P and As position was freely refined and then fixed to the obtained values rounded to two decimals (P5:As5: 0.66:0.44; P6:As6: 0.47:0.53; P7:As7: 0.63:0.37; P8:As8: 0.79:0.21). Moreover, one CpMo(CO)₂ group of one complex $\eta^{1:1}$ -**A** as well as one CH₂Cl₂ solvent molecule are disordered over two positions. For the anions [Al{OC(CF₃)₃}₄]⁻, three CF₃ groups of one {OC(CF₃)₃} group are disordered over two positions. The restraints SADI, SIMU, DFIX, RIGU, DANG and ISOR were applied to describe these disorders.

Compound 6: The asymmetric unit contains half of the unit of $[(\eta^2-\mathbf{E})_2(\eta^{1:1}-\mathbf{A})_2Ag_2]^{2+}$, one molecule of $[Al\{OC(CF_3)_3\}_4]^-$ and 0.45 CH₂Cl₂ solvent molecules. The η^2 -coordinated ligand at the Cu center shows a substitutional disorder of the Sb atom with a P atom (0.81:0.19) For the anion $[Al\{OC(CF_3)_3\}_4]^-$, three CF₃ groups of one $\{OC(CF_3)_3\}$ group are disordered over two positions. The restraints SADI, DFIX and ISOR were applied to describe these disorders.

Compound 7: The asymmetric unit contains half of the unit of $[(\eta^2-B)_2(\eta^{1:1}-A)_2Cu_2]^{2+}$, one molecule of $[Al\{OC(CF_3)_3\}_4]^-$ and one $C_6H_5CH_3$ solvent molecule. The η^2 -coordinated ligand at the Cu center shows a substitutional disorder of the As₂ unit with a P₂ unit (0.81:0.19). Moreover, one of the CpMo(CO)₂ groups of one complex $\eta^{1:1}$ -A as well as one $C_6H_5CH_3$ solvent molecule are disordered over two positions. For the anion $[Al\{OC(CF_3)_3\}_4]^-$, four $\{OC(CF_3)_3\}$ groups are disordered over two or three positions. The restraints SADI, SIMU, ISOR and FLAT were applied to describe these disorders.

Compound 8: The asymmetric unit contains half of the unit of $[(\eta^2 - C)_2(\eta^{1:1} - A)_2Cu_2]^{2+}$, one molecule of $[Al\{OC(CF_3)_3\}_4]^-$ and one $C_6H_5CH_3$ solvent molecule. The η^2 -coordinated ligand at the Cu center shows a substitutional disorder of the Sb₂ unit with a P₂ unit (0.46:0.54). Moreover, are one of the CpMo(CO)₂ groups of one complex $\eta^{1:1}$ -A as well as one $C_6H_5CH_3$ solvent molecule disordered over two positions. For the anion $[Al\{OC(CF_3)_3\}_4]^-$, four $\{OC(CF_3)_3\}$ groups are disordered over two or three positions. The restraints SADI, SIMU, DFIX and FLAT were applied to describe these disorders.

CCDC-2300855 (3), CCDC-2300856 (4), CCDC-2300857 (5), CCDC-2300858 (6), CCDC-2300859 (7) and CCDC-2300860 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: + 44-1223-336-033; email: deposit@ccdc.cam.ac.uk).

Compound	3 ·2 CH ₂ Cl ₂	4·3 CH ₂ Cl ₂	5·2 CH ₂ Cl ₂	6.2 CH2Cl2
Data set	PSH_165_mP	PSH166_Mo_mP	PSH404_Mo_mP	PSH_234b_aP
(internal naming)	_abs_gaus	_nc_abs_ana	_abs	_abs_gauss
CCDC-number	2300855	2300856	2300857	2300858
Formula	C90H44Ag2Al2As4	C91H46Ag2Al2Cl6	C90H44Ag2Al2As1.71	C44.45H20.9AgAICI0.9
Formula	CI4F72M08O24P4	F72M08O24P4Sb4	Cl ₄ F ₇₂ Mo ₈ O ₂₄ P _{6.29}	F36M04O12P3.19Sb0.81
D _{calc.} / g ⋅ cm ⁻³	2.269	2.332	2.233	2.260
µ/mm ⁻¹	12.401	2.120	1.808	14.051
Formula Weight	4479.83	4752.08	4379.18	2178.84
Colour	clear dark orange	clear dark orange	clear orange	clear orange
Shape	block	plate	block-shaped	block-shaped
Size/mm ³	0.75×0.17×0.15	0.58×0.46×0.14	0.15×0.11×0.07	0.29×0.21×0.10
T/K	123(1)	123(1)	100.0(1)	123.0(1)
Crystal System	monoclinic	monoclinic	monoclinic	triclinic
Space Group	P21/c	P 21	P21/c	PĪ
a/Å	10.31430(10)	10.54110(10)	10.29414(7)	14.00870(10)
<i>b</i> /Å	59.1705(3)	29.9273(4)	59.0562(5)	14.52390(10)
c/Å	21.48980(10)	21.4675(3)	21.43082(15)	18.68170(10)
α/°	90	90	90	106.0900(10)
β/°	91.0400(10)	92.3940(10)	91.1327(6)	101.8780(10)
γ/°	90	90	90	111.1490(10)
V/Å ³	13113.11(16)	6766.37(15)	13025.94(16)	3201.62(5)
Ζ	4	2	4	2
Ζ'	1	1	1	1
Wavelength/Å	1.54184	0.71073	0.71073	1.54184
Radiation type	Cu Kα	Μο Κα	Μο Κα	Cu K _α
$\theta_{min}/^{\circ}$	3.628	2.017	2.233	2.619
θ_{max}/\circ	71.680	28.282	32.696	74.480
Measured Refl.	80363	46336	189366	66769
Independent Refl.	25149	31124	42599	12933
Reflections with $I > 2(I)$	22239	28398	33996	12858
R _{int}	0.0562	0.0206	0.0307	0.0282
Parameters	2701	2657	2764	1018
Restraints	1082	1839	849	9
Largest Peak	1.342	1.266	1.795	0.937
Deepest Hole	-1.701	-0.768	-0.918	-0.816
GooF	1.045	1.055	1.043	1.191
wR ₂ (all data)	0.1338	0.1100	0.0977	0.0637
wR ₂	0.1286	0.1059	0.0929	0.0635
R₁ (all data)	0.0560	0.0499	0.0598	0.0255
R_1	0.0497	0.0441	0.0435	0.0253

 Table S1. Crystallographic data for compounds 3-6.

Compound	7·2 C ₆ H₅CH ₃	8 ·2 C ₆ H₅CH ₃
Data set	PSH_194_pr_b	PSH224_Mo
(internal naming)	_mP_abs	_mP_abs
CCDC-number	2300859	2300860
	C102H56Al2AS3 24	C51H28AICuF36
Formula	Cu ₂ F ₇₂ Mo ₈ O ₂₄ P _{4.76}	M04O12P3.08Sb0.92
$D_{calc.}$ / g · cm ⁻³	2.123	2.133
μ/mm^{-1}	9.157	1.613
, Formula Weight	4372.18	2198.41
Colour	red	intense red
Shape	block	block-shaped
Size/mm ³	$0.41 \times 0.31 \times 0.22$	$0.31 \times 0.26 \times 0.21$
T/K	123 01(10)	123 00(10)
Crystal System	monoclinic	monoclinic
Space Group	$P_{1/c}$	P21/c
	16 6/87(2)	16 6787(3)
ал h/Å	23 0766(2)	23 0865(3)
	23.0700(2)	23.0003(3)
	19.1403(2)	19.1437(3)
0/°	90 111 6100(10)	90 111 769(2)
p/	111.0100(10)	111.700(2)
γ/ \//Å3	90	90
V/A ³	6838.89(13)	6845.7(Z)
2	2	4
	0.5	1
Wavelength/A	1.54184	0./10/3
Radiation type	Cu K _α	Μο Κα
$\Theta_{min}/$	3.438	2.602
$\theta_{max}/$ °	66.694	30.998
Measured Refl.	66757	85359
Independent Refl.	12040	21810
Reflections with $I > 2(I)$	11151	17954
Rint	0.0918	0.0266
Parameters	1776	2010
Restraints	1302	1275
Largest Peak	1.040	1.283
Deepest Hole	-1.031	-1.125
GooF	1.046	1.069
wR_2 (all data)	0.1386	0.0799
wR ₂	0.1346	0.0746
R_1 (all data)	0.0529	0.0508
R_1	0.0500	0.0374
,	0.0000	

 Table S2. Crystallographic data for compounds X7-X8.

Fig. S29. View of the asymmetric unit of 3

Fig. S30. View of the asymmetric unit of 4

Fig. S31. View of the asymmetric unit of 5. Next to 5 and 1 also a mixed species may possibly exist (see Fig. S32).

Fig. S32. Possible combination of compounds derived from the disorder of the PAs unit in 5.

Fig. S33. View of the asymmetric unit of 6. Next to 6 and 1 also a mixed species may possibly exist (see Fig. S34).

probability: 0 to max 19%

probability: 0 to max 19%

Fig. S34. Possible combination of compounds derived from the disorder of the PSb unit in 6.

Fig. S35. View of the asymmetric unit of 7. Next to 7 and 1 also a mixed species may possibly exist (see Fig. S36).

probability: 0 to max 19%

probability: 0 to max 19%

Figure S37. View of the asymmetric unit of 8. Next to 8 and 1 also a mixed species may possibly exist (see Fig. S38).

probability: 12 to max 56%

probability: 0 to max 44%

Computational details

The DFT calculations have been performed for compounds **A**, **B**, **C**, $[(\eta^2-A)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, $[(\eta^2-B)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, $[(\eta^2-C)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, $[(\eta^2-C)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, $[(\eta^2-C)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$, $[(\eta^2-C)_2(\eta^{1:1}-A)_2Cu_2]^{2+}$ with Gaussian 09 program package^[9] at the BP86^[10]/def2-SVP^[11] level of theory. The minimum nature of the optimized geometry of compounds has been proven by calculating the vibration spectrum, which shows no imaginary frequencies. All optimized geometries can also be found in a supplemented multi-xyz file as well as in the tables below. Figures were prepared with Chemcraft.^[12] For the dicationic species, conformers adopting two conformations of the Ag_2P_4 six-membered ring have been calculated: twisted boat and chair. Interestingly, even though in all cases calculations predict twisted boat conformers to be somewhat more stable experimentally in the solid-state structures of every compound (apart from 4) chair conformer has been found. This is possibly due to the packing effects. Nevertheless, relative enthalpies and free energies of both twisted boat and chair conformations show a similar trend (Figure S8): for Ag(I) based dimers, formation of complex featuring η^2 coordinated complexes **B** (3) from the starting material (1) is both exothermic and exergonic, while for the Sb analog (4) it is even more exothermic and endergonic; on the other hand, for the Cu(I) based complexes **7-8** similar reactions are either slightly endothermic and endergonic or nearly thermodynamically neutral.

Note: Due to limited computational resources, no dispersion correction was applied. Although, because of the structural similarity of the studied complexes dispersion energy contribution are likely to cancel out. This cancellation can be incomplete because of different pnictogen atoms involved. This, in turn, can make an additional contribution to the computed energy errors. Nevertheless, the current results still provide a semiquantitative explanation for experimentally observed trends.

Fig. S39 Summary of the DFT calculations of reactions of Ag(I)-based complex 1 with B and C leading to the formation of 3 and 4 respectively and Cu(I)-based complex 2 with B and C leading to the formation of 7 and 8 respectively. For the twisted boat conformers, enthalpies and free energies are shown in black and red; for the chair conformers, enthalpies and free energies are shown in grey and pink respectively. Arbitrary selected zero level in the energy diagrams is indicated with asterisk.

