Supplementary Data for:

The impact of Lewis acids variation on reactions with di-tert-butyl diazo diester

Vaibhav Bedi^a, Dipendu Mandal^{a,b}, Zahid Hussain^b, Shi-Ming Chen^a, Yile Wu^b*, Zheng-Wang Qu^c*, Stefan Grimme^c, and Douglas W. Stephan^{ab}

Contents

General information	<u>)</u>
Synthesis of (tBuOCO(BBN)CN)2 1	<u>)</u>
Figure S1. ¹ H NMR (400 MHz) spectrum of the compound 1 in CDCl ₃ (*= CDCl ₃)	3
Figure S2. ¹¹ B NMR (128 MHz) spectrum of the compound 1 in CDCl ₃	3
Figure S3. 13 C NMR (126 MHz) spectrum of the compound 3 in CDCl ₃ (*= CDCl ₃)	ł
Figure S4. HRMS (DART) spectrum of the compound	ł
Synthesis of [tBuNHNH2tBu][BF4] 2	5
Figure S5. HRMS (ESI) spectrum of the compound 2	5
Synthesis of [tBuN(H)NtBu][B(C ₆ F ₅) ₄] 35	5
Figure S6. ¹ H NMR (400 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CDCl ₃ , #= CH ₂ Cl ₂)6	5
Figure S7. ¹⁹ F NMR (377 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5)6	5
Figure S8. ¹¹ B NMR (128 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5)	1
Figure S9. ¹³ C NMR (101 MHz) spectrum of the compound 3 in CDCl ₃ /CH ₂ Cl ₂ (1:5) (*= CDCl ₃ , #= CH ₂ Cl ₂)	7
Figure S10. HRMS (ESI) spectrum of the compound 3	3
Figure S11. Raman Spectra (785 nm) of Compound 3	3
Computational Details)
References)

General information

Experiments were carried under inert conditions using standard Schlenk techniques or a glove box as appropriate. Dichloromethane (DCM, CH_2Cl_2), toluene (PhCH₃) and *n*-hexanes (C_6H_{14}) were dispensed from an MBRAUN Solvent Purification System, deoxygenated by bubbling nitrogen for 20 min, and stored over 3 Å molecular sieves prior to use. Chloroform-d (CDCl₃) and Acetonitrile-d₃ (CD₃CN) solvents were used as received without any purification and those were stored over 4 Å molecular sieves prior to use. Vials and stir bar for reactions were oven-dried overnight before experiments. ¹H (400 MHz), ¹⁹F (377 MHz), ³¹P (162 MHz), ¹¹B (128 MHz) and ¹³C{¹H} (101 MHz) NMR spectra were run at 298 K on Bruker 400 spectrometer. The chemical shifts (δ , ppm) for ¹H and ¹³C{¹H} NMR spectra are given relative to solvent signals whereas an external reference standards used for ¹⁹F (CFCl₃), 31P (85% H₃PO₄) and ¹¹B (BF₃.OEt₂) NMR spectra. These NMR data are given as: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. The single-crystal X-ray data were collected on a Bruker Kappa Apex II diffractometer which was equipped with rotation anode using graphite-monochromated MoK α radiation (λ = 0.71073 Å) at 150 K. Structures were solved and refined using Full-matrix least-squares based on F² with a suite of programs SHELXS and SHELXL¹ compiled in OLEX2² High-resolution mass spectra (HRMS) were obtained on an AccuTOF Plus 4G (DART), Agilent 6538 UHD (ESI) or MALDI-TOF at AIMS Mass Spectrometry Laboratory whilst elemental (CHN) analysis was performed on Thermo Scientific Flash 2000 CHNS Analyzer at ANALEST Facility, University of Toronto. The reagent $[Et_3Si][B(C_6F_5)_4]^3$ was prepared by following literature method or a slight variations thereof. All other reagents were purchased commercially and used as received.

Synthesis of (tBuOCO(BBN)CN)₂1

An open top PTFE (4 mL) vial was charged with di-(*t*butyl) azodicarboxylate (DBAD, 50 mg, 0.22 mmol, 1.0 equiv.) in CH₂Cl₂, and then 9-BBN (100 mg, 0.43 mmol, 2.0 equiv.) dissolved in CH₂Cl₂ (2.0 ml) was added slowly with stirring. The color of the solution slowly changed from yellow to white in 3 hours and there was white precipitation in the solution. After 24h, the solution was filtered and washed with cold CH₂Cl₂ and pentane. Colourless crystals suitable for single crystal X-ray diffraction were obtained by dissolving the reaction mixture in CH₂Cl₂ and layering it with *n*-hexane (1:5) at -30 °C for couple of days. After removal of oily liquid, crystals were washed with a minimum CH₂Cl₂ (1 x 0.3 mL) followed by drying afforded compound **1** (62 mg, 60%). $\delta_{\rm H}$ 1H NMR S9 (400 MHz, CDCl₃):, 1.94 - 0.73 (m, 28 H, 9-BBN CH & CH₂), 1.57 (s, 18 H, -OC(CH₃)₃); 11B NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 12.7 (br s, 2 B, 9- BBN); 13C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 160 (s, N=C(OtBu)O-), 88.8 (s, -OC(CH₃)₃), 34.2 (s, CH₂, 9-BBN), 30.3 (s, CH₂, 9-BBN), 27.9 (s, CH, 9-BBN), 24.8 (s, CH₂, 9-BBN), 24.5 (s, OC(CH₃)₃); HRMS (DART) m/z: 473.3727 for [M⁺+1] (calcd.: 473.3716).

Figure S2. ¹¹B NMR (128 MHz) spectrum of the compound 1 in CDCl₃

Figure S3. ¹³C NMR (126 MHz) spectrum of the compound **3** in CDCl₃ (*= CDCl₃)

Figure S4. HRMS (DART) spectrum of the compound

Synthesis of [tBuNHNH₂tBu][BF₄] 2

$${}^{t}BuO$$
 N_{N} $O^{t}Bu$ $O^{t}Bu$ $U = 2.0 \text{ equiv. BF}_{3}.OEt_{2}$ $O^{t}Bu$ $DCE, RT, 18 \text{ h}$ H_{2} H_{2} F_{N}

An open top PTFE (4 mL) vial was charged with $BF_3.OEt_2$ (142 mg (123 uL), 1.0 mmol, 2.0 equiv.) in CH_2Cl_2 (1.0 mL). Then a solution of di-(*t*-butyl) azodicarboxylate (DBAD) (115 mg, 0.50 mmol, 1.0 equiv.) in CH_2Cl_2 (1.0 mL) was added drop wise gently, immediate effervescence with color change from yellow to colorless was noted. The reaction mixture was allowed to stand at room temperature for additional 18 hours without stirring. Colourless crystals suitable for single crystal X-ray diffraction were directly obtained from the reaction mixture. The crystals were filtered, washed with cold CH_2Cl_2 (kept at -30°C) and hexane, followed by drying under reduced pressure afforded compound **2** in 35% (41.0 mg) yield. HRMS (DART) m/z: 145.1711 for [M⁺+1] (calcd.: 145.1699). **Note:** Compound 2 was insoluble in all coordinating organic solvents with which it does not react.

Figure S5. HRMS (ESI) spectrum of the compound 2

Synthesis of [tBuN(H)NtBu][B(C₆F₅)₄] 3

$$tBuO \bigvee_{O} N \bigvee_{O} tBu \xrightarrow{O} tBu \xrightarrow{1.0 \text{ equiv. Et}_3SiB(C_6F_5)_4} 1,2\text{-DFB, RT, 18 h} tBu \xrightarrow{N \bigoplus_{H} \oplus tBu} B(C_6F_5)_4$$

Into a 4 mL vial equipped with a stir bar, $[Et_3Si][B(C_6F_5)_4]$ (79.0 mg, 0.10 mmol, 1.0 equiv.) was taken in 1,2-DFB (0.5 mL). A solution of di-*tert*-butyl azodicarboxylate (23.0 mg, 0.10 mmol, 1.0 equiv.) in 1,2-DFB (0.5 mL) was transferred to the vial. At addition a gentle bubble observed. The reaction mixture was allowed to stir at RT for 18 h. After removal of all volatiles, the residue was washed with *n*-hexane (3 x 1 mL) and crystallized with a mixture of solvent of CH₂Cl₂:*n*-hexane (1:5) at -30 °C for a week. After removal of oily liquid, crystals were washed with a minimum CHCl₃ (1 x 0.3 mL) followed by drying afforded compound **1** (34 mg, 41%). **1**: ¹H NMR (400 MHz, CDCl₃/CH₂Cl₂): $\delta_{\rm H}$ 12.42 (br s, 1 H, -N*H*⁺), 1.64 (s, 9 H, C*H*₃ of *t*Bu), 1.54 (s, 9 H, C*H*₃ of *t*Bu); ¹⁹F NMR (377 MHz, CDCl₃/CH₂Cl₂): $\delta_{\rm F}$ -132.8 (m, 8 F, *o*-C₆*F*₅ of -B(C₆*F*₅)₄), -162.8 (m, 4 F, *p*-C₆*F*₅ of -B(C₆*F*₅)₄), -166.8 (m, 8 F, *m*-C₆*F*₅ of -B(C₆*F*₅)₄); ¹¹B NMR (128 MHz, CDCl₃/CH₂Cl₂): $\delta_{\rm B}$ 16.7 (br s, 1 B, -*B*(C₆F₅)₄); ¹³C NMR (126 MHz, CD₂Cl₂): $\delta_{\rm C}$ 149.4 (br m, -*C*₆F₅), 146.8 (br m, -*C*₆F₅), 139.9 (br m, -*C*₆F₅), 137.6 (br m, -*C*₆F₅), 134.9 (br m, -*C*₆F₅), 63.9 (s, -*C*Me₃), 61.5 (s, -*C*Me₃), 26.0 (s, -*C*H₃ of *t*Bu), 25.0 (s, -*C*H₃ of *t*Bu).

Figure S6. ¹H NMR (400 MHz) spectrum of the compound **3** in $CDCl_3/CH_2Cl_2$ (1:5) (*= $CDCl_3$, #= CH_2Cl_2).

Figure S7. ¹⁹F NMR (377 MHz) spectrum of the compound 3 in CDCl₃/CH₂Cl₂ (1:5).

Figure S8. ¹¹B NMR (128 MHz) spectrum of the compound 3 in CDCl₃/CH₂Cl₂ (1:5).

 $#= CH_2Cl_2).$

Target	Ion	Species	

Ion Species	m/z	Ionic Formula
M+	145.1699	C8 H21 N2

MFG Calculator Results

Target m/z	Ionic Formula	Calc m/z	+/- (mDa)	+/- (ppm)	DBE	MFG Score
145.1699	C8 H21 N2	145.1699	0.0	0.0	-0.5	87.93

m/z	Calc m/z	Diff (mDa)	Abund (%)	Calc Abund (%)	+/-			
145.1699	145.1699	0.0	100.0	100.0	0.0			
146.1729	146.1729	0.0	9.2	9.6	0.4			
	<i>m/z</i> 145.1699 146.1729	m/z Calc m/z 145.1699 145.1699 146.1729 146.1729	m/z Calc m/z Diff (mDa) 145.1699 145.1699 0.0 146.1729 146.1729 0.0	m/z Calc m/z Diff (mDa) Abund (%) 145.1699 145.1699 0.0 100.0 146.1729 146.1729 0.0 9.2	m/z Calc m/z Diff (mDa) Abund (%) Calc Abund (%) 145.1699 145.1699 0.0 100.0 100.0 146.1729 146.1729 0.0 9.2 9.6			

Figure S10. HRMS (ESI) spectrum of the compound **3**.

Figure S11. Raman Spectra (785 nm) of Compound 3

Computational Details

The quantum chemical DFT calculations have been performed with the TURBOMOLE 7.4 suite of programs^{[1]4} The initial structures generated according to their Lewis structures are checked with the CREST method using the xTB program for low-lying conformers as input.^{[2]5} The structures are fully optimized at the TPSS-D3/def2-TZVP + COSMO level of theory, which combines the TPSS meta-GGA density functional^{[3]6} with the BJ-damped DFT-D3 dispersion correction^{[4]7} and the def2-TZVP basis set,^{[5]8} using the Conductor-like Screening Model (COSMO) continuum solvation model^{[6]9} for CH₂Cl₂ solvent (dielectric constant $\varepsilon = 8.93$ and solvent radium R_{solv} = 2.94 Å). The density-fitting RI-J approach^{[5a, 7]8,10} is used to accelerate the geometry optimization and numerical harmonic frequency calculations^{[8]11} in solution. The optimized structures are characterized by frequency analysis to identify the nature of located stationary points (no imaginary frequency for true minima and only one imaginary frequency for transition state) and to provide thermal corrections (at 298.15 K and 1 atm) according to the modified ideal gas–rigid rotor–harmonic oscillator model.^{[9]12} This choice of dispersion-corrected meta-GGA functional makes the efficient exploration of all potential reaction paths possible.