Table S3 Cartesian coordinates of the gas-phase optimized geometry of $[(C_5H_5)_2Mo_2(CO)_4(\mu,\eta^2-P_2)]$ (A) calculated at the BP86/def2-SVP level of theory. E° = -1659.23143939 Hartree

Atom	ı x	v	z	С	-1.303182000	1.962427000	-0.477641000
Мо	-1.536522000	0.066205000	0.023526000	С	1.482868000	1.356342000	-1.914133000
Мо	1.536297000	-0.065524000	0.024890000	С	3.446551000	0.316718000	-1.230794000
Ρ	0.133899000	1.066611000	1.758928000	С	2.351535000	0.244942000	-2.159045000
Р	-0.134577000	-1.038612000	1.775217000	С	2.027049000	2.117147000	-0.824307000
0	1.244900000	-3.088730000	-0.791571000	С	3.238134000	1.481538000	-0.403698000
0	3.491967000	-0.996353000	2.303440000	0	-3.491628000	1.039593000	2.284680000
0	-1.243954000	3.075533000	-0.842557000	С	-2.026388000	-2.131380000	-0.787199000
С	1.303805000	-1.969865000	-0.444600000	С	-2.718950000	0.697007000	1.479061000
С	2.719081000	-0.669278000	1.491653000	С	-1.482785000	-1.389733000	-1.890353000

С	-3.237686000	-1.488994000	-0.377578000	н	-0.577975000	-1.648794000	-2.450839000
С	-2.351890000	-0.283109000	-2.154588000	н	0.578517000	1.606088000	-2.479647000
С	-3.446740000	-0.339038000	-1.225021000	Н	1.598741000	3.037355000	-0.409786000
н	-1.597720000	-3.044096000	-0.356785000	н	3.908004000	1.835829000	0.389987000
н	-3.907394000	-1.829669000	0.422184000	н	4.306535000	-0.363063000	-1.190652000
н	-4.307075000	0.340900000	-1.196874000	н	2.225450000	-0.512089000	-2.943590000
н	-2.226123000	0.460258000	-2.952143000				

Table S4 Cartesian coordinates of the gas-phase optimized geometry of $[(C_5H_5)_2Mo_2(CO)_4(\mu,\eta^2-As_2)]$ (B) calculated at the BP86/def2-SVP level of theory. E° = -5448.43845977 Hartree

Atom	х	V	Z	С	2.026716000	1.106571000	2.093468000	
Мо	1.552015000	0.215161000	-0.074748000	С	2.760364000	-1.246916000	-0.632383000	
Мо	-1.551743000	0.214726000	0.073625000	С	1.441396000	2.167605000	1.322884000	I . et
As	-0.145825000	-1.608252000	-1.161154000	С	3.246477000	0.716895000	1.452111000	
As	0.146687000	-1.603797000	1.166435000	С	2.293197000	2.424949000	0.200942000	
0	-1.280059000	1.017698000	3.101482000	С	3.419900000	1.534943000	0.276287000	
0	-3.560931000	-2.046051000	0.926600000	н	1.623201000	0.696754000	3.026818000	
0	1.276341000	1.011847000	-3.104020000	н	3.945142000	-0.049181000	1.811530000	
С	-1.327829000	0.661033000	1.983623000	н	4.275569000	1.513672000	-0.409586000	As
С	-2.760706000	-1.246890000	0.631198000	н	2.137649000	3.195831000	-0.564568000	•
С	1.325761000	0.657773000	-1.985424000	н	0.520913000	2.705961000	1.572822000	
С	-1.441419000	2.167438000	-1.323773000	н	-0.521245000	2.706826000	-1.572655000	
С	-3.420546000	1.532796000	-0.279656000	н	-1.619283000	0.696082000	-3.027650000	
С	-2.294964000	2.424038000	-0.203028000	н	-3.942449000	-0.051709000	-1.815709000	
С	-2.024640000	1.105681000	-2.095007000	н	-4.277068000	1.510668000	0.405128000	
С	-3.244839000	0.714826000	-1.455233000	н	-2.141069000	3.195060000	0.562679000	
0	3.560346000	-2.046255000	-0.928059000					

Table S5 Cartesian coordinates of the gas-phase optimized geometry of $[(C_5H_5)_2Mo_2(CO)_4(\mu,\eta^2-Sb_2)]$ (C) calculated at the BP86/def2-SVP level of theory. E° = -1457.45147454 Hartree

Atom	x	v	z	C	;	2.045078000	1.377809000	2.060333000	
Мо	1.584521000	0.433518000	-0.088680000	C	;	2.827963000	-1.010328000	-0.605142000	
Мо	-1.584260000	0.432780000	0.087325000	C	;	1.415947000	2.403934000	1.277100000	
Sb	-0.162729000	-1.536185000	-1.352085000	C	;	3.270961000	1.016851000	1.410228000	(H
Sb	0.163804000	-1.533324000	1.354734000	C	;	2.246714000	2.668629000	0.141478000	•
0	-1.334024000	1.259309000	3.107635000	C	;	3.404610000	1.818815000	0.219475000	6
0	-3.669289000	-1.781747000	0.867368000	н	ł	1.673558000	0.984966000	3.013964000	
0	1.330588000	1.257875000	-3.109392000	н	ł	3.999878000	0.282437000	1.775786000	
С	-1.361906000	0.867929000	1.998239000	н	ł	4.253221000	1.814715000	-0.475429000	
С	-2.827759000	-1.011280000	0.603073000	н	ł	2.059124000	3.421107000	-0.635190000	
С	1.360151000	0.867439000	-1.999727000	н	ł	0.481556000	2.916085000	1.529659000	
С	-1.417351000	2.404849000	-1.276217000	н	ł	-0.483276000	2.918371000	-1.527216000	
С	-3.406068000	1.815895000	-0.220953000	н	ł	-1.670895000	0.986708000	-3.014356000	
С	-2.249547000	2.667299000	-0.141160000	н	ł	-3.997839000	0.280256000	-1.779432000	
С	-2.044322000	1.378539000	-2.061051000	н	ł	-4.255342000	1.809720000	0.473129000	
С	-3.270282000	1.015312000	-1.412465000	н	ł	-2.063606000	3.419269000	0.636398000	
0	3.669313000	-1.780854000	-0.869956000						

Table S6 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2-A)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. E° = -6930.77205069 Hartree

P -4.991640000 -0.514501000 -0.796727000 C -7.407033000 0.432759000 -1 P 5.06129100 0.56535100 -0.784588000 O -3.412997000 -4.239592000 -1 P -4.873415000 0.480340000 1.163586000 O -3.245586000 4.579429000 0 P 4.852414000 -0.601428000 1.069319000 C -4.957203000 -2.322236000 1	1.909811000 1.241502000 D.662604000 1.840625000 1.449143000 1.361468000 2.341358000
P 5.061291000 0.565351000 -0.784588000 O -3.412997000 -4.239592000 -7 P -4.873415000 0.480340000 1.163586000 O -3.245586000 4.579429000 0 P 4.852414000 -0.601428000 1.069319000 C -4.957203000 -2.322236000 1	1.241502000 0.662604000 1.840625000 1.449143000 1.361468000 2.341358000
P -4.873415000 0.480340000 1.163586000 O -3.245586000 4.579429000 C P 4.852414000 -0.601428000 1.069319000 C -4.957203000 -2.322236000 1	0.662604000 1.840625000 1.449143000 1.361468000 2.341358000
P 4.852414000 -0.601428000 1.069319000 C -4.957203000 -2.322236000 1	1.840625000 1.449143000 1.361468000 2.341358000
	1.449143000 1.361468000 2.341358000
Ag -2.518994000 0.089917000 -0.002716000 C -5.406989000 2.250022000 -1	1.361468000 2.341358000
Ag 2.539285000 0.046852000 -0.087319000 C 7.228646000 -2.894326000 1	2.341358000
Mo 6.637224000 -1.447328000 -0.439263000 H 6.736094000 -2.891357000 2	
Mo -6.496567000 -1.508371000 0.915454000 C 7.148200000 3.472740000 0).415626000
Mo 6.614237000 1.281863000 1.024807000 H 6.385204000 4.252332000 0).298173000
Mo -6.706976000 1.340630000 -0.281125000 O 3.139913000 -4.734251000 0).449690000
Mo 0.287420000 3.653458000 -1.854771000 C 7.851219000 3.144915000 1	.633433000
Mo -0.211759000 3.911633000 1.210258000 H 7.730618000 3.636238000 2	2.607159000
Mo -0.384221000 -3.520566000 -1.784441000 C 7.006109000 0.232436000 2	2.670761000
Mo 0.273048000 -3.747791000 1.293116000 O 7.926549000 0.072218000 -2	2.886271000
P -1.017983000 2.090941000 -0.435873000 C -1.067688000 -1.927188000 -2	2.749749000
P 1.062718000 2.110840000 0.060098000 C 7.422607000 -0.441866000 -1	1.969278000
P -0.981285000 -1.941054000 0.118709000 C 8.755019000 -2.478580000 -0).335242000
P 1.088977000 -2.003159000 -0.390066000 H 9.629801000 -2.106755000 -0).884473000
O -4.678077000 2.848476000 -2.139365000 C 5.112656000 2.114450000 1	.991526000
O -7.318096000 -0.228123000 3.680035000 C 6.842087000 -3.676094000 0).225385000
O 3.291383000 4.461735000 -1.321051000 H 5.996069000 -4.373906000 0).183463000
O 7.282487000 -0.314092000 3.663378000 C -0.808309000 2.516683000 2	2.486431000
O -7.866504000 -0.025408000 -2.878512000 C -2.294457000 -3.958242000 -1	1.397784000
O 1.360805000 1.219542000 -3.539808000 C 2.056097000 -4.371665000 0).700170000
O -4.081711000 -2.866874000 2.390572000 C -8.615623000 -2.527054000 1	1.091980000
C -6.988028000 -0.653328000 2.645642000 H -9.374865000 -2.207606000 1	1.817691000
O -1.130889000 1.731063000 3.284567000 C 8.801099000 2.113014000 1	.321410000
O -1.467779000 -1.029641000 -3.374721000 H 9.519287000 1.670067000 2	2.023660000
O 4.532027000 -2.629006000 -2.443590000 C 0.968818000 2.096137000 -2	2.880947000

C	2 1 9 0 2 1 0 0 0 0	4 1 2 9 7 0 7 0 0 0	1 492156000	Ц	1 006261000	4 764656000	4 509260000
ĉ	2.160319000	4.136707000	-1.462150000		0.120205000	4.704030000 E 900924000	-4.396300000
	7.769403000	-3.416729000	-0.6557 19000		0.129303000	5.600654000	-2.763126000
	7.808247000	-3.899244000	-1.820073000	П	0.857731000	6.596766000	-2.566979000
C	5.291412000	-2.147666000	-1.69/331000	C U	1.109065000	5.911101000	1.074612000
C	-1.102444000	5.592149000	-2.081604000	н	1.434427000	6.399671000	0.149561000
н	-1.483103000	6.201050000	-1.254047000	C	-6.849659000	-3.666826000	0.097467000
С	-0.461745000	-4.592509000	-3.826060000	н	-6.021316000	-4.365271000	-0.074898000
н	-1.305005000	-4.480525000	-4.519349000	С	1.852190000	4.933227000	1.818487000
С	8.414081000	-2.160632000	1.017907000	н	2.831327000	4.519683000	1.552641000
н	8.984747000	-1.508838000	1.688861000	С	-7.086296000	3.474464000	0.585881000
С	-0.316820000	-5.613183000	-2.821569000	н	-6.298414000	4.237594000	0.616133000
н	-1.038096000	-6.408964000	-2.595180000	С	1.621148000	-4.327601000	-2.811847000
С	-7.592255000	-3.508353000	1.325804000	н	2.625017000	-3.952009000	-2.581356000
н	-7.445794000	-4.077856000	2.252268000	С	-8.898284000	2.189927000	-0.101411000
С	7.664123000	2.642637000	-0.630629000	н	-9.740134000	1.804025000	-0.690913000
н	7.362991000	2.671388000	-1.684932000	С	-0.865202000	-2.817505000	3.195257000
С	-8.536359000	1.774573000	1.219559000	н	-1.704707000	-2.115094000	3.138158000
н	-9.055287000	1.019994000	1.821240000	С	0.741255000	-3.793051000	-3.808427000
С	-8.007970000	3.244582000	-0.501629000	н	0.968501000	-2.953777000	-4.478261000
н	-8.062000000	3.812174000	-1.439195000	С	-0.977798000	-4.240969000	3.231341000
С	-1.783097000	4.486229000	-2.693900000	н	-1.915347000	-4.809764000	3.211790000
н	-2.763098000	4.086270000	-2.407611000	С	-0.106612000	5.389289000	2.988263000
С	-0.976965000	4.017742000	-3.780934000	н	-0.867853000	5.415695000	3.778104000
н	-1.242034000	3.208394000	-4.473298000	С	0.526574000	-2.472149000	3.286922000
С	-7.416040000	-2.784209000	-0.877389000	н	0.938608000	-1.455205000	3.295628000
н	-7.100595000	-2.691227000	-1.923735000	С	-0.099957000	6.186818000	1.790511000
С	0.970389000	-5.452873000	-2.210518000	н	-0.865803000	6.920331000	1.506752000
н	1.392583000	-6.102082000	-1.434779000	С	0.351277000	-4.788916000	3.353329000
С	-7.412501000	2.562872000	1.641132000	H	0.605544000	-5.850843000	3,462626000
H	-6.921413000	2.506662000	2.620303000	0	-1.021529000	-6.448303000	0.355758000
С	-8.511825000	-2.086066000	-0.265596000	Ċ	1,278302000	-3.686194000	3.394720000
Ĥ	-9.181666000	-1.376563000	-0.764178000	H	2.364541000	-3.761441000	3.531689000
С	-0.550934000	-5 398839000	0.583989000	C	1 109978000	4 613876000	2 999981000
c	8 691120000	1 808386000	-0.072722000	н	1 435696000	3 931224000	3 794914000
й	9 316007000	1 099391000	-0.627229000	с 1	-2 123303000	4 296830000	0.824889000
C	0.212806000	4 930097000	3 843308000	0	2.12000000	-1.20000000	0.02-7000000
0	0.212090000	4.000307000	-3.043306000				

Table S7 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2-A)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$ in the chair conformation calculated at the BP86/def2-SVP level of theory. E^o = -6930.76530980 Hartree