The final solvation free energies in CH₂Cl₂ solution are computed with the COSMO-RS solvation model^{[10]13} (parameter file: BP_TZVP_C30_1601.ctd) using the COSMOtherm program package^{[[11]14} on the above TPSS-D3 optimized structures, and corrected by +1.89 kcal·mol⁻¹ to account for higher reference solute concentration of 1 mol·L⁻¹ usually used in solution. To check the effects of the chosen DFT functional on the reaction energies and barriers, single-point calculations at the meta-GGA TPSS-D3^{[3]6} and hybrid-meta-GGA PW6B95-D3^{[12]15} levels are performed using a larger def2-QZVP basis set.^{[5b, 13]8, 16} The final reaction Gibbs free energies (ΔG) are determined from the electronic single-point energies plus TPSS-D3 thermal corrections and COSMO-RS solvation free energies. In our discussion, higher-level PW6B95-D3 Gibbs free energies (in kcal/mol, at 298.15 K and 1 mol/L concentration) will be used in our discussion unless specified otherwise. The applied DFT methods in combination with the large AO basis set provide usually accurate electronic energies leading to errors for chemical energies (including barriers) on the order of typically 1-2 kcal/mol. This has been tested thoroughly for the huge data base GMTKN55^{[14]17} which is the common standard in the field of DFT benchmarking.

Table S1. TPSS-D3/def2-TZVP + COSMO computed imaginary frequency (ImF), zero-point energies (ZPE), gas-phase enthalpic (Hc) and Gibbs free-energy (Gc) corrections; the COSMO-RS computed solvation enthalpic (Hsol) and Gibbs free-energy (Gsol) corrections in CH₂Cl₂ solution; TPSS-D3/def2-QZVP and PW6B95-D3/def2-QZVP single-point energies (TPSS-D3 and PW6B95-D3); the total PW6B95-D3 free energies G_P; the relative electronic energies (ΔE_T and ΔE_P) and Gibbs energies (ΔG_T and ΔG_P) at the TPSS-D3 and PW6B95-D3 levels. (*t*Bu = CMe₃)

Reactions	ImF	ZPE	Hc	Gc	Hsol	Gsol	TPSS-D3	PW6B95-D3	G _P	ΔE_{T}	$\Delta E_{\rm P}$	ΔG_P	$\Delta G_{\rm T}$	Shift
in CH ₂ Cl ₂	cm ⁻¹	/mol	/mol	/mol	/mol	/mol	E _h	E _h	E _h	/mol	/mol	/mol	/mol	/mol
Upon OEt2 eliminat	tion, BF ₃	may easily	bind to an	ester carb	onyl oxyg	en								
$BF_3 \cdot OEt_2 + \mathbf{R}$	0	266.99	286.88	217.05	-32.81	-22.80	-1361.39237	-1362.77378	-1362.45819	0.00	0.00	0.00	0.00	
TSA	66i	265.47	286.77	227.55	-24.46	-17.17	-1361.38745	-1362.77009	-1362.43182	3.09	2.31	16.55	17.33	
$\mathbf{A} + \mathbf{OEt}_2$	0	265.96	286.16	216.89	-31.73	-21.41	-1361.38376	-1362.76475	-1362.44720	5.40	5.67	6.90	6.64	
which induce <i>t</i> Bu ⁺	eliminatio	on from est	er group, a	and then b	ind to the p	proximal n	itrogen atom; pi	oton transfer fro	om tBu^+ to N ato	om is kinie	etically les	s favorab	le	
Α	0	181.79	197.10	151.04	-23.69	-17.01	-1127.56659	-1128.71189	-1128.49529	0.00	0.00	0.00	0.00	6.90
$Ao^- + tBu^+$	0	178.00	193.52	133.90	-120.71	-106.46	-1127.38258	-1128.52862	-1128.47887	115.47	115.01	10.30	10.76	17.20
TSB1	1208i	176.18	192.13	143.67	-31.56	-23.62	-1127.52662	-1128.66300	-1128.46868	25.08	30.68	16.70	11.10	23.60
$B1 + CH_2 = CMe_2$	0	179.79	195.13	135.92	-36.34	-27.18	-1127.52257	-1128.66586	-1128.48656	27.62	28.89	5.48	4.21	12.38
TSB	65i	177.87	193.41	146.30	-37.93	-28.33	-1127.52150	-1128.66555	-1128.47454	28.29	29.08	13.02	12.23	19.92
В	0	182.10	197.25	151.86	-24.57	-18.17	-1127.57127	-1128.71324	-1128.49717	-2.94	-0.84	-1.18	-3.28	5.72
followed by very fa	ast CO ₂ el	imination a	nd BF3 b	inding to t	the ester ca	rbonyl oxy	gen							
TSC	189i	180.13	195.92	148.69	-17.55	-12.67	-1127.57199	-1128.71154	-1128.49176	-3.39	0.22	2.21	-1.40	9.11
$\mathbf{Co} + \mathbf{CO}_2 + \mathbf{BF}_3$	0	179.43	194.94	126.04	-21.23	-12.21	-1127.57331	-1128.71748	-1128.52705	-4.22	-3.50	-19.93	-20.65	-13.03
$\mathbf{C} + \mathbf{CO}_2$	0	180.63	196.04	139.55	-24.33	-16.29	-1127.59062	-1128.73500	-1128.53254	-15.08	-14.50	-23.38	-23.96	-16.48
Further <i>t</i> Bu ⁺ elimina	tion and b	inding to N	l-atom is l	kineiticall	y even mor	e facile, fo	llowed by easy	CO2 elimination	n to produce E (tBuN) ₂				
С	0	173.54	186.70	145.46	-21.16	-15.42	-938.88519	-939.84111	-939.63086	0.00	0.00	0.00	0.00	-16.48
$Co^- + tBu^+$	0	169.32	183.06	127.22	-123.64	-108.11	-938.69121	-939.64804	-939.61157	121.73	121.16	12.11	12.68	-4.37
TSD	89i	169.54	183.72	139.74	-33.55	-24.14	-938.84293	-939.79121	-939.60398	26.52	31.32	16.87	12.07	0.39
D	0	173.85	187.07	145.66	-25.38	-18.81	-938.89849	-939.85344	-939.64828	-8.35	-7.74	-10.93	-11.54	-27.41
TSE	133i	171.67	185.59	142.27	-13.02	-9.27	-938.90278	-939.85517	-939.64020	-11.04	-8.82	-5.86	-8.07	-22.34
$\mathbf{E} + CO_2 + BF_3$	0	170.54	184.40	119.05	-15.13	-7.97	-938.90756	-939.86571	-939.67965	-14.03	-15.44	-30.61	-29.21	-47.09

Table S2. TPSS-D3/def2-TZVP + COSMO optimized Cartesian coordinates (in Å) in CH_2Cl_2 solution. Each structure is labeled by a specific name (See **Table S1**), followed by the number of atoms, the total energy (in hartrees), and the detailed atomic coordinates (in double-column text list).

Ao ⁻ :	anion from tBu+ eliminationa of A
25	
Enero	y = -969.7422769647

LIIC	$r_{gy} = -707.7$	722/0707/	
Ν	1.0702517	-1.4191399	-1.2172665
Ν	-0.0858994	-1.8014416	-1.4853341
С	2.0492581	-1.7495715	-2.2501557
0	2.5534360	-2.9310632	-2.0585284
0	2.3218877	-0.8842271	-3.0620495
С	-1.0624958	-1.4623778	-0.4679576
0	-1.5033609	-2.3314806	0.2564258
0	-1.4038914	-0.1899422	-0.5721010
С	-2.5221614	0.3864759	0.2683883
С	-2.1340372	0.2898090	1.7408291
С	-2.5601420	1.8342410	-0.2070921
С	-3.8189010	-0.3465714	-0.0614554
Н	-2.8792824	0.8295046	2.3343306
Н	-2.1029464	-0.7478837	2.0772048
Н	-1.1580433	0.7551644	1.9089470
Н	-1.6016811	2.3261833	-0.0182522
Η	-2.7797187	1.8823647	-1.2775491
Η	-3.3432071	2.3714972	0.3365667
Η	-3.7867273	-1.3852589	0.2718849
Н	-4.6446219	0.1595126	0.4492979
Н	-4.0109463	-0.3163481	-1.1383524
В	3.7159533	-3.4788360	-2.8992353
F	3.3171558	-3.5795664	-4.2355485
F	4.8269584	-2.6415255	-2.7575771
F	3.9736210	-4.7446010	-2.3587966
A : 38	BF ₃ adduct	of (NCO ₂ tBu)	2 at carbonyl
Ene	rgy = -1127.	518402328	
Ν	-1.7622407	-0.7621094	1.3612664
Ν	-2.5700520	-1.6877496	1.1641001
С	-0.5586288	-1.1443390	2.0295374
0	-0.2713542	-0.6529007	3.1442556
0	0.2067969	-1.8985736	1.3270598
С	-3.7290690	-1.2731629	0.3763417
0	-3.7539553	-1.5750709	-0.7968318
0	-4.6111712	-0.6976580	1.1532165
С	1.6567272	-2.2779898	1.7631347
С	2.4622620	-0.9927768	1.8704277
С	1.5628285	-3.0678302	3.0593033
С	2.0900561	-3.1395126	0.5884341
Η	2.3936911	-0.4144809	0.9449176
Η	2.1443174	-0.3787036	2.7142346
Н	3.5102571	-1.2693708	2.0230308

Η	0.8733433	-3.9094503	2.9499951
Η	2.5580374	-3.4682374	3.2773671
Η	1.2523358	-2.4429674	3.8977234
Η	3.1126527	-3.4835921	0.7689175
Η	1.4407338	-4.0130462	0.4870253
Η	2.0735054	-2.5658644	-0.3419133
С	-5.9821205	-0.2848423	0.6251886
С	-5.7810939	0.7595473	-0.4665707
С	-6.7116770	-1.5334213	0.1449583
С	-6.6262241	0.3098848	1.8701279
Η	-5.1722834	1.5894219	-0.0956571
Η	-5.3083851	0.3284762	-1.3509797
Η	-6.7614689	1.1541448	-0.7518389
Η	-6.7524525	-2.2836421	0.9402552
Η	-7.7374557	-1.2543720	-0.1162847
Η	-6.2339252	-1.9632562	-0.7374264
Η	-7.6328901	0.6571315	1.6192155
Η	-6.7011163	-0.4402251	2.6622780
Η	-6.0433509	1.1592420	2.2370029
В	-1.2274227	0.3224422	4.0445974
F	-2.4628887	-0.2859305	4.1020487
F	-0.5638098	0.3396704	5.2502161
F	-1.2302442	1.5373365	3.3968421
D1	· from (Du ⁺)	proton transfa	rto Ao-

B1 : from tBu^+ proton transfer to Ao⁻ 26

En	Energy = -970.1707547926					
Ν	2.6258259	-0.5249726	-1.0165774			
Ν	3.2878355	-0.1733123	-0.0482489			
С	1.0803855	-0.7468699	-0.9907066			
С	4.7738344	-0.2223998	-0.3967877			
0	0.5756397	-0.0976560	-0.0326190			
0	0.7175327	-1.4891488	-1.8661342			
0	5.3963958	0.2000871	0.6575086			
0	5.1336335	-0.6025681	-1.4852290			
В	-0.9949019	-0.1533647	0.2749330			
F	-1.2977830	-1.4721099	0.5679866			
F	-1.1325584	0.6871835	1.3622967			
F	-1.6427433	0.3139779	-0.8559998			
Η	3.1221599	-0.8175147	-1.8912705			
С	6.9390211	0.2906800	0.6744587			
С	7.3636072	1.2648924	-0.4156728			
С	7.1947613	0.8343297	2.0710147			
С	7.4866441	-1.1176296	0.4880279			
Η	7.1587193	0.8730803	-1.4136533			
Η	6.8646888	2.2296117	-0.2881614			
Η	8.4427430	1.4217674	-0.3227128			

```
Η
  6.8109913 0.1489432 2.8313244
Η
   8.2742002 0.9422525 2.2109516
   6.7266757 1.8140800 2.1982808
Η
Η
   7.0770911 -1.7947976 1.2426996
Η
   7.2753621 -1.5067730 -0.5098479
Η
  8.5725006 -1.0752838 0.6176600
BF_3 \cdot OEt_2: adduct of BF_3 and OEt_2
19
Energy = -558.5640588309
B
   0.9862194 -0.1981947 -0.0522432
F
   1.2508381 -1.5169312 -0.3798362
F
   1.2569916 0.0730371 1.2808994
F
  1.5612025
              0.7139927 -0.9163165
Η
  0.0232444 2.4488931 0.8358518
С
  -1.0257301 2.2584128 0.5989474
С
   -1.1589243 1.2983518 -0.5651059
H -1.4964241 3.2048791 0.3120493
Η
  -1.5331445
             1.8863845 1.4937267
0
  -0.5843698 -0.0385611 -0.2703006
H -2.1988846 1.1031358 -0.8315346
Η
  -0.6171268 1.6345465 -1.4473523
C -1.4657465 -0.9370767 0.5176067
С
   -2.3786808 -1.7062869 -0.4116025
Н -2.0079364 -0.3093464 1.2275270
H -0.7854319 -1.5895136 1.0633463
H -3.0104690 -2.3682561 0.1899925
H -3.0332623 -1.0385279 -0.9795771
Н -1.7960269 -2.3151746 -1.1076096
BF<sub>3</sub>: Lewis acid
4
Energy = -324.7315643384
B 0.0518657 -1.1606050 0.1432304
F -1.2165303 -1.3129052 -0.2037342
F
  0.3626461 -0.8254685 1.3856124
F
   1.0095756 -1.3436112 -0.7521525
B : tBu^+ binding to N-atom of Ao<sup>-</sup>
38
Energy = -1127.526494709
Ν
   0.7175931 -0.7583195 -0.4089081
N -0.3079690 -1.2192150 0.0956357
С
   2.0042102 -1.5795115 -0.0142889
0
  2.4505387 -1.3358519 1.1451233
0
  2.3724059 -2.3331415 -0.8792092
С
  -1.6577900 -0.8271973 -0.2977673
O -2.1294412 -1.3164692 -1.3002090
0
  -2.1721035 -0.1172591 0.6667797
С
   0.8917502 0.3565540 -1.4645955
C -0.1481634 1.4528601 -1.2330138
```