Atom	n x	v	z	С	-1.538212000	-4.397673000	2.837623000	a la companya da companya d
Aq	2.474390000	0.051986000	-0.266162000	С	8.511760000	2.049899000	-0.659404000	19
Mo	6.573005000	1.437698000	0.628315000	С	-8.509399000	-2.052125000	0.658701000	
Aq	-2.474033000	-0.051189000	0.266196000	С	0.400427000	-5.671459000	2.900115000	
Mo	-6.588859000	1.325536000	0.771556000	С	-6.943877000	3.514779000	0.038699000	
Мо	-6.571986000	-1.436950000	-0.629534000	С	-7.205778000	0.345525000	2.390613000	
Mo	6.588273000	-1.327081000	-0.768302000	С	-8.514613000	1.909811000	-0.551616000	
Мо	-0.233505000	-3.962019000	-1.145981000	С	0.866206000	5.524440000	-2.254524000	
Мо	0.234464000	3,962368000	1,144701000	С	-0.983102000	-2.669029000	-2.456770000	
Мо	-0.472664000	3.572881000	-1.851924000	С	-7.401478000	-2.846156000	1.109032000	
Мо	0.471167000	-3.572773000	1.851189000	С	7.783068000	3.346122000	1.127005000	
P	-4.940074000	-0.634934000	1.065280000	С	-8.739261000	-2.353541000	-0.721505000	
P	-4.870001000	0.487014000	-0.827155000	С	7.389804000	-2.670865000	1.032749000	
P	4 869478000	-0 484629000	0 828416000	С	6.954057000	3.647743000	-0.016240000	
P	4 941017000	0.634128000	-1.065795000	C	5,165892000	-2.129396000	-1.869530000	e l'ale
P	1.094677000	-2.093277000	-0.177207000	С	8,740458000	2.354141000	0.720369000	D
P	0.942409000	2 072435000	-0 464791000	c	1.799482000	-4.927517000	-1.939672000	
P	-1 094398000	2 093608000	0.177080000	C	-0.079512000	-6.253886000	-1.624310000	/ - p= /.9
P	-0.942660000	-2 072182000	0.463080000	C	-0.520809000	4.644457000	-3.901558000	Ag P
0	7 528374000	-0.088023000	3 217947000	C	-8.749623000	2.272339000	0.812710000	Ay P
õ	-3 152645000	-4 727642000	-0.230352000	C	8.512365000	-1.912178000	0.556886000	
0	1 655/82000	-1 111513000	3 /11220000	C	-7 783790000	3 267852000	1 187174000	
õ	4 354195000	2 748872000	2 425236000	C	7.404359000	2.843183000	-1.112343000	
0	-4 352293000	-2 744104000	-2 /28355000	Č	0.517004000	-4 644514000	3 900798000	
0	-7.61/82/000	-0.1577/7000	3 360200000	Č	-0 403031000	5 671496000	-2 901101000	
0	3 433068000	-0.157747000	1 1/1386000	C C	6 939431000	-3 515675000	-0.031628000	
õ	-7 528216000	0.091860000	-3 217029000	Č	-6.951996000	-3 648356000	0.010863000	
õ	-4 353969000	2 674515000	2 512368000	Č	-7 393512000	2 671055000	-1 026845000	
0	-3 /3398/000	4 394655000	-1 139763000	Č	-7 782059000	-3 344546000	-1 131030000	
0	-1.658926000	1 111/05000	-3 /10270000	Č	0.912664000	-4 702232000	-3 040551000	
0	3 152311000	1.1114330000	0.2257/3000	Č	1 535640000	4 397656000	-2 840748000	
c	-5 144323000	-2 220246000	-1 751984000	C	0.686760000	3.855767000	-3.858466000	
õ	7 618787000	0 152097000	-3 357507000	0	1.384704000	1.968501000	3.290826000	
õ	-1 379889000	-1 967353000	-3 293437000	C.	7,780391000	-3.271984000	-1.180024000	
c	5 145803000	2 223471000	1 749563000	C.	-0.258338000	-5.523618000	-2.851611000	
c	-5 165967000	2 128333000	1 871836000	C.	1,190339000	-5.892165000	-1.068912000	
c	7 146092000	0 428497000	2 244722000	c	-0.690528000	-3.855856000	3.856380000	
c	-2 077168000	-4 400209000	-0 550277000	C.	-1.797940000	4.926960000	1.941048000	
õ	4 354200000	-2 675358000	-2 510656000	C.	8 747570000	-2 277365000	-0.806690000	
č	-2 335156000	4 063211000	-1 362270000	C.	0.986329000	2 669878000	2 454654000	
č	1 220880000	-1 000107000	2 78/798000	C.	-1 190500000	5 891729000	1 069236000	
č	-0.868063000	- 1.330 137 000	2 252068000	C.	-0.909452000	4 702350000	3 040729000	
č	7 2081/7000	-0.324500000	-2 3877/7000	C.	0.079953000	6 254210000	1 622784000	
č	-1 223/22000	1 990235000	-2.307747000	C C	0.260865000	5 524300000	2 849987000	
č	-7 1/5600000	-0.425879000	-2.704330000	ц	9 107531000	1 367116000	-1 275512000	
č	2 077278000	4 401260000	0.546823000	н	7 006215000	2 860929000	-2 134198000	
ĉ	2 224078000	-4.062022000	1 262072000	н	6 145868000	4 389237000	-0.048618000	
C	2.334078000	-4.003023000	1.303073000	п	0.14000000	7.303237000	-0.040010000	

S29 | Page

н	7.733817000	3.829429000	2.110907000	н	1.106040000	5.621535000	3.542991000
н	9.540118000	1.940187000	1.348231000	н	0.771427000	7.003980000	1.217087000
н	6.980898000	-2.641327000	2.049969000	н	-1.643162000	6.316512000	0.166562000
н	6.122891000	-4.245367000	0.033457000	н	1.278708000	6.187937000	-1.486748000
н	7.733463000	-3.793930000	-2.144117000	н	2.538288000	4.039304000	-2.578910000
н	9.555901000	-1.898375000	-1.445547000	н	0.930612000	3.015252000	-4.520759000
н	9.115505000	-1.214790000	1.148831000	н	-1.349953000	4.522743000	-4.609881000
н	2.782715000	-4.460122000	-1.811442000	н	-1.136423000	6.465648000	-2.710386000
н	1.641544000	-6.317355000	-0.165697000	н	-6.128583000	4.245931000	-0.025615000
н	-0.771937000	-7.003385000	-1.219727000	н	-6.985116000	2.643843000	-2.044339000
н	-1.102595000	-5.620257000	-3.545815000	н	-9.117017000	1.212516000	-1.144420000
н	1.112278000	-4.050895000	-3.901013000	н	-9.557039000	1.891068000	1.451365000
н	-1.279641000	-6.187819000	1.483737000	н	-7.737111000	3.788295000	2.152093000
н	1.134081000	-6.465557000	2.710182000	н	-9.104723000	-1.370747000	1.276794000
н	1.345334000	-4.522825000	4.610074000	н	-9.539573000	-1.938484000	-1.347808000
н	-0.935171000	-3.015394000	4.518451000	н	-7.733582000	-3.825829000	-2.115962000
н	-2.540558000	-4.039314000	2.574652000	н	-6.143580000	-4.389696000	0.041020000
н	-2.781126000	4.459035000	1.814277000	н	-7.002406000	-2.865934000	2.130491000
н	-1.107507000	4.051084000	3.901605000				

Table S8 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2 - B)_2(\eta^{1:1} - A)_2Ag_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. $E^\circ = -14509.1885344$ Hartree

Atom	ı x	v	z	C	С	-1.145740000	5.600455000	-1.995085000	
As	-5.029909000	-0.629130000	-0.897961000	F	H	-1.533282000	6.186314000	-1.154220000	
As	5.110999000	0.651369000	-0.902919000	C	2	-0.415657000	-4.559449000	-3.839588000	
As	-4.934729000	0.616080000	1.202987000	F	H	-1.252646000	-4.445644000	-4.540140000	
As	4.909755000	-0.676411000	1.135602000	C	2	8.575025000	-2.101338000	0.922499000	
Ag	-2.543083000	0.080720000	-0.006965000	F	-	9.119246000	-1.445466000	1.610973000	
Ag	2.565937000	0.040502000	-0.087422000	C	0	-0.274276000	-5.589142000	-2.843977000	
Мо	6.764329000	-1.436432000	-0.514335000	F	-	-0.992818000	-6.391421000	-2.632354000	
Мо	-6.618170000	-1.470394000	0.975269000	C	0	-7.790070000	-3.389063000	1.520353000	
Мо	6.739893000	1.291928000	1.020818000	F	-	-7.676254000	-3.889722000	2.490050000	
Мо	-6.826373000	1.317492000	-0.434920000	C .	3	7.807105000	2.671647000	-0.608166000	
Мо	0.271230000	3.676547000	-1.811708000	F	-	7.499219000	2.752312000	-1.657898000	
Мо	-0.215162000	3.869729000	1.260207000	L L		-8.709681000	1.747349000	0.996131000	
Mo	-0.365881000	-3.508541000	-1.786270000	Г	- -	-9.205171000	1.010255000	1.03/014000	
NO	0.254696000	-3.765321000	1.295231000		, ,	-8.215700000	3.129054000	-0.808574000	
P	-1.013933000	2.075939000	-0.418092000		- -	-0.273104000	4 400222000	-1.782827000	
г D	0.085800000	-1 045033000	0.009047000	L L	4	-2 788781000	4.081956000	-2.050791000	
P	1 080267000	-2.003316000	-0.361701000	Ċ	2	-1 001503000	4 065338000	-3 728298000	
0	-4 749206000	2 836049000	-2 230319000	F	4	-1 256808000	3 267923000	-4 437968000	
õ	-7 428976000	-0.049617000	3 671524000		C	-7.560357000	-2.845395000	-0.730762000	
õ	3 271810000	4 498082000	-1 278716000	F	-	-7.235492000	-2.853702000	-1.778407000	
õ	7.401141000	-0.307938000	3.656665000	C	С	1.006097000	-5.426937000	-2.218737000	
0	-7.869453000	-0.176868000	-3.008544000	F	H	1.425181000	-6.081422000	-1.445724000	
0	1.360843000	1.283199000	-3.543514000	C	С	-7.640397000	2.621229000	1.388662000	
0	-4.206646000	-2.808142000	2.473801000	F	H	-7.178599000	2.662381000	2.382789000	
С	-7.089556000	-0.523578000	2.660083000	C	С	-8.635610000	-2.061393000	-0.191831000	
0	-1.119499000	1.640689000	3.288513000	F	H	-9.272950000	-1.371434000	-0.755902000	
0	-1.443634000	-1.005671000	-3.360998000	C	С	-0.540024000	-5.413838000	0.549014000	
0	4.628538000	-2.686522000	-2.442497000	C	2	8.814325000	1.787018000	-0.094665000	
0	4.398142000	2.738176000	2.527325000	F	-	9.409770000	1.081049000	-0.683956000	
С	-7.438777000	0.327420000	-2.047855000	C	2	0.177338000	4.895394000	-3.774266000	
0	-3.399282000	-4.234335000	-1.272848000	F	-	0.970510000	4.855825000	-4.531499000	
0	-3.253171000	4.527042000	0.722614000	C	2	0.082362000	5.840711000	-2.693004000	
С	-5.076486000	-2.262301000	1.913782000	F	-	0.800234000	6.643867000	-2.481885000	
C	-5.490671000	2.223666000	-1.564332000	L L		1.106049000	5.870999000	1.165844000	
C	7.427160000	-2.898240000	1.250483000	Г	- -	7.020267000	0.375304000	0.251342000	
н	6.945530000	-2.951890000	2.234438000			-7.039307000 6.220402000	-3.000300000	0.320310000	
	7.332323000	3.480698000	0.475003000		- -	1 846026000	4.412105000	1 2021/0000	
	3 1/3822000	4.200430000	0.390440000	L L	4	2 828419000	4 474654000	1.634152000	
ĉ	8 0/1791000	3 091/08000	1 66931/1000	Ċ	2	-7 335860000	3 477296000	0 280442000	
н	7 950350000	3 553322000	2 660358000	F	4	-6 593539000	4 285416000	0 278343000	
С	7 114291000	0.235928000	2 663970000		C	1.655897000	-4.291828000	-2.802287000	
õ	7.981139000	0.108694000	-2.980008000	F	-	2.656842000	-3.915031000	-2.560310000	
C	-1.045472000	-1.908386000	-2.741565000	C	С	-9.058538000	2.054947000	-0.357703000	
С	7.491577000	-0.411157000	-2.056773000	F	H	-9.865473000	1.588840000	-0.937948000	
С	8.923477000	-2.366986000	-0.440355000	C	2	-0.950476000	-2.900384000	3.190375000	
н	9.779136000	-1.943104000	-0.981883000	F	H	-1.814058000	-2.228274000	3.127616000	
С	5.240721000	2.149853000	1.966662000	C	2	0.782054000	-3.752766000	-3.801833000	
С	7.072213000	-3.666199000	0.093538000	F	H	1.010467000	-2.905566000	-4.461233000	
н	6.262105000	-4.404397000	0.036968000	C	0	-1.013682000	-4.326422000	3.207363000	
С	-0.801982000	2.445766000	2.507272000	F	-	-1.930008000	-4.927878000	3.164776000	
С	-2.279241000	-3.954187000	-1.419947000	C	2	-0.121147000	5.317390000	3.063132000	
С	2.053375000	-4.367407000	0.726501000	F	-	-0.887070000	5.330070000	3.848771000	
С	-8.772036000	-2.390623000	1.194590000	C .	3	0.427469000	-2.508573000	3.308426000	
Н	-9.529165000	-1.990452000	1.881399000	F	-	0.801855000	-1.477542000	3.338132000	
С	8.952838000	2.039718000	1.307485000	L L		-0.107989000	6.134116000	1.878373000	
н	9.008227000	1.552961000	1.983027000	F	-	0.072017000	0.01101000	3 342772000	
C	0.902013000	2.144008000	-2.000300000	L L	-	0.001001000		3 112886000	
ĉ	2.101000000	-3 330400000	-1.439137000	г с	้า	-0.019370000	-5.00400000	0 302570000	
н	8 037533000	-3 793235000	-1 959299000	((Š	1.219265000	-3.697027000	3.413852000	
c	5.394026000	-2.170446000	-1.724376000	F	-	2.304904000	-3.737532000	3.569270000	
-									