С	2.3118192	0.9070402	-1.3003806
С	0.7181373	-0.3266196	-2.8355345
Η	-1.1504145	1.1527967	-1.5433564
Η	-0.1551814	1.7819582	-0.1920016
Η	0.1396713	2.2989833	-1.8624701
Η	3.0695295	0.1352216	-1.4589449
Η	2.4525525	1.6684358	-2.0716485
Н	2.4492693	1.3693237	-0.3217158
Н	0.8436887	0.4508076	-3.5950334
Н	1.4753864	-1.0975203	-2.9868816
Н	-0.2769371	-0.7640103	-2.9349300
С	-3.6700581	0.2322413	0.6893150
C	-3.9853071	1.0820903	-0.5341157
C	-4.4545984	-1.0711542	0.7456838
C	-3.7753967	1.0256348	1.9827540
Ĥ	-3.3500852	1.9719497	-0.5630311
Н	-3.8692080	0.5147711	-1.4597540
Н	-5 0263524	1 4118507	-0 4607129
Н	-4.1212914	-1.6849689	1.5872103
Н	-5.5107662	-0.8264207	0.8967889
Н	-4.3610498	-1.6394230	-0.1816293
Н	-4.8142389	1.3396854	2.1199166
Н	-3.4785195	0.4127737	2.8379258
Н	-3.1430743	1.9168081	1.9430086
B	1.8722171	-0.4203100	2.3076255
F	0.8877002	-1.1565411	2.9383216
F	2.9718743	-0.1827417	3.1065688
F	1.3703109	0.7480282	1.7344000
CO	• • • carbon di	ovide	
3	2. carbon ar	OXICE	
Ene	ergv = -188.6	982055112	
C	-0.0001041	-0.0000121	-0.0000002
0	1.1684675	0.0000478	0.0000226
0	-1.1687003	-0.0000818	-0.0000157
U	111007000	010000010	0.0000107
Co	-: anion of (C after $tBu_3^+ e$	elimination
22			
Ene	ergy = -781.0	616083724	
Ν	-0.1073264	1.2414980	-2.3382956
Ν	-1.3373895	1.2660635	-2.1894607
С	-2.1439335	0.4120818	-1.3300826
0	-2.1994835	0.9027380	-0.1156931
0	-2.7912083	-0.4926450	-1.8319343
С	0.8243031	0.3240238	-1.5713701
С	0.2555246	-1.0248697	-1.1155726
С	1.9923519	0.0988268	-2.5424769
С	1.2866177	1.1696979	-0.3695467
Н	-0.4709070	-0.9346182	-0.3057728
H	-0.2017639	-1.5646520	-1.9493494
Η	1.0892499	-1.6264527	-0.7369363

Η	2.3852952	1.0569121	-2.8954728
Η	2.7939542	-0.4495515	-2.0373851
Η	1.6664598	-0.4849751	-3.4101142
Η	2.0948723	0.6423746	0.1482402
Η	1.6628698	2.1420562	-0.7030264
Η	0.4591921	1.3274071	0.3275362
В	-3.0965710	0.3158434	0.9675207
F	-2.8587591	1.1111896	2.0989366
F	-4.4402113	0.4011572	0.5817675
F	-2.7235226	-1.0133791	1.2156834
C :	BF ₃ adduct a	at ester carbo	nyl
Ene	ergy = -938.8	460855039	
Ν	0.4716635	0.4080790	-2.3233382
N	-0.5681699	-0.2002774	-2.5676846
C	-1.5986845	-0.7218557	-1.7710923
0	-1.7355444	-1.9680707	-1.6017368
0	-2.5362494	0.1380489	-1.5170230
Č	0.9481107	0.7387795	-0.9401244
Ċ	0.1314939	0.1753923	0.2192143
C	2 3931969	0 2055839	-0.9173900
Č	0.9519113	2.2811115	-0.9311666
H	-0.8606880	0.6275563	0 2867032
Н	0.0471604	-0.9136901	0 1667649
Н	0 6605287	0 4132566	1 1469480
Н	2,9555757	0 5855508	-1 7742630
Н	2.8765410	0.5458295	0.0033057
Н	2 4004101	-0.8869669	-0.9399052
н	1 4200599	2 6204490	-0.0023094
Н	1 5215942	2.6719501	-1 7781512
н	-0.0687386	2.6728211	-0.9751318
C	-3 9675137	-0 2729879	-1 0931954
C	-4 5638106	-1 1393524	-2 1930187
C	-3 8895731	-0.9588886	0 2635274
C	-4 6413462	1 0884908	-1.0085061
н	-4 4844620	-0 6401908	-3 1629101
Н	-4 0898164	-2.1203093	-2.2442798
н	-5 6258447	-1 2816585	-1 9688396
н	-3 3649480	-0.3280036	0.9867636
н	-4 9124102	-1 1090116	0.6234167
н	-3 3990591	-1 9309856	0.2008920
Н	-5 6825195	0 9464593	-0 7046364
н	-4 1453461	1 7213895	-0 2674925
н	-4 6254997	1 5902861	-1 9796402
B	-0 6765363	-3 0908229	-2 0024070
F	-1 1806727	-4 2250540	-1 3991728
F	-0 6798607	-3 16080/1	-3 3836375
F	0.5548132	-2 7076304	-1.4860733
Τ.	0.5540152	-2.1010304	-1.7007/33