S30 | Page

Table S9 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^{2}-B)_{2}(\eta^{1:1}-A)_{2}Ag_{2}]^{2+}$ in the chair conformation calculated at the BP86/def2-SVP level of theory. E^o = -14509.1818669 Hartree

Atom	х	y	Z	С	-8.891457000	2.173339000	0.888083000	
Ag	2.494143000	0.051241000	-0.280899000	С	8.631743000	-1.883552000	0.524112000	
Мо	6.694266000	1.419293000	0.683390000	С	-7.970792000	3.195386000	1.305744000	
Ag	-2.493224000	-0.047550000	0.276490000	С	7.615728000	2.817635000	-1.017544000	
Мо	-6.696278000	1.326008000	0.820793000	С	0.572788000	-4.749986000	3.833113000	
Мо	-6.691105000	-1.413752000	-0.689594000	С	-0.469524000	5.747536000	-2.812037000	
Мо	6.695598000	-1.336926000	-0.796823000	С	7.123955000	-3.527541000	-0.120572000	-
Мо	-0.266537000	-3.918670000	-1.176227000	С	-7.190359000	-3.619127000	-0.123977000	
Мо	0.269022000	3.921195000	1.166752000	С	-7.551585000	2.702898000	-0.929898000	E E - E
Мо	-0.494289000	3.616660000	-1.825624000	С	-7.992916000	-3.235967000	-1.260146000	
Мо	0.489093000	-3.615548000	1.818206000	C	0.841631000	-4.593625000	-3.117076000	
As	-4.991511000	-0.729646000	1.150048000	C	1.487822000	4.501654000	-2.816094000	
As	-4.900975000	0.578214000	-0.911557000	C O	0.633210000	3.977925000	-3.838341000	
As	4.897221000	-0.564/18000	0.921567000	0	7.050172000	2 220264000	3.211192000	As
AS	4.997616000	0.719969000	-1.153527000	C	0.2199172000	-3.220204000	-1.230330000	
P	1.079968000	-2.080310000	-0.179086000	C	-0.318815000	-5.429378000	-2.920175000	
P D	1.076502000	2.075477000	-0.507513000	C	0.644535000	-3.037092000	2 927759000	
r D	-1.076502000	2.080819000	0.173274000	C	-0.044555000	4 84020000	2.040227000	
P 0	-0.940507000	-2.072075000	0.495958000	C	8 885/01000	-2 199/09000	-0.848652000	
0	3 161005000	-0.142124000	-0.210370000	C	1 074005000	2 599801000	2 413093000	
0	1 665656000	-4.725250000	3 445875000	C C	-1 174458000	5 836096000	1 183566000	P
0	1.005050000	2 829516000	2 406027000	C	-0.835784000	4 591513000	3 110997000	
0	-4 472118000	-2 803183000	-2 426182000	C C	0 105473000	6 194661000	1 717895000	-P.
õ	-7 670872000	-0 183837000	3 411236000	č	0.322086000	5.430354000	2.917971000	Ag
õ	3 449963000	-4.388088000	1 053319000	H	9.237080000	1.255567000	-1.202428000	
õ	-7.560541000	0.170185000	-3.272081000	н	7.236724000	2.889756000	-2.044332000	
õ	-4.445791000	2.720628000	2.504005000	н	6.434687000	4.405597000	0.072751000	
0	-3.453906000	4.383808000	-1.050715000	н	7.964127000	3.707487000	2.232820000	
0	-1.674206000	1,195675000	-3.449634000	н	9.673130000	1.741589000	1.439727000	
0	3.158263000	4.736799000	0.198759000	Н	7.130109000	-2.720141000	1.990108000	
С	-5.256786000	-2.239975000	-1.771616000	н	6.337221000	-4.291256000	-0.082186000	
0	7.690896000	0.145065000	-3.395516000	н	7.935363000	-3.715722000	-2.235042000	
0	-1.494390000	-1.872116000	-3.227171000	н	9.682842000	-1.773975000	-1.471823000	
С	5.261052000	2.258698000	1.756536000	н	9.205750000	-1.182965000	1.140375000	
С	-5.257002000	2.148848000	1.883281000	н	2.739710000	-4.374628000	-1.926223000	
С	7.195696000	0.386320000	2.305314000	н	1.645801000	-6.283712000	-0.306435000	
С	-2.094799000	-4.385271000	-0.552603000	Н	-0.784852000	-6.959322000	-1.326813000	
0	4.450332000	-2.735411000	-2.483449000	н	-1.177957000	-5.512382000	-3.603670000	
С	-2.354054000	4.072271000	-1.296006000	Н	1.016464000	-3.916225000	-3.962690000	
С	1.233468000	-2.056338000	2.793504000	н	-1.235008000	-6.240700000	1.391658000	
С	-0.821827000	-5.595516000	2.174526000	н	1.196607000	-6.525735000	2.579485000	
С	7.279316000	-0.352810000	-2.422490000	н	1.408248000	-4.640281000	4.535937000	
С	-1.240238000	2.056762000	-2.798535000	н	-0.890964000	-3.158902000	4.518745000	
C	-7.196283000	-0.366784000	-2.301315000	н	-2.507851000	-4.142454000	2.562822000	
C	2.093546000	4.393610000	0.536126000		-2.736427000	4.369175000	1.924823000	
C	2.349856000	-4.074206000	1.294564000	п ц	-1.006761000	5.912822000	3.930339000	
C	-1.498016000	-4.495714000	2.802923000	п ц	0.780332000	6 062808000	1 21 8 2 4 0 0 0	
C	8.672601000	1.953525000	-0.574319000	п ц	1 651075000	6 282202000	0.202858000	
C	-8.005284000	-1.964116000	0.567690000	н	1 22350/000	6 247112000	-1 405594000	
c	7 140647000	3 521655000	2.002027000	н	2 499239000	4 151406000	-2 578249000	
c	-7.140047000	0.32/750000	2.440606000	н	0.880131000	3 161706000	-4 529265000	
c	-8 639108000	1 875611000	-0.488989000	н	-1 423247000	4 636730000	-4 541767000	
c	0.810178000	5 600088000	-2 186871000	н	-1.211869000	6.524302000	-2.587379000	
c	-1 062403000	-2 595425000	-2.100071000	н	-6.359519000	4.291435000	0.140455000	
c	-7 605979000	-2 831328000	0.998913000	н	-7.146586000	2,739533000	-1.948537000	
č	7.997265000	3.245590000	1.238128000	н	-9.210247000	1.178953000	-1.112295000	
Ċ	-8.898413000	-2.207608000	-0.823756000	Н	-9.684516000	1.735404000	1.508057000	
C	7.537690000	-2.698332000	0.972072000	Н	-7.947705000	3.679375000	2.290171000	
С	7.198265000	3.617892000	0.095824000	н	-9.229233000	-1.273888000	1.204792000	
С	5.259526000	-2.162100000	-1.861425000	н	-9.671536000	-1.732467000	-1.441394000	
С	8.902398000	2.211412000	0.815072000	н	-7.961743000	-3.687271000	-2.259751000	
С	1.755532000	-4.843619000	-2.043781000	н	-6.425449000	-4.405775000	-0.111233000	
С	-0.107131000	-6.193056000	-1.724812000	н	-7.224106000	-2.913755000	2.023857000	
С	-0.586279000	4.749319000	-3.841196000					

Table S10 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2-C)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. E° = -6527.22294853 Hartree

Atom	х	У	Z	Ag	2.616456000	-0.024515000	-0.021582000
Sb	-5.115666000	-0.701923000	-1.166482000	Mo	7.025021000	-1.467113000	-0.590459000
Sb	5.165704000	0.670101000	-1.181788000	Mo	-6.927376000	-1.431917000	0.841723000
Sb	-5.077628000	0.748683000	1.272948000	Mo	7.000438000	1.412183000	0.807707000
Sb	5.093344000	-0.709229000	1.293024000	Mo	-7.017579000	1.409343000	-0.639932000
Ag	-2.594038000	0.046033000	-0.003424000	Mo	0.279503000	3.704117000	-1.639310000

Ag

Мо	-0.214681000	3.747227000	1.437270000	С	-8.240717000	-3.254346000	1.369595000
Мо	-0.306333000	-3.582731000	-1.668128000	н	-8.216155000	-3.726157000	2.359810000
Мо	0.149481000	-3.783011000	1.446064000	С	7.984439000	2.693969000	-0.951191000
Р	-0.995342000	2.029184000	-0.326496000	н	7.629594000	2.746959000	-1.987768000
Р	1.085849000	2.044385000	0.167295000	С	-8.963754000	1.818944000	0.710551000
P	-1.020345000	-1.982212000	0.185056000	Ĥ	-9.469542000	1.085991000	1.348255000
P	1.073703000	-2 049922000	-0.200899000	C	-8 427034000	3 178212000	-1 100760000
0	-4 845617000	2 98211/000	-2 267209000	й	-8 457947000	3 660/15000	-2.085777000
0	-7.840802000	-0.002021000	2.207203000		-0.457547000	4 550460000	-2.0007770000
0	2 290122000	4 510214000	1.096914000		2 796696000	4.330400000	2 192527000
0	3.200132000	4.510214000	2 525550000	11	-2.780080000	4.110400000	-2.103337000
0	7.836942000	0.058592000	3.525558000	C	-0.988292000	4.179126000	-3.541131000
0	-7.976419000	-0.033013000	-3.270297000	H	-1.233751000	3.417378000	-4.292265000
0	1.370105000	1.392978000	-3.478601000	C	-7.845377000	-2.807847000	-0.881278000
0	-4.630335000	-2.882681000	2.411246000	н	-7.476257000	-2.889579000	-1.910972000
С	-7.440533000	-0.473544000	2.502561000	С	1.130101000	-5.472570000	-2.005243000
0	-1.086022000	1.406073000	3.349514000	Н	1.536348000	-6.098728000	-1.202418000
0	-1.340944000	-1.112937000	-3.321630000	С	-7.932435000	2.725539000	1.129203000
0	4.850225000	-3.014002000	-2.236565000	н	-7.528608000	2.809678000	2.145603000
0	4.738513000	3.002106000	2.286949000	С	-8.899412000	-1.940995000	-0.435596000
С	-7.554483000	0.440134000	-2.286986000	н	-9.457366000	-1.236873000	-1.062307000
0	-3.354487000	-4.329840000	-1.281289000	С	-0.499720000	-5.465240000	0.641250000
0	-3.259566000	4.391160000	0.926389000	С	9.004941000	1.812099000	-0.459553000
Ċ	-5.446916000	-2.281512000	1.823617000	Н	9.550070000	1.070144000	-1.052780000
ĉ	-5 613038000	2 333381000	-1 663982000	C	0 183949000	5 019431000	-3 538584000
č	7 881075000	-2 767779000	1 219842000	н	0.980931000	5 024336000	-4 292789000
й	7.464568000	-2 818233000	2 233318000	C	0.075919000	5 907848000	-2 /11200000
C	7.500042000	3 558550000	0.123443000	U U	0.785728000	6 705058000	-2.411200000
	7.390042000	3.3365500000	0.123443000		0.765726000	6.705056000	-2.155190000
	0.001714000	4.376514000	0.054745000	C	1.122288000	5.740195000	1.444923000
0	3.139953000	-4.600329000	0.906940000	H	1.483509000	6.271649000	0.557737000
C	8.365385000	3.210637000	1.287224000	C	-7.438414000	-3.619463000	0.229637000
н	8.343343000	3.718831000	2.259327000	н	-6.683127000	-4.415162000	0.200594000
С	7.462516000	0.497354000	2.507501000	С	1.837723000	4.726050000	2.166480000
0	8.047447000	-0.106388000	-3.240356000	н	2.829164000	4.325958000	1.922611000
С	-0.960287000	-2.002882000	-2.672526000	С	-7.601296000	3.566013000	0.014740000
С	7.605303000	-0.547950000	-2.251392000	н	-6.881110000	4.393905000	0.026496000
С	9.249503000	-2.213680000	-0.569125000	С	1.775039000	-4.336226000	-2.589917000
н	10.044201000	-1.756962000	-1.173177000	н	2.762286000	-3.939202000	-2.324658000
С	5.538754000	2.345166000	1.736546000	С	-9.263278000	2.092473000	-0.661843000
С	7.538722000	-3.624186000	0.120893000	н	-10.037205000	1.599306000	-1.264183000
н	6.795070000	-4.430964000	0.142821000	С	-1.346820000	-3.116972000	3.218052000
С	-0.782032000	2.256059000	2.610082000	Н	-2.300517000	-2.598478000	3.063120000
c	-2.230706000	-4.044301000	-1.382926000	C	0.926353000	-3.839801000	-3.632614000
ĉ	2 017939000	-4 298879000	1 042935000	Ĥ	1 159172000	-3 001941000	-4 302352000
ĉ	-9 138217000	-2 210558000	0.949600000	 C	-1 170025000	-4 530749000	3 270509000
ц Ц	-9.130217000	-2.210538000	1 573028000		-1.078500000	-4.330749000	3.270509000
	-9.911555000	-1.744346000	0.017000000		-1.976590000	-3.273092000	3.103940000
	9.234430000	2.124755000	0.917960000	C	-0.162017000	5.135433000	3.287823000
	9.984337000	1.657837000	1.569587000	П	-0.949329000	5.127459000	4.052059000
C	0.971943000	2.223046000	-2.764831000	C	-0.061144000	-2.504868000	3.434463000
C	2.169278000	4.187396000	-1.251524000	н	0.133287000	-1.425513000	3.474052000
С	8.388258000	-3.285752000	-0.992834000	С	-0.111372000	5.988238000	2.129489000
н	8.416973000	-3.791687000	-1.965963000	н	-0.863173000	6.739710000	1.855631000
С	5.617330000	-2.374530000	-1.623689000	С	0.211163000	-4.810570000	3.517230000
С	-1.153826000	5.622545000	-1.733396000	н	0.653647000	-5.804448000	3.661667000
н	-1.550731000	6.162506000	-0.866650000	0	-0.889216000	-6.541775000	0.382929000
С	-0.249280000	-4.675912000	-3.698061000	С	0.899905000	-3.546938000	3.633905000
н	-1.061131000	-4.596992000	-4.432174000	н	1.960724000	-3.411826000	3.880372000
С	8.942040000	-1.900057000	0.793007000	С	1.050901000	4.355430000	3.303634000
Ĥ	9.460352000	-1.166068000	1.419471000	н	1.344978000	3.636613000	4.079085000
С	-0.122422000	-5.679444000	-2.674227000	C	-2.131094000	4.123648000	1.073624000
Ĥ	-0.829629000	-6.493650000	-2.470427000	Ũ			
	1.0100100000	2					

Table S11 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2-C)_2(\eta^{1:1}-A)_2Ag_2]^{2+}$ in the chair conformation calculated at the BP86/def2-SVP level of theory. E^o = -6527.21601975 Hartree

• ·				0		750005000	0.050050000	0.007400000
Atom	Х	y.	<u>Z</u>	0	-4.1	/53385000	-2.958356000	-2.397406000
Ag	2.528493000	0.048121000	-0.283946000	0	-7.9	905484000	-0.021482000	3.443157000
Мо	6.923645000	1.435573000	0.711903000	0	3.4	457441000	-4.394954000	0.924410000
Ag	-2.528651000	-0.047626000	0.284411000	0	-7.7	792883000	0.105039000	-3.315091000
Мо	-6.899639000	1.384907000	0.811614000	0	-4.6	652556000	2.865326000	2.422754000
Мо	-6.923475000	-1.436127000	-0.711902000	0	-3.4	457526000	4.394147000	-0.924717000
Мо	6.899503000	-1.384985000	-0.812400000	0	-1.6	645494000	1.363700000	-3.515328000
Мо	-0.303918000	-3.842461000	-1.240851000	0	3.1	160916000	4.743182000	0.252286000
Мо	0.303707000	3.842798000	1.241247000	С	-5.5	508335000	-2.333138000	-1.760845000
Мо	-0.495761000	3.700111000	-1.752576000	0	7.9	904720000	0.021885000	-3.443926000
Мо	0.496057000	-3.699966000	1.752816000	0	-1.6	66910000	-1.711460000	-3.111932000
Sb	-5.096915000	-0.816987000	1.321563000	С	5.5	508451000	2.332315000	1.760997000
Sb	-4.971671000	0.656377000	-1.100327000	С	-5.4	451509000	2.247586000	1.826784000
Sb	4.971743000	-0.656808000	1.099978000	С	7.4	106529000	0.407131000	2.336784000
Sb	5.096897000	0.817079000	-1.321677000	С	-2.1	107351000	-4.372314000	-0.593388000
Р	1.058597000	-2.061722000	-0.171191000	0	4.6	651993000	-2.865246000	-2.423112000
Р	0.957821000	2.081708000	-0.533714000	С	-2.3	354874000	4.106879000	-1.188163000
Р	-1.058049000	2.061617000	0.171284000	С	1.2	225253000	-2.189753000	2.812021000
Р	-0.957265000	-2.081092000	0.534186000	С	-0.7	777447000	-5.721197000	2.008878000
0	7.793231000	-0.105777000	3.314919000	С	7.4	466975000	-0.434322000	-2.458894000
0	-3.161024000	-4.741668000	-0.250528000	С	-1.2	224144000	2.189663000	-2.812026000
0	1.647060000	-1.363917000	3.515196000	С	-7.4	106240000	-0.407832000	-2.336908000
0	4.753393000	2.957327000	2.397628000	С	2.1	07292000	4.373336000	0.594729000

S32 | Page

С	2.354924000	-4.107326000	1.188022000	С	0.120659000	6.076902000	1.926940000
С	-1.465952000	-4.670416000	2.704460000	С	0.374450000	5.247928000	3.075541000
С	8.903126000	1.890344000	-0.570801000	н	9.422319000	1.177601000	-1.220622000
С	-8.903109000	-1.890668000	0.570632000	н	7.515278000	2.941095000	-2.008632000
С	0.508436000	-5.885321000	2.616399000	н	6.804255000	4.442435000	0.152403000
С	-7.390777000	3.564505000	0.156444000	н	8.322488000	3.629246000	2.276734000
С	-7.467495000	0.434524000	2.458155000	н	9.920930000	1.595255000	1.424003000
С	-8.840444000	1.881058000	-0.519999000	Н	7.373718000	-2.799524000	1.970555000
С	0.777106000	5.721801000	-2.007990000	н	6.631056000	-4.356321000	-0.136486000
С	-1.174638000	-2.470559000	-2.380873000	н	8.220020000	-3.701526000	-2.267903000
С	-7.887222000	-2.816320000	0.984554000	н	9.901170000	-1.714770000	-1.467286000
С	8.318457000	3.183394000	1.274276000	н	9.386929000	-1.172319000	1.149637000
С	-9.163978000	-2.112242000	-0.819373000	Н	2.696982000	-4.209231000	-2.094353000
С	7.771615000	-2.738090000	0.950266000	н	1.669369000	-6.219945000	-0.559742000
С	7.524436000	3.614332000	0.151316000	н	-0.776665000	-6.876361000	-1.557993000
С	5.451078000	-2.247535000	-1.827296000	н	-1.250714000	-5.305380000	-3.734418000
С	9.164213000	2.111500000	0.819225000	Н	0.907604000	-3.653481000	-4.052855000
С	1.712706000	-4.679569000	-2.211586000	Н	-1.186343000	-6.328293000	1.194034000
С	-0.121288000	-6.076570000	-1.926417000	Н	1.260376000	-6.636537000	2.342199000
С	-0.617925000	4.945935000	-3.699749000	н	1.458956000	-4.861504000	4.400562000
С	-9.112448000	2.171516000	0.854407000	н	-0.865202000	-3.422598000	4.488332000
С	8.840250000	-1.881577000	0.519096000	Н	-2.484069000	-4.322831000	2.492934000
С	-8.221981000	3.217779000	1.281724000	Н	-2.697598000	4.209425000	2.093410000
С	7.887239000	2.816183000	-0.984312000	н	-0.909107000	3.653552000	4.052665000
С	0.618701000	-4.945804000	3.699930000	н	1.249305000	5.305607000	3.735378000
С	-0.508527000	5.885480000	-2.616160000	н	0.776150000	6.876790000	1.558927000
С	7.390801000	-3.564861000	-0.158208000	н	-1.669346000	6.220292000	0.559418000
С	-7.524184000	-3.614760000	-0.150793000	н	1.185420000	6.329087000	-1.192997000
С	-7.771728000	2.737242000	-0.951623000	н	2.484472000	4.324053000	-2.491224000
С	-8.318082000	-3.184196000	-1.273993000	н	0.866904000	3.423262000	-4.487437000
С	0.766258000	-4.382095000	-3.244340000	н	-1.457798000	4.861357000	-4.400810000
С	1.466334000	4.671275000	-2.703256000	н	-1.260873000	6.636427000	-2.342333000
С	0.612845000	4.194137000	-3.748662000	н	-6.630951000	4.355871000	0.134301000
0	1.665830000	1.711836000	3.112998000	Н	-7.373890000	2.798165000	-1.971968000
С	8.222007000	-3.217521000	-1.283291000	н	-9.387198000	1.171522000	-1.150165000
С	-0.375558000	-5.247706000	-3.074987000	н	-9.901305000	1.715305000	1.466484000
С	1.166397000	-5.731056000	-1.401393000	н	-8.219925000	3.702280000	2.266093000
С	-0.611774000	-4.193571000	3.749440000	н	-9.422509000	-1.177836000	1.220192000
С	-1.713364000	4.679738000	2.211090000	н	-9.920630000	-1.596208000	-1.424413000
С	9.112348000	-2.171352000	-0.855439000	Н	-8.321930000	-3.630334000	-2.276324000
С	1.173979000	2.470933000	2.381661000	Н	-6.803956000	-4.442821000	-0.151531000
С	-1.166753000	5.731370000	1.401279000	Н	-7.515323000	-2.940851000	2.008945000
С	-0.767378000	4.382225000	3.244273000				

Table S12 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2 - \mathbf{A})_2(\eta^{1:1} - \mathbf{A})_2Cu_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. $E^\circ = -9917.75870728$ Hartree

Aton	n x	V	<u>z</u>	0	-3.125143000	-4.702247000	-0.135169000	e .
Ρ	4.638940000	-0.669845000	0.691383000	С	-7.370289000	2.957533000	-2.182282000	L and
Ρ	-4.673046000	0.730335000	0.669952000	н	-7.222517000	3.301128000	-3.213882000	
Ρ	4.469131000	0.586945000	-1.109473000	С	-6.506938000	-0.053986000	-2.774679000	
Ρ	-4.429849000	-0.697587000	-0.993318000	0	-7.553898000	0.571398000	2.770955000	
Cu	2.409611000	0.042240000	0.036857000	С	1.121038000	-1.796361000	2.809332000	
Cu	-2.418027000	0.068331000	0.125092000	С	-7.055004000	-0.071896000	1.936786000	
Мо	-6.283167000	-1.284747000	0.557356000	С	-8.440827000	-2.238841000	0.552524000	
Мо	6.086820000	-1.425070000	-1.188064000	н	-9.306979000	-1.767491000	1.035104000	
Мо	-6.157139000	1.204324000	-1.273157000	С	-4.613374000	1.868778000	-2.303083000	
Мо	6.364303000	1.224047000	0.373196000	С	-6.570654000	-3.570138000	0.183186000	
Мо	-0.278760000	3.430384000	1.933107000	н	-5.752117000	-4.286893000	0.325906000	
Мо	0.254515000	3.751476000	-1.114402000	С	0.881313000	2.393598000	-2.417329000	
Мо	0.405808000	-3.370310000	1.832886000	С	2.293654000	-3.807626000	1.363895000	
Мо	-0.402978000	-3.545648000	-1.208689000	С	-2.086670000	-4.282279000	-0.473442000	
Р	1.064096000	1.899797000	0.502868000	С	8.195949000	-2.403228000	-1.590584000	
Р	-1.014618000	1.919843000	-0.015730000	н	8.925745000	-1.985964000	-2.296605000	, P.
Ρ	0.955865000	-1.783128000	-0.072332000	С	-8.331517000	1.981761000	-1.747242000	
Ρ	-1.098633000	-1.808099000	0.520407000	н	-9.033168000	1.441618000	-2.396185000	Cu P - \ - P Cu
0	4.454004000	2.465036000	2.527456000	С	-0.947381000	1.852559000	2.938016000	
0	6.808968000	0.209346000	-3.788933000	С	-2.170289000	3.898489000	1.544921000	
0	-3.281085000	4.217454000	1.372523000	С	-7.519073000	-3.142574000	1.184212000	F
0	-6.754966000	-0.729479000	-3.692598000	н	-7.569471000	-3.490783000	2.223637000	
0	7.612379000	-0.489766000	2.710956000	С	-4.980959000	-1.864558000	1.920112000	
0	-1.335157000	0.974745000	3.597511000	С	1.037207000	5.413726000	2.213152000	
0	3.634311000	-2.597404000	-2.752136000	н	1.399912000	6.055955000	1.402892000	
С	6.516756000	-0.349248000	-2.808163000	С	0.581447000	-4.454786000	3.864028000	
0	1.218203000	1.638439000	-3.238464000	н	1.441576000	-4.321659000	4.532470000	
0	1.541957000	-0.918792000	3.447733000	С	-8.071718000	-2.110679000	-0.824228000	
0	-4.258720000	-2.276640000	2.740454000	н	-8.609153000	-1.531273000	-1.583466000	
0	-3.738403000	2.321334000	-2.933666000	С	0.437198000	-5.475616000	2.859774000	
С	7.121286000	0.097938000	1.832239000	н	1.175360000	-6.248589000	2.609667000	
0	3.401951000	-4.099170000	1.158576000	С	7.161356000	-3.346680000	-1.913864000	
0	3.261481000	4,460406000	-0.481868000	н	6.975853000	-3.785042000	-2.902582000	
С	4.517365000	-2.115919000	-2.157372000	С	-7.246049000	2.793312000	0.135845000	
С	5.130879000	1.962671000	1.717215000	н	-6.971838000	2.976941000	1.181877000	
С	-6.912446000	-2.926978000	-1.050088000	С	8.144190000	1.854888000	-1.119349000	
н	-6.408200000	-3.068214000	-2.013566000	н	8.635050000	1.192004000	-1.840617000	
С	-6.699926000	3.460616000	-1.007438000	С	7.692618000	3.071981000	0.808950000	
н	-5.941502000	4.252746000	-0.985359000	н	7.786713000	3.502155000	1.814067000	