D: tBu^+ binding to N-atom of **Co**⁻

35				
Energy = -938.8654489841				
Ν	-0.0395057	1.2092725	-2.3357160	
Ν	-1.2688888	1.2643661	-2.2584165	
С	-2.2071173	0.3988101	-1.3435608	
0	-2.1373740	0.8896299	-0.1670228	
0	-2.8280021	-0.4836311	-1.8735179	
С	0.8196576	0.2918973	-1.5435681	
С	0.2173559	-1.0473668	-1.1021559	
С	2.0225543	0.0488503	-2.4741674	
С	1.2543939	1.1566750	-0.3346597	
Η	-0.5010409	-0.9574085	-0.2867564	
Н	-0.2430595	-1.5717268	-1.9437975	
Н	1.0439752	-1.6629047	-0.7359954	
Н	2,4469793	0.9980444	-2.8102340	
Н	2.7847017	-0.5107219	-1.9253228	
Н	1.7225372	-0.5367682	-3.3483525	
Н	2.0184794	0.5962488	0.2114029	
Н	1.6839955	2.1052171	-0.6672471	
Н	0.4069894	1.3507956	0.3264349	
C	-2.0066812	2 2709379	-3 1593151	
C	-2.5273540	1 4658674	-4 3627369	
C	-3 1587520	2.8651785	-2 3409997	
C	-1 0175339	3 3462030	-3 5981416	
н	-1 6961888	1 0012988	-4 9006546	
н	-3 2365766	0.6960437	-4 0545450	
н	-3 0332800	2 1646613	-5 0349452	
н	-2 7899879	3 3940399	-1 4586847	
н	-3 6835909	3 5778556	-2 9821184	
н	-3 8807537	2 1041953	-2 0313640	
н	-1 5731345	4 0807906	-4 1873847	
н	-0 5754196	3 8515995	-2 7348339	
н	-0 2178928	2 9327208	-4 2147049	
R	-2 9929200	0.3058397	1 0343517	
F	-2 6187015	1.0951635	2 1082639	
F	-4 3306497	0.4520418	0.7012559	
F	-2 6192734	-1 0223131	1 1948916	
1	2.0172754	1.0223131	1.1740710	
E :	$(tBuN)_2$			
28	× /-			
Ene	ergy = -425.42	282620030		
Ν	-0.0347817	1.2555754	-0.8097017	
Ν	-0.8926959	0.5147979	-0.3115124	
С	-0.2346175	2.7154632	-0.5334734	
С	-1.4658541	3.0282515	0.3153280	
С	1.0554251	3.1641268	0.1717020	
С	-0.3348825	3.3697572	-1.9208001	

Н -2.3795497 2.6820626 -0.1767766

-1.5348242 4.1107646 0.4673501

1.9317160 2.8921776 -0.4249317

1.2914090

Н -1.4042810 2.5379956

Η

Η

Η	1.0456480	4.2503183	0.3094736
Η	1.1413333	2.6889512	1.1548045
Η	-0.3671342	4.4592395	-1.8168275
Η	0.5301664	3.0993564	-2.5342418
Η	-1.2441730	3.0417343	-2.4358716
С	-0.6928364	-0.9451013	-0.5876632
С	-1.9829332	-1.3938963	-1.2926481
С	0.5383269	-1.2579096	-1.4365599
С	-0.5923653	-1.5992496	0.7997214
H	-2.8591685	-1.1213901	-0.6961897
Н	-2.0686864	-0.9192629	-2.2760257
Н	-1.9734232	-2.4801744	-1.4297690
Н	1 4521340	-0.9119395	-0.9445098
н	0.6070927	-2 3404011	-1 5888293
н	0.0070927	-0.7674362	-2 4125296
H	-0 559598/	-2 6887206	0.6958030
н Ц	0.3167702	1 2708160	1 31/7031
п п	1 4575540	1 2202202	1.3147931
п	-1.4373340	-1.3292202	1.4131239
NIG	4D.,.)N(4D.,.)II+	. 2+	
IN(1	(tBu)N(tBu)H	: 3'	
29 Em	425.9	CO 17 17 C70	
En(ergy = -425.80	1 2002(77	07450204
IN N	-0.122/005	1.2882007	-0.7450294
N	-0.9216853	0.4616023	-0.2960660
C	-0.2342031	2.7690487	-0.5258448
C	-1.4644086	3.06/2/80	0.3175694
C	1.0763197	3.1692258	0.1729646
C	-0.3196492	3.3764392	-1.9364242
Н	-2.3779594	2.7322752	-0.1802862
Н	-1.3998416	2.5880382	1.2977994
Η	-1.5192401	4.1493018	0.4594148
Η	1.9489516	2.8836611	-0.4227385
Η	1.0817337	4.2561058	0.2858175
Η	1.1464997	2.7104889	1.1628045
Η	-0.3233373	4.4645877	-1.8368794
Η	0.5440980	3.0923247	-2.5455445
Η	-1.2379635	3.0642140	-2.4408384
С	-0.6854541	-0.9656601	-0.5926880
С	-1.9835846	-1.4151764	-1.3000634
С	0.5521296	-1.2398827	-1.4408235
С	-0.5878194	-1.6211567	0.8031968
Η	-2.8580212	-1.1806798	-0.6891021
Η	-2.0817847	-0.9314397	-2.2757276
Η	-1.9280863	-2.4974055	-1.4450667
Н	1.4749076	-0.9186489	-0.9422161
Н	0.6316637	-2.3173554	-1.5991627
Н	0.4869818	-0.7726742	-2.4311499
Н	-0.5301819	-2.7036535	0.6611855
Н	0.3099758	-1.2843767	1.3287157
Н	-1.4693413	-1.3855874	1.4033969
Н	0.6888072	0.9786064	-1.3136454