S33 | Page

0	1 75000000	4 240242000	2 00205 4000		F 040200000	4 04 4004 000	0.000100000
	1.753293000	4.319212000	2.803854000		5.949290000	4.214681000	-0.096122000
н	2.746391000	3.956590000	2.515802000	C	-1.536492000	-4.249582000	2.913835000
С	0.960460000	3.796016000	3.875301000	н	-2.555635000	-3.900281000	2.713161000
н	1.252630000	2.980837000	4.549526000	С	8.557594000	2.079557000	0.232353000
С	7.078257000	-2.930088000	0.372891000	н	9.417083000	1.611976000	0.730200000
н	6.804851000	-2.981629000	1.433728000	С	0.440059000	-2.445778000	-3.166805000
С	-0.870260000	-5.352759000	2.287686000	н	1.219653000	-1.675343000	-3.168263000
н	-1.294134000	-6.013182000	1.522503000	С	-0.645940000	-3.692771000	3.888062000
С	7.013323000	2.698706000	-1.383870000	Н	-0.879766000	-2.864598000	4.569218000
н	6.485589000	2.781371000	-2.341836000	С	0.659368000	-3.855318000	-3.282631000
С	8.149844000	-2.152165000	-0.182505000	н	1.635644000	-4.342764000	-3.388520000
н	8.844275000	-1.517957000	0.379654000	С	0.145015000	5.247548000	-2.878715000
С	0.560449000	-5.183789000	-0.649639000	н	0.903453000	5.281351000	-3.671000000
С	-8.259864000	1.885074000	-0.320860000	С	-0.974382000	-2.213574000	-3.099598000
н	-8.901869000	1.264924000	0.314420000	Н	-1.466588000	-1.236475000	-3.016558000
С	-0.258203000	4.564539000	3.949143000	С	0.143850000	6.033815000	-1.673952000
н	-1.053029000	4.453013000	4.697454000	н	0.911778000	6.763885000	-1.386737000
С	-0.203911000	5.561590000	2.912965000	С	-0.628350000	-4.504760000	-3.297293000
н	-0.959904000	6.337131000	2.733701000	н	-0.810869000	-5.578389000	-3.432474000
С	-1.061349000	5.751936000	-0.954489000	0	1.094440000	-6.212948000	-0.483507000
н	-1.382950000	6.231663000	-0.023532000	С	-1.635859000	-3.481273000	-3.185567000
С	6.470325000	-3.673526000	-0.689163000	н	-2.721349000	-3.639291000	-3.212012000
н	5.649789000	-4.393067000	-0.578162000	С	-1.071578000	4.472216000	-2.893511000
С	-1.806880000	4.780992000	-1.704903000	н	-1.402466000	3.794729000	-3.690361000
н	-2.783513000	4.366570000	-1.432986000	С	2.150344000	4.156702000	-0.682448000
С	6.734197000	3.455419000	-0.200089000				

Table	S13	Cartesian	coordinates	of the	gas-phase	optimized	geometry	of [(ŋ ²	² -Α)₂(η ^{1:1} -	• A) ₂ Cu ₂] ²⁺	in	the	chair
confor	matio	n calculate	d at the BP8	6/def2-	SVP level of	f theory. E°	= -9917.75	507408	88 Hartree	е			

			_	C	7 454700000	2 1290/1000	1 520520000	
Aton	1 X	<u>y</u>	<u></u> 0.00000000	C	7.434799000 9.405425000	3.136041000	1.012610000	
Cu Mo	2.418560000	-0.011710000	-0.086388000	C	7 16/267000	-2.189073000	0.750370000	
IVIO Ou	0.233455000	1.298606000	0.835956000	C	6 621252000	-2.793499000	0.750570000	
Cu	-2.418591000	0.011593000	0.086844000	C	4 927771000	3.301002000	1.000656000	
IVIO	-6.266681000	1.285338000	0.867921000	C	9.405202000	-2.022541000	1.014416000	
IVIO	-6.233350000	-1.298527000	-0.835990000	C	0.405595000	2.190201000	1.014410000	
Mo	6.266656000	-1.285394000	-0.867805000	C	2.007974000	-5.049730000	-1.100340000	
Mo	-0.088944000	-3.941556000	-0.962367000	C	0.046582000	-6.284304000	-1.108042000	
Mo	0.088765000	3.941357000	0.962273000	C	0.204450000	3.854363000	-4.184179000	
Mo	-0.126217000	3.119129000	-2.015957000	C	-8.472323000	2.100180000	1.036395000	
Mo	0.126435000	-3.119146000	2.015819000	C	8.235919000	-1.919533000	0.364000000	
P	-4.585801000	-0.669851000	0.916173000	C	-7.556776000	3.095024000	1.524328000	
P	-4.561316000	0.661867000	-0.844697000	C	7.061963000	2.875558000	-0.748066000	84
Ρ	4.561570000	-0.661820000	0.844949000	C	-0.205136000	-3.853231000	4.184330000	
Ρ	4.585689000	0.669811000	-0.916018000	С	0.229887000	5.021302000	-3.343322000	× ** •
Ρ	1.091036000	-1.933240000	-0.074370000	С	6.748399000	-3.524552000	-0.408153000	
Ρ	1.018103000	1.841491000	-0.226115000	С	-6.621213000	-3.562177000	-0.431503000	6 6
Ρ	-1.090611000	1.932801000	0.074025000	С	-7.164447000	2.793649000	-0.750056000	
Р	-1.017716000	-1.841434000	0.226011000	С	-7.455363000	-3.137209000	-1.530307000	Ø
0	7.185589000	-0.465212000	3.272355000	С	1.393592000	-4.951688000	-2.454991000	
0	-3.134190000	-4.584018000	-0.464863000	С	2.054799000	3.702154000	-2.780955000	C.S.
0	1.263445000	-0.527459000	3.382914000	С	1.340032000	3.038163000	-3.829363000	
0	3.989238000	2.423762000	2.727512000	0	0.799294000	2.388053000	3.604475000	
0	-3.989289000	-2.422924000	-2.728213000	С	7.556746000	-3.095168000	-1.523947000	
0	-7.161987000	-0.474448000	3.327778000	С	0.170024000	-5.716848000	-2.424230000	
0	3.112696000	-4.133577000	1.907057000	С	1.181797000	-5.880026000	-0.335867000	
0	-7.185533000	0.466019000	-3.271822000	С	-1.340683000	-3.037401000	3.828524000	
0	-4.015770000	2.528360000	2.671306000	С	-2.008472000	5.049040000	1.166508000	
0	-3.112612000	4.133102000	-1.907291000	С	8.472253000	-2.100268000	-1.036089000	C
0	-1.263315000	0.527664000	-3.383426000	С	0.571750000	2.894493000	2.585113000	
0	3.133985000	4.584291000	0.465191000	С	-1.182597000	5.879556000	0.335972000	
С	-4.790949000	-1.968291000	-2.015400000	С	-1.393898000	4.951110000	2.455074000	
0	7.161951000	0.474805000	-3.327378000	С	-0.047352000	6.284071000	1.107987000	
0	-0.799512000	-2.387832000	-3.604342000	С	-0.170504000	5.716555000	2.424180000	
С	4.790940000	1.968893000	2.014919000	Н	8.755366000	1.416356000	-1.076878000	
С	-4.827553000	2.022404000	1.999491000	н	6.658781000	3.002247000	-1.760133000	
С	6.804898000	0.144381000	2.354440000	н	5.813133000	4.302150000	0.480121000	
С	-2.014524000	-4.293086000	-0.636697000	н	7.412969000	3.514985000	2.559208000	
0	4.016093000	-2.528573000	-2.671560000	н	9.207184000	1.710396000	1.590614000	
С	-2.012396000	3.740944000	-1.904084000	н	6.766800000	-2.912597000	1.765700000	
С	0.843778000	-1.455688000	2.819767000	н	5.984697000	-4.311539000	-0.429701000	
С	-1.373749000	-4.931793000	2.486838000	н	7.526401000	-3.498756000	-2.543844000	
С	6.799425000	-0.136635000	-2.402397000	н	9.251520000	-1.603190000	-1.628373000	
С	-0.843559000	1.455757000	-2.820131000	н	8.809207000	-1.269694000	1.034334000	
С	-6.804882000	-0.143878000	-2.354083000	н	2.958264000	-4.589871000	-0.873708000	
C	2.014370000	4.293215000	0.636933000	н	1.406834000	-6.193495000	0.689316000	
C	2.012555000	-3.741211000	1.903965000	н	-0.753935000	-6.957285000	-0.774422000	
C	-2.054847000	-3.702087000	2.780158000	н	-0.510495000	-5.887767000	-3.267934000	
C	8.167289000	2.033470000	-0.388282000	н	1.805468000	-4.418433000	-3.320894000	
C	-8.166271000	-2.034285000	0.389058000	н	-1.700488000	-5.691380000	1.768343000	
č	-0.230011000	-5.020651000	3.344127000	н	0.474210000	-5.861059000	3.396756000	
č	-6.748521000	3.524555000	0.408528000	н	0.511572000	-3.651464000	4.990399000	
č	-6.799441000	0.136783000	2,402677000	н	-1.630873000	-2.093247000	4.306837000	
č	-8.236070000	1,919635000	-0.363729000	н	-2.980169000	-3.348283000	2.309480000	
č	1.374026000	4,931790000	-2.486622000	н	-2.958727000	4.589017000	0.874017000	
č	-0.571906000	-2.894512000	-2.585131000	н	-1.805541000	4.417773000	3.321046000	
c	-7.060852000	-2.876917000	0.747252000	н	0.510071000	5.887643000	3.267804000	
~			5					

P P Cu

```
S34 | Page
```

н	0.752949000	6.957259000	0.774274000	н	-8.809447000	1.269921000	-1.034102000
н	-1.407819000	6.193019000	-0.689169000	н	-9.251547000	1.603002000	1.628651000
н	1.701234000	5.690934000	-1.767866000	н	-7.526329000	3.498450000	2.544287000
н	2.980293000	3.347949000	-2.310906000	н	-8.753798000	-1.417813000	1.078693000
н	1.629832000	2.094208000	-4.308307000	н	-9.207562000	-1.709192000	-1.588771000
н	-0.512721000	3.653124000	-4.989968000	н	-7.414292000	-3.513172000	-2.560375000
н	-0.474232000	5.861845000	-3.395149000	н	-5.813013000	-4.302395000	-0.483105000
н	-5.984744000	4.311473000	0.430156000	н	-6.656914000	-3.004558000	1.758900000
н	-6.767052000	2.912877000	-1.765396000				

Table S14 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2 - \mathbf{B})_2(\eta^{1:1} - \mathbf{A})_2Cu_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. $E^\circ = -17496.1721556$ Hartree

Atom	n x	У	Z	С	0.527512000	-4.447313000	3.892345000	
As	4.697337000	-0.709216000	0.815565000	н	1.384626000	-4.328627000	4.567350000	<u>ل</u>
As	-4.742736000	0.815952000	0.762416000	С	-8.195545000	-2.096090000	-0.813346000	4 2
As	4.510395000	0.657009000	-1.193021000	Н	-8.703716000	-1.520871000	-1.595279000	
As	-4.463508000	-0.784522000	-1.058556000	С	0.373363000	-5.465583000	2.886856000	
Cu	2.412735000	0.054981000	0.060072000	н	1.099829000	-6.251233000	2.642066000	
Cu	-2.425617000	0.073126000	0.143778000	С	7.333039000	-3.331769000	-1.894121000	
Mo	-6.407757000	-1.296806000	0.584895000	н	7.160948000	-3.779051000	-2.881171000	
Mo	6.198462000	-1.446940000	-1.175276000		-7.424838000	2.774250000	0.071575000	
Mo	-6.280904000	1.192907000	-1.302386000		-7.104313000	3.001146000	1.112702000	
IVIO Ma	6.500273000	1.244505000	0.375070000		8.299760000	1.763202000	1 950052000	
Mo	-0.264144000	3.442785000	1.956229000	п С	7 010772000	3.025654000	-1.650952000	
Mo	0.230244000	3.736260000	1 850130000	с н	8 039533000	3.023034000	1 780990000	
Mo	0.300091000	-3.545016000	1.039139000	C	1 784415000	4 309860000	2 812641000	
P	1 059013000	1 910808000	0.511604000	н	2 773335000	3 936206000	2 522920000	
P	-1 026321000	1.930562000	0.018438000	C	0.989725000	3.802272000	3.890349000	er e
P	0.965108000	-1 779489000	-0.042296000	H	1.274807000	2.987335000	4.567947000	5
P	-1.096778000	-1.801576000	0.523126000	С	7.238859000	-2.911276000	0.392620000	~P\
0	4.596292000	2.636830000	2.439318000	Н	6.975348000	-2.975758000	1.455361000	
0	6.863887000	0.122210000	-3.828613000	С	-0.928042000	-5.320154000	2.305200000	Cu—P—X—P—Cu
0	-3.270218000	4.240239000	1.429651000	Н	-1.357948000	-5.973279000	1.537096000	\sim
0	-6.815447000	-0.745730000	-3.730451000	С	7.213758000	2.661780000	-1.405586000	`P´
0	7.689135000	-0.418797000	2.776501000	н	6.693872000	2.767283000	-2.365674000	÷
0	-1.320958000	0.992999000	3.629129000	С	8.281894000	-2.098223000	-0.165973000	
0	3.734335000	-2.720228000	-2.637619000	н	8.953897000	-1.439464000	0.394746000	
С	6.580225000	-0.407672000	-2.827886000	С	0.540400000	-5.194403000	-0.593273000	
0	1.152635000	1.632778000	-3.229141000	С	-8.404318000	1.817619000	-0.359220000	
0	1.533575000	-0.915585000	3.472916000	н	-9.023633000	1.193818000	0.294422000	
0	-4.375801000	-2.340249000	2.734858000	С	-0.218978000	4.585935000	3.966321000	
0	-3.865598000	2.404046000	-2.899011000	Н	-1.011173000	4.488004000	4.719319000	
С	7.206845000	0.148126000	1.877630000	С	-0.157643000	5.576724000	2.924322000	
0	3.386987000	-4.113615000	1.221810000	н	-0.904608000	6.360921000	2.744947000	
0	3.254214000	4.448066000	-0.525190000	С	-1.080548000	5.761089000	-0.925636000	
С	4.617162000	-2.192517000	-2.080376000	н	-1.390665000	6.241909000	0.008630000	
С	5.263326000	2.069473000	1.663003000	С	6.654727000	-3.676815000	-0.668607000	
C	-7.059405000	-2.952273000	-1.002380000	н	5.860588000	-4.425465000	-0.556345000	
н	-6.550288000	-3.137865000	-1.955855000		-1.836799000	4.791849000	-1.667543000	
C	-6.903929000	3.430501000	-1.091227000		-2.812532000	4.380636000	-1.387124000	
н	-6.175120000	4.250513000	-1.092611000	с ц	6.238610000	3.444390000	-0.227900000	
C	-3.146018000	-4.042412000	-0.180423000	C II	-1 580079000	-4 205942000	2 926444000	
L L	-7.330606000	2.074300000	-2.230830000	U Н	-2 592572000	-3.840010000	2 720097000	
п С	-7.422230000 6.577092000	0.071952000	-3.290603000	C II	8 728781000	1 981551000	0.213378000	
0	-0.377962000	0.071652000	2 700205000	н	9 566580000	1.301331000	0.713432000	
ĉ	1 107787000	-1 791865000	2.799293000	C	0.551671000	-2 493668000	-3 141341000	
c	-7 159129000	-0.076290000	1 965224000	Ĥ	1.350490000	-1.743395000	-3.130081000	
c	-8 589004000	-2 181052000	0.560375000	C	-0.686528000	-3.664266000	3.906636000	
н	-9 449013000	-1 674930000	1 017982000	H	-0.910966000	-2.831860000	4.585819000	
C	-4.733561000	1.906471000	-2.290664000	С	0.738865000	-3.908916000	-3.232538000	
c	-6.757183000	-3.576929000	0.251903000	н	1.705500000	-4.421365000	-3.303600000	
H	-5.966391000	-4.318052000	0.423542000	С	0.103303000	5.253714000	-2.863040000	
С	0.830531000	2.394154000	-2.407306000	н	0.852719000	5.285941000	-3.663937000	
С	2.277470000	-3.817908000	1.414013000	С	-0.858073000	-2.225339000	-3.117382000	
С	-2.092190000	-4.244091000	-0.495841000	н	-1.325574000	-1.234147000	-3.063646000	
С	8.334523000	-2.351252000	-1.573738000	С	0.117293000	6.040287000	-1.658404000	
Н	9.050349000	-1.913645000	-2.281670000	н	0.889841000	6.768802000	-1.379772000	
С	-8.479858000	1.873977000	-1.787765000	С	-0.563907000	-4.526537000	-3.274721000	
н	-9.163150000	1.293608000	-2.421311000	Н	-0.769172000	-5.597142000	-3.401064000	
С	-0.932209000	1.869120000	2.967653000	0	1.049509000	-6.233300000	-0.409159000	
С	-2.157755000	3.920138000	1.589368000	С	-1.548640000	-3.477178000	-3.206105000	
С	-7.707164000	-3.100373000	1.227276000	н	-2.636497000	-3.609523000	-3.262954000	
н	-7.784184000	-3.424140000	2.272859000	С	-1.115232000	4.481234000	-2.863974000	
С	-5.096610000	-1.899329000	1.926254000	Н	-1.457739000	3.805165000	-3.657163000	
С	1.078505000	5.409802000	2.219588000	С	2.136524000	4.155206000	-0.70205000	
н	1.445405000	6.043064000	1.404148000					

Table S15 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^{2}-B)_{2}(\eta^{1:1}-A)_{2}Cu_{2}]^{2+}$ in the chair conformation calculated at the BP86/def2-SVP level of theory. E^o = -17496.1637615 Hartree

Atom	х	У	Z	Mo	6.350176000	1.306952000	0.842625000
Cu	2.406941000	-0.004499000	-0.136321000	Cu	-2.406780000	0.004806000	0.136845000

Мо	-6.373026000	1.287838000	0.904651000	С	-	7.700531000	3.060149000	1.576717000
Мо	-6.349376000	-1.305880000	-0.844184000	С		7.227780000	2.874746000	-0.725833000
Мо	6.372775000	-1.289228000	-0.902232000	С		0.001505000	-4.080743000	4.105142000
Мо	-0.150161000	-3.894251000	-1.032917000	С		0.060152000	5.198948000	-3.204886000
Мо	0.151965000	3.894414000	1.031926000	С		6.898220000	-3.518716000	-0.462147000
Мо	-0.220730000	3.225076000	-1.967218000	С	-	6.812343000	-3.558001000	-0.470862000
Мо	0.218349000	-3.225227000	1.966780000	С	-	7.299537000	2.791559000	-0.700699000
As	-4.630538000	-0.760634000	1.024666000	С	-	7.634145000	-3.088932000	-1.559568000
As	-4.587647000	0.725514000	-0.911706000	C		1.232496000	-4.833252000	-2.662807000
As	4.587641000	-0.723636000	0.913428000	C		1.916121000	3.861780000	-2.814779000
As	4.630815000	0.759525000	-1.025228000	C		1,147971000	3.251823000	-3.858122000
P	1.087321000	-1.938688000	-0.107527000	0		0.990795000	2,196549000	3.543713000
Р	1.005575000	1.853009000	-0.303463000	C		7.699346000	-3.063307000	-1.571491000
Р	-1.086566000	1,938632000	0.108419000	C		0.011025000	-5.598715000	-2.588994000
Р	-1.005353000	-1.852849000	0.301446000	C		1.155860000	-5.857899000	-0.580731000
0	7.266966000	-0.469937000	3.280141000	С	-	1.152864000	-3.251967000	3.855863000
0	-3.170951000	-4.546024000	-0.409107000	C	-	1.927708000	4.988771000	1,427649000
0	1.420433000	-0.713156000	3.423619000	C		8.592593000	-2.053128000	-1.072213000
õ	4.127046000	2.508084000	2.709527000	c		0.713593000	2.762622000	2.568854000
0	-4.125228000	-2.502650000	-2.712752000	C	-	1.157330000	5.856603000	0.582789000
0	-7.258580000	-0.454364000	3.378088000	C	-	1.226882000	4.832754000	2.665463000
0	3,195918000	-4.221188000	1.655438000	C		0.029220000	6.226270000	1,293239000
õ	-7.267065000	0.474398000	-3.278906000	c	-	0.006345000	5.599308000	2.587784000
õ	-4.119351000	2.586378000	2.661756000	н		8.868168000	1.363215000	-1.081480000
õ	-3.197741000	4.221092000	-1.651056000	н		6.833111000	3.037968000	-1.736097000
õ	-1.425751000	0.712892000	-3.421457000	н		6.034704000	4.328017000	0.526973000
0	3,171294000	4.547774000	0.402598000	н		7.608994000	3,454769000	2.590023000
c	-4.911903000	-2.011720000	-2.004970000	н		9.335640000	1.601970000	1.589937000
õ	7.259554000	0.449595000	-3.377606000	н		6.908757000	-2.933921000	1.720845000
0	-0.982894000	-2.195412000	-3.546121000	н		6.149605000	-4.319964000	-0.492693000
C	4.913257000	2.015497000	2.002373000	н		7.677912000	-3.457019000	-2.595397000
С	-4.927446000	2.049776000	2.006735000	н		9.362938000	-1.535600000	-1.658592000
С	6.887831000	0.140951000	2.360563000	н		8.910817000	-1.237408000	1.007634000
С	-2.059609000	-4.254677000	-0.625933000	н		2.899486000	-4.544521000	-1.177077000
0	4.119260000	-2.589049000	-2.658592000	н		1.447466000	-6.220373000	0.410942000
С	-2.097706000	3.834017000	-1.725132000	н	-	0.807365000	-6.915018000	-0.941976000
С	0.973342000	-1.606890000	2.826970000	н	-	0.722884000	-5.730217000	-3.394133000
С	-1.252812000	-5.068614000	2.413521000	н		1.590211000	-4.263254000	-3.529458000
С	6.887380000	-0.147934000	-2.445564000	н	-	1.617002000	-5.789205000	1.673272000
С	-0.977344000	1.606664000	-2.825839000	н		0.642073000	-6.038238000	3.171919000
С	-6.887653000	-0.137781000	-2.360304000	н		0.758827000	-3.921047000	4.883024000
С	2.060489000	4.255930000	0.621444000	н	-	1.419254000	-2.338068000	4.402034000
С	2.095755000	-3.834175000	1.727750000	н	-	2.870504000	-3.488654000	2.410382000
С	-1.919986000	-3.861023000	2.811241000	н	-	2.898010000	4.541851000	1.184830000
С	8.303067000	1.988957000	-0.381668000	н	-	1.581505000	4.262830000	3.533439000
С	-8.301052000	-1.991055000	0.380150000	н		0.729778000	5.731836000	3.390731000
С	-0.065281000	-5.199418000	3.203224000	н		0.805981000	6.915707000	0.937835000
С	-6.899730000	3.517690000	0.468021000	н	-	1.452208000	6.218438000	-0.408145000
С	-6.886816000	0.144433000	2.446704000	н		1.613549000	5.790316000	-1.677274000
С	-8.352639000	1.890889000	-0.326080000	н		2.867386000	3.490177000	-2.414994000
С	1.248789000	5.069157000	-2.416692000	н		1.414137000	2.337847000	-4.404271000
С	-0.708138000	-2.761927000	-2.570824000	н	-	0.765460000	3.919401000	-4.883038000
С	-7.225324000	-2.877378000	0.721516000	н	-	0.647651000	6.037366000	-3.172942000
С	7.634898000	3.091273000	1.555080000	н	-	6.151521000	4.319270000	0.499780000
С	-8.547861000	-2.115336000	-1.024644000	н	-	6.910069000	2.936198000	-1.715858000
С	7.298345000	-2.791018000	0.705488000	н	-	8.911228000	1.237584000	-1.005131000
С	6.814050000	3.558138000	0.464690000	н	-	9.363311000	1.531426000	1.661590000
С	4.927282000	-2.051973000	-2.003868000	н	-	7.679224000	3.452312000	2.601221000
С	8.548804000	2.116311000	1.023035000	н	-	8.865679000	-1.366954000	1.081801000
С	1.929506000	-4.990420000	-1.423001000	н	-	9.335293000	-1.599962000	-1.589776000
С	-0.028895000	-6.226204000	-1.294850000	н	-	7.608961000	-3.450150000	-2.595326000
С	-0.007200000	4.079846000	-4.106224000	н	-	6.032865000	-4.327553000	-0.535417000
С	-8.593281000	2.050261000	1.075954000	н	-	6.829849000	-3.042802000	1.731108000
С	8.351949000	-1.891484000	0.329559000					

Table S16 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2 - C)_2(\eta^{1:1} - A)_2Cu_2]^{2+}$ in the twisted boat conformation calculated at the BP86/def2-SVP level of theory. $E^\circ = -9514.19793771$ Hartree

Atom	x	v	z	0	-4.837878000	2.901089000	-2.311615000
Sb	-4.821893000	-0.732441000	-1.063872000	0	-7.153180000	-0.062982000	3.803792000
Sb	4.877952000	0.863785000	-0.998767000	0	3.233538000	4.318687000	-1.479537000
Sb	-4.622109000	0.737800000	1.331139000	0	7.127280000	-0.536668000	3.752313000
Sb	4.583711000	-0.880448000	1.198884000	0	-7.919066000	-0.208312000	-2.894734000
Cu	-2.425145000	0.068409000	-0.092225000	0	1.272200000	1.094821000	-3.681906000
Cu	2.446057000	0.051557000	-0.165197000	0	-4.028401000	-2.912704000	2.462743000
Мо	6.680969000	-1.368131000	-0.595274000	С	-6.836614000	-0.527692000	2.777828000
Мо	-6.458585000	-1.491220000	1.084164000	0	-0.950702000	1.515400000	3.257100000
Мо	6.541765000	1.255481000	1.230035000	0	-1.440847000	-0.994946000	-3.532273000
Мо	-6.752566000	1.320191000	-0.400238000	0	4.653417000	-2.626846000	-2.628464000
Мо	0.222898000	3.489310000	-1.925701000	0	4.164453000	2.606119000	2.766268000
Мо	-0.166165000	3.720459000	1.154671000	С	-7.421753000	0.299104000	-1.965688000
Мо	-0.333284000	-3.404016000	-1.836129000	0	-3.354173000	-4.171946000	-1.324199000
Мо	0.271693000	-3.529175000	1.252877000	0	-3.224224000	4.366609000	0.736458000
Ρ	-1.039958000	1.914901000	-0.479211000	С	-4.890373000	-2.315429000	1.938930000
Ρ	1.061453000	1.928239000	-0.055531000	С	-5.500490000	2.248610000	-1.597405000
Р	-0.996595000	-1.780740000	0.004597000	С	7.390966000	-2.943636000	1.051988000
Ρ	1.088740000	-1.819964000	-0.460866000	н	6.891167000	-3.145363000	2.007193000