OE	t ₂ : diethyl et	her	
15	000 0	000000000000000000000000000000000000000	
Ene	ergy = -233.80	03/752212	0 5 6 5 0 1 4 1
H	-2.446/365	-0.3555488	-0.5659141
C	-2.4633475	0.7390841	-0.5540457
C	-1.2728798	1.2836815	0.2144867
Н	-3.3952576	1.0667615	-0.0812608
Н	-2.4531516	1.1002579	-1.5875264
0	-0.0726166	0.8374932	-0.4300978
Η	-1.2883007	2.3852387	0.2358201
Η	-1.2813501	0.9282402	1.2574202
С	1.1032019	1.3117814	0.2389663
С	2.3217406	0.7977478	-0.5062441
Η	1.0994661	0.9548940	1.2814346
Η	1.0912990	2.4133416	0.2619370
Η	3.2357547	1.1460970	-0.0137261
Н	2.3313732	-0.2969428	-0.5209652
Н	2.3240526	1.1614549	-1.5388831
R :	$(NCO_2 tBu)_2$		
34			
Ene	ergy = -802.7	697973713	
Ν	0.3310352	0.4344214	-0.3256830
Ν	-0.3265410	-0.4085224	0.3140287
С	1.6700884	-0.0176803	-0.6724519
0	1.8962365	-0.3795488	-1.8078168
0	2.4773603	0.1462330	0.3550730
C	-1.6653874	0.0428329	0.6617120
Õ	-1 8874864	0 4205901	1 7927115
õ	-2 4772212	-0 1413402	-0 3587495
č	3 9708781	-0.0998030	0 2246493
C	1 1953550	-1 5692630	-0.11609/5
C	4.17555550	0.8558766	0.8108/00
C	4.5575757	0.2364620	1 6253066
с u	4.4070414	0.2304029	0.6140018
н Ц	2 9212222	-2.211/812	0.0149910
п u	5 260820	-1.60/0900	-1.11/12/0
11 11	J.2090620	1 0000162	-0.0700713
п	4.2777355	1.0090403	-0.3754419
п	5.0284299	0.7058104	-0.8100203
Н	4.1/240/6	0.6180/23	-1.8205657
H	5.5510499	0.0932193	1.6656585
Н	4.2417405	1.2772017	1.8/49696
H	3.9995636	-0.4174803	2.3670525
C	-3.9717747	0.0959946	-0.2233396
C	-4.5251774	-0.8472625	0.8393297
С	-4.2049502	1.5689392	0.0957485
С	-4.4736253	-0.2658741	-1.6156495
Η	-4.2585538	-1.8829595	0.6080929
Η	-4.1569567	-0.5905752	1.8341653
Η	-5.6169254	-0.7659920	0.8397781

```
H -3.7147310 2.2035688 -0.6486655
Η
  -5.2812330 1.7659379 0.0598277
  -3.8360847
               1.8251053
Η
                          1.0904724
   -5.5588022 -0.1306065 -1.6518257
Η
Η
  -4.0149430 0.3793897 -2.3702814
H -4.2425819 -1.3088803 -1.8500241
tBu^+: CMe<sub>3</sub><sup>+</sup>
13
Energy = -157.7248403638
С
   0.0023381 -0.0018618 -0.0120737
С
   -1.3663517 -0.5074637 -0.0095209
С
   1.1347795 -0.9215899 0.0131734
С
   0.2403235
              1.4355835 0.0008905
Η
   -2.0825030 0.2117402 -0.4144218
Η
   -1.4652566 -1.5036809 -0.4420275
Η
   -1.6114913 -0.5966528
                         1.0693285
Η
   2.0517929 -0.4726308 -0.3761946
Η
   1.3181662 -1.0823236
                         1.0959554
Η
   0.9152287 -1.8977862 -0.4206893
Η
   1.2085439 1.7119229 0.4233649
Η
   0.2908813
              1.6849940 -1.0807460
   -0.5939127 2.0106301 0.4079341
Η
TSA : OEt<sub>2</sub>-elimination and BF<sub>3</sub> binding
53
Energy = -1361.317742090
   0.4253995 0.4472248 -1.7744667
Ν
Ν
   -0.2682239 -0.5393969 -2.0829422
С
   1.8088237 0.1231764 -1.4834697
0
   2.1763413 0.0010518 -0.3284939
0
   2.5131605 0.1190468 -2.5900590
С
   -1.6502782 -0.1979349 -2.3930183
0
   -1.9897925 -0.1198221 -3.5546440
   -2.3519661 -0.1222516 -1.2828239
0
С
   4.0305999 -0.0291092 -2.5547684
С
   4.6159816 1.1449415 -1.7785468
С
   4.3728485 -1.3863640 -1.9504758
С
   4.3828067 0.0372960 -4.0349908
Η
   4.2756620 2.0939323 -2.2035345
Η
   4.3462440 1.1008862 -0.7219928
Η
    5.7067551
              1.1033324 -1.8615540
Η
   3.8405832 -2.1845312 -2.4764540
Η
    5.4479483 -1.5556670 -2.0685173
Η
   4.1276986 -1.4244749 -0.8878006
Η
   5.4679593 -0.0453941 -4.1473371
   3.9106367 -0.7837903 -4.5817780
Η
Η
   4.0575773
              0.9879910 -4.4668062
С
   -3.8577388
              0.0778422 -1.3226255
С
   -4.1532286
              1.4226915 -1.9780155
С
   -4.4912243 -1.1026568 -2.0504296
```

С	-4.2136426	0.0835128	0.1585954			
Η	-3.5995491	2.2218788	-1.4760471			
Η	-3.8971710	1.4150206	-3.0388421			
Η	-5.2232576	1.6308390	-1.8771631			
Η	-4.1912347	-2.0457147	-1.5836866			
Н	-5.5796358	-1.0128861	-1.9742121			
Н	-4.2168435	-1.1162058	-3.1066617			
Н	-5.2922731	0.2307171	0.2670993			
Н	-3.9415256	-0.8681569	0.6231968			
Н	-3.6947946	0.8950577	0.6760573			
В	0.8644306	-0.1484046	1.6370272			
F	0.2887215	-1.2774724	1.2234667			
F	1.9821717	-0.2016241	2.3610118			
F	0.2747336	1.0263323	1.4120457			
0	-0.6226492	-0.3072058	3.8151367			
Č	-0.3200683	0.7322812	4.7676469			
Č	0.9252141	0 3441855	5 5436422			
н	-1 1689998	0.8605981	5 4516179			
н	-0.1756016	1 6783106	4 2248298			
н	1 1813708	1 1404508	6 2509615			
н	0 7545795	-0 5791294	6 1064165			
н	1 7731005	0.1928355	4 8704222			
C	-1 9739187	-0.220333	3 3173030			
C	-1.9739107	-0.2204955	1 2868292			
с ц	1 0720838	0.7832558	7 3812202			
Ц	2 2078040	0.8281004	3 08/2873			
Ц	-2.2078940	0.7555457	3.8453024			
Ц	2 7605105	1 8585787	1 4030261			
и П	-2.7005105	-1.0505202	4.4950201			
11	-5.0105504	-0.2020037	5.2552417			
тs	TSR1 · proton transfer from tBu^+					
38	DI : proton t		Du			
En	ergv = -1127	488453881				
N	0.1313495	-0 3695283	-0 2356700			
N	0.9082813	-0 3425718	0.7185038			
C	-1 2937085	-0 7490082	0.0266764			
C	2 3195495	-0.0588742	0.0200704			
õ	2.5175475	-0.0500742	0.2707070			
õ	-1 9867487	0 3062480	0 2363712			
	-1.9867487	0.3062480	0.2363712			
0	-1.9867487 -1.5467667 2 9787193	0.3062480 -1.9250888 0.1573217	0.2363712 -0.0989437 1.4014886			
0	-1.9867487 -1.5467667 2.9787193 2.6716198	0.3062480 -1.9250888 0.1573217 -0.0637700	0.2363712 -0.0989437 1.4014886 -0.8649805			
0 0 0 8	-1.9867487 -1.5467667 2.9787193 2.6716198 -3 5634165	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102			
O O B F	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959			
O O B F F	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 3.9009486	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1 6067728	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443			
O O B F F F	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 2.0815418	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 0.1101933	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 1.0041153			
O O B F F F F	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179			
O O B F F F F H C	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205 0.5005367	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295 0.0493222	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179 -2.9604300			
O O B F F F H C C	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205 0.5005367 0.8328854	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295 0.0493223 0.1215458	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179 -2.9604309 3.3043200			
O O B F F F H C C	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205 0.5005367 -0.8328854 1.0535592	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295 0.0493223 0.1215458 0.8646276	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179 -2.9604309 -3.3043390 3.1714005			
O O B F F F H C C H H	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205 0.5005367 -0.8328854 1.0535593 1.08511320	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295 0.0493223 0.1215458 -0.8646276 0.9666063	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179 -2.9604309 -3.3043390 -3.1714905 2.9138010			
O O B F F F H C C H H C	-1.9867487 -1.5467667 2.9787193 2.6716198 -3.5634165 -3.9779854 -3.9009486 -3.9815418 0.3539205 0.5005367 -0.8328854 1.0535593 1.0851139 -1.5726517	0.3062480 -1.9250888 0.1573217 -0.0637700 0.2898192 -0.5805988 1.6067728 -0.1101933 -0.1506295 0.0493223 0.1215458 -0.8646276 0.9666063 1.4152393	0.2363712 -0.0989437 1.4014886 -0.8649805 0.2643102 1.2597959 0.5345443 -1.0041153 -1.5870179 -2.9604309 -3.3043390 -3.1714905 -2.9138010 -3.2739006			