S36 | P a g e

С	7.202695000	3.471388000	0.956056000	Н	-7.249798000	-2.958055000	-1.599140000
н	6.491337000	4.306726000	0.960656000	С	1.046128000	-5.335109000	-2.185068000
0	3.130244000	-4.568742000	0.448442000	н	1.463818000	-5.957336000	-1.385154000
С	7.872353000	2.924826000	2.108502000	С	-7.527951000	2.653332000	1.423945000
н	7.770113000	3.269515000	3.145058000	н	-7.029732000	2.769102000	2.394247000
С	6.849145000	0.069851000	2.791011000	С	-8.540477000	-2.046832000	0.014761000
0	7.910121000	0.365917000	-2.919694000	н	-9.178161000	-1.358491000	-0.550269000
С	-1.029189000	-1.856754000	-2.865697000	С	-0.555787000	-5.206059000	0.607100000
С	7.391745000	-0.215272000	-2.047065000	С	8.651771000	1.815021000	0.216672000
С	8.899478000	-2.131135000	-0.510643000	н	9.242499000	1.169254000	-0.442001000
н	9.740318000	-1.594635000	-0.969106000	С	0.098635000	4.692263000	-3.896335000
С	5.008003000	2.040575000	2.178266000	н	0.874623000	4.638947000	-4.670396000
С	7.141168000	-3.613936000	-0.191844000	С	0.036920000	5.647107000	-2.820974000
Н	6.398863000	-4.405244000	-0.356227000	н	0.767038000	6.445184000	-2.633731000
С	-0.681578000	2.309565000	2.446286000	С	1.108169000	5.747006000	0.979948000
С	-2.238587000	-3.872871000	-1.470945000	н	1.379791000	6.253050000	0.047114000
С	2.048632000	-4.191523000	0.685567000	С	-6.980818000	-3.690293000	0.524053000
С	-8.630192000	-2.320775000	1.416456000	н	-6.213883000	-4.467678000	0.416160000
н	-9.346431000	-1.872433000	2.117158000	С	1.904514000	4.775991000	1.675980000
С	8.762772000	1.895392000	1.641395000	н	2.878435000	4.387025000	1.359702000
Н	9.451383000	1.314881000	2.268959000	С	-7.325741000	3.476018000	0.265897000
С	0.886020000	1.950577000	-2.992842000	н	-6.627113000	4.318900000	0.191642000
С	2.119967000	3.988320000	-1.609436000	С	1.694773000	-4.222358000	-2.811798000
С	8.078188000	-3.114595000	-1.165861000	Н	2.694686000	-3.833342000	-2.584680000
н	8.187631000	-3.461792000	-2.200899000	С	-9.007055000	1.949360000	-0.217548000
С	5.364072000	-2.091562000	-1.865483000	н	-9.823005000	1.425758000	-0.732415000
С	-1.178127000	5.425070000	-2.094405000	С	-0.849761000	-2.519710000	3.124041000
н	-1.542324000	6.021628000	-1.250535000	н	-1.681393000	-1.809822000	3.049947000
С	-0.371216000	-4.538126000	-3.845653000	С	0.823584000	-3.726636000	-3.835820000
н	-1.205301000	-4.456611000	-4.554194000	н	1.052663000	-2.906564000	-4.528427000
С	8.481723000	-2.032069000	0.854669000	С	-0.975520000	-3.940484000	3.210211000
н	8.946986000	-1.413085000	1.629266000	Н	-1.919813000	-4.497785000	3.212988000
С	-0.230414000	-5.526787000	-2.808867000	С	-0.002256000	5.180677000	2.944190000
н	-0.946660000	-6.323453000	-2.569703000	Н	-0.724671000	5.184298000	3.770155000
С	-7.671103000	-3.343170000	1.740532000	С	0.544266000	-2.183159000	3.199364000
н	-7.535438000	-3.813537000	2.722425000	н	0.962178000	-1.168958000	3.175210000
С	7.682852000	2.784605000	-0.208574000	С	-0.068818000	5.991759000	1.757560000
н	7.417646000	3.011097000	-1.248565000	н	-0.861421000	6.713272000	1.520089000
С	-8.571498000	1.714219000	1.125411000	С	0.348881000	-4.495016000	3.348211000
н	-8.995207000	0.983850000	1.823200000	н	0.594564000	-5.554439000	3.495190000
С	-8.245125000	3.044801000	-0.756261000	0	-1.022709000	-6.262294000	0.408349000
н	-8.383007000	3.504040000	-1.743117000	С	1.285768000	-3.399816000	3.346194000
С	-1.870390000	4.327225000	-2.707294000	Н	2.371555000	-3.480993000	3.483844000
Н	-2.848051000	3.927409000	-2.412141000	С	1.228117000	4.429406000	2.888493000
С	-1.087294000	3.875201000	-3.817976000	Н	1.609765000	3.745534000	3.656801000
Н	-1.366676000	3.075677000	-4.516093000	С	-2.093542000	4.092969000	0.851616000
С	-7.516924000	-2.888097000	-0.537601000				

Table S17 Cartesian coordinates of the gas-phase optimized geometry of $[(\eta^2-C)_2(\eta^{1:1}-A)_2Cu_2]^{2+}$ in the chair conformation calculated at the BP86/def2-SVP level of theory. E° = -9514.18841075 Hartree

Atom	n x	v	Z	С	7.125365000	0.244679000	2.340738000
Cu	2.394163000	-0.021523000	-0.212394000	С	-2.173700000	-4.164359000	-0.627113000
Мо	6.606594000	1.349698000	0.778476000	0	4.361703000	-2.831499000	-2.536279000
Cu	-2.392926000	0.028658000	0.214765000	С	-2.154620000	4.002574000	-1.392620000
Мо	-6.605547000	1.367728000	0.891197000	С	1.066071000	-1.908076000	2.853059000
Мо	-6.589786000	-1.340574000	-0.811306000	С	-1.147333000	-5.328826000	2.177319000
Мо	6.593105000	-1.390963000	-0.870547000	С	7.122364000	-0.354799000	-2.477054000
Мо	-0.303962000	-3.771568000	-1.166674000	С	-1.107838000	1.917391000	-2.832651000
Мо	0.322594000	3.772583000	1.168696000	С	-7.114865000	-0.208647000	-2.352087000
Мо	-0.305584000	3.432509000	-1.838961000	С	2.176345000	4.188118000	0.590509000
Мо	0.281181000	-3.424844000	1.847562000	С	2.137410000	-3.996325000	1.432435000
Sb	-4.745704000	-0.820842000	1.237811000	С	-1.796649000	-4.182107000	2.747096000
Sb	-4.662910000	0.800135000	-1.067844000	С	8.564315000	1.891981000	-0.507321000
Sb	4.662663000	-0.770421000	1.084687000	С	-8.546212000	-1.929127000	0.456707000
Sb	4.748147000	0.805690000	-1.251633000	С	0.088208000	-5.528835000	2.872708000
Ρ	1.052500000	-1.948913000	-0.142769000	С	-7.164218000	3.571161000	0.385536000
Ρ	1.008383000	1.858326000	-0.427618000	С	-7.128071000	0.299483000	2.478825000
Ρ	-1.044791000	1.951129000	0.159403000	С	-8.580195000	1.897586000	-0.379807000
Р	-1.008990000	-1.852894000	0.414447000	С	1.112335000	5.341152000	-2.192481000
0	7.528062000	-0.314310000	3.286288000	С	-0.993633000	-2.486918000	-2.517133000
0	-3.263700000	-4.469098000	-0.335421000	С	-7.505069000	-2.857964000	0.792670000
0	1.523901000	-1.090182000	3.542679000	С	7.990894000	3.083023000	1.408711000
0	4.476183000	2.756829000	2.605245000	С	-8.817663000	-2.056647000	-0.943115000
0	-4.436237000	-2.685478000	-2.658178000	С	7.517399000	-2.810248000	0.813029000
0	-7.540318000	-0.230557000	3.437602000	С	7.175450000	3.559911000	0.320451000
0	3.229909000	-4.373216000	1.255368000	С	5.150963000	-2.226130000	-1.914199000
0	-7.519841000	0.366169000	-3.287116000	С	8.841937000	2.045459000	0.888660000
0	-4.385084000	2.803001000	2.576314000	С	1.720000000	-4.824338000	-1.868535000
0	-3.244526000	4.378702000	-1.198307000	С	-0.230664000	-6.064658000	-1.659493000
0	-1.580112000	1.100581000	-3.513951000	С	-0.265128000	4.524095000	-3.879084000
0	3.257756000	4.502717000	0.278780000	С	-8.837921000	2.090410000	1.014424000
С	-5.181861000	-2.125554000	-1.952911000	С	8.564993000	-1.916947000	0.406763000
0	7.537065000	0.155030000	-3.445642000	С	-7.968596000	3.130318000	1.496969000
0	-1.367597000	-1.813727000	-3.386768000	С	7.531655000	2.824445000	-0.859061000
С	5.211711000	2.173312000	1.908606000	С	0.203829000	-4.515631000	3.887052000
С	-5.170469000	2.199720000	1.947475000	С	-0.135301000	5.537624000	-2.866802000

S37 | Page

С	7.132431000	-3.590315000	-0.327479000	н	1.410401000	-6.219599000	-0.118526000
С	-7.137397000	-3.565299000	-0.400499000	н	-0.975714000	-6.784935000	-1.297464000
С	-7.540209000	2.807345000	-0.768849000	н	-1.127717000	-5.371141000	-3.621785000
С	-7.954313000	-3.074574000	-1.481458000	н	1.173376000	-3.902273000	-3.852604000
С	0.900314000	-4.549487000	-3.009499000	н	-1.553726000	-5.971115000	1.388760000
С	1.755064000	4.196118000	-2.772922000	н	0.797960000	-6.349225000	2.704898000
С	0.912515000	3.692753000	-3.815195000	н	1.006879000	-4.432554000	4.630211000
0	1.473464000	1.820492000	3.349275000	н	-1.208770000	-2.838321000	4.464606000
С	7.938985000	-3.176164000	-1.447561000	н	-2.773788000	-3.783741000	2.448615000
С	-0.315016000	-5.317796000	-2.886385000	н	-2.693624000	4.354791000	1.793219000
С	1.024898000	-5.766036000	-1.038232000	н	-1.070253000	3.872165000	3.901234000
С	-0.970249000	-3.681075000	3.803307000	н	1.196064000	5.379956000	3.600536000
С	-1.697257000	4.788771000	1.938192000	н	0.945492000	6.795800000	1.284976000
С	8.818549000	-2.136079000	-0.984362000	н	-1.468221000	6.192403000	0.183240000
С	1.063488000	2.491478000	2.494123000	н	1.530362000	5.985041000	-1.411366000
С	-1.045025000	5.743484000	1.088482000	н	2.738199000	3.800609000	-2.490885000
С	-0.836104000	4.525513000	3.051140000	н	1.142234000	2.850740000	-4.480550000
С	0.225262000	6.061864000	1.669030000	н	-1.080271000	4.438844000	-4.608715000
С	0.361403000	5.314509000	2.891170000	н	-0.844326000	6.355989000	-2.686549000
н	9.083388000	1.220026000	-1.199406000	н	-6.428218000	4.384721000	0.404545000
н	7.142539000	2.995203000	-1.870220000	н	-7.156985000	2.942489000	-1.787635000
н	6.442868000	4.375080000	0.373589000	н	-9.118997000	1.216700000	-1.047136000
н	8.004431000	3.477578000	2.432373000	н	-9.605651000	1.575081000	1.606069000
н	9.613543000	1.509257000	1.456119000	н	-7.964528000	3.550069000	2.510633000
н	7.134791000	-2.924511000	1.834596000	н	-9.074241000	-1.276753000	1.160789000
н	6.388840000	-4.397130000	-0.331113000	н	-9.592936000	-1.516844000	-1.502102000
н	7.929488000	-3.613350000	-2.453794000	н	-7.960503000	-3.448045000	-2.513067000
н	9.590111000	-1.638221000	-1.585900000	н	-6.395664000	-4.371076000	-0.467792000
н	9.111353000	-1.229956000	1.061595000	н	-7.117570000	-3.045670000	1.801438000
н	2.717537000	-4.405792000	-1.691586000				

4. References:

- [1] L. Dutsch, C. Riesinger, G. Balazs, M. Scheer, Chem. Eur. J. 2021, 27, 8804-8810.
- [2] I. Krossing, Chem. Eur. J. 2001, 7, 490-502.
- [3] M. Elsayed Moussa, M. Piesch, M. Fleischmann, A. Schreiner, M. Seidl, M. Scheer, *Dalton Trans.* **2018**, 47, 16031-16035.
- [4] CrysAlisPro Software System, Rigaku Oxford Diffraction (2018-2020)
- [5] R. C. Clark, J. S. Reid, Acta Cryst., 1995, A51, 887-897.
- [6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.
- [7] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- [8] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- [9] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013
- a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; c) J.P. Perdew, Phys. Rev. B 1986, 33, 8822.
- [11] a) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Letters* 1998, 294, 143-152; b) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; c) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, *8*, 1057-1065.
- [12] G. A. Zhurko and D. A. Zhurko, "ChemCraft, Tool for Treatment of the Chemical Data." http://www.chemcraftprog.com.