С	-1.6140772	-1.1015576	-3.6474219
Η	-0.9408261	2.2492602	-2.9637562
Η	-1.9661293	1.6201646	-4.2788372
Η	-2.4458579	1.3378652	-2.6153438
Η	-1.0328334	-2.0159154	-3.5160931
Η	-2.5359870	-1.1508477	-3.0575069
Η	-1.9236094	-1.0287709	-4.6995371
С	4.4647484	0.4997991	1.3687129
Ċ	4.6468387	1.7952672	0.5859193
C	4 7739070	0.6805916	2 8486679
C	5 2161177	-0.6830585	0 7683149
н	4 4079282	1 6649683	-0.4711007
н	4 0246222	2 5899403	1 0078437
н	5 69/8063	2.0005036	0.6687881
н Ц	<i>J</i> .0740003	0.2410044	3 4012548
П Ц	4.3717460	-0.2410944	2.4012340
П	J.0520019	0.9313360	2.9010702
п	4.1/32180	1.4913883	5.2725771
H	4.9936395	-1.6002282	1.3212551
H	4.9/091/8	-0.8228527	-0.2860513
Н	6.2889894	-0.4830688	0.8510030
TS 38	B : t Bu ⁺ bind	ling to N-aton	n
Ene	ergy = -1127.	492548743	
Ν	0.6125279	-0.5971661	-0.2226633
Ν	-0.3420809	-1.1839074	0.3183466
С	1.9192451	-1.1412270	0.1291514
0	2.6181525	-0.4663721	0.9856199
0	2.2977933	-2.1122746	-0.5057938
С	-1.6382186	-0.7036410	-0.1701551
0	-1.8930147	-0.5393972	-1.3484866
0	-2.4222012	-0.5879466	0.8807210
С	1.3441760	1.0498763	-2.7099364
С	0.7758067	2.3500479	-2.3424186
С	2.7327154	0.7531602	-2.3677852
С	0.5282618	0.1045163	-3.4557820
Η	-0.2859271	2.4387332	-2.5706987
Η	0.9952449	2.5717655	-1.2917319
Η	1.3335789	3.1119545	-2.9140116
Η	2.9432998	-0.3175370	-2.3346417
Η	3.3032374	1.1475602	-3.2335756
Н	3.0777333	1.2910856	-1.4831467
Н	-0.0001623	0.6030451	-4.2787249
Н	1.0442174	-0.8008218	-3.7685036
Н	-0.2748714	-0.1261525	-2.7260599
C	-3.8441345	-0.0820099	0.7445937
č	-3 8152255	1 3172562	0 1372290
\tilde{c}	-4 6425878	-1 0827988	-0 0848055
\tilde{c}	-4 3076491	-0.0548186	2 1958836
н	-3 1557693	1 9712262	0 7158672
н	-3 4867566	1 2961328	-0.9035027
11	-J. TOU/JOU	1.2701320	0.7055021

Н	-4.8273253	1.7320126	0.1744981
Η	-4.5856384	-2.0807419	0.3598192
Н	-5.6910835	-0.7677625	-0.0895544
Н	-4 2863024	-1 1225155	-1 1155914
н	-5 3/2859/	0.2967812	2 2350154
11 11	4 2609047	1.0550002	2.2350154
п	-4.2008047	-1.0336663	2.0555956
H	-3.6848017	0.6225229	2.7869643
В	2.2154389	0.8505499	1.6763808
F	1.0112452	0.6883306	2.3573394
F	3.2679522	1.1253858	2.5439395
F	2.1051068	1.8482436	0.6894154
TS	$C: CO_2$ elim	ination	
38	_		
Ene	ergv = -1127.	518024342	
N	1 1014565	-0 2999356	-0 6965462
N	0.1357250	-0.8/9688/	-0 1752093
Ċ	0.1557250	0.8381036	0.1828038
	2.8027120	-0.8381930	1 220 4906
0	2.8896915	-0.2324034	1.2284800
0	3.3585872	-1.606396/	-0.5652727
С	-1.2388411	-0.8085984	-0.6564085
0	-1.5948502	-1.5674654	-1.5349140
0	-1.9339661	-0.0319998	0.1456002
С	1.1023753	0.5911010	-1.9253017
С	-0.1488639	1.4695464	-2.0222361
С	2.3608554	1.4598190	-1.8113916
Ĉ	1 2193243	-0 3745697	-3 1229921
н	-1 0373814	0.9047040	-2 3105454
ц	0.33/9156	1 0003670	1 08/8055
11 11	-0.3348130	1.9993070	-1.00407007
н	0.0290955	2.2100785	-2.80/298/
H	3.2641639	0.8448341	-1./6580/3
Н	2.4296468	2.0904643	-2.7016754
Η	2.3170752	2.1045411	-0.9305622
Η	1.3106648	0.2272746	-4.0323321
Η	2.1074122	-1.0045405	-3.0296960
Η	0.3327289	-1.0078552	-3.1998951
С	-3.4544984	0.0030316	0.0898626
Ċ	-3.8882304	0.5119834	-1.2801024
Ĉ	-3 9824583	-1 3902354	0.4114323
C	3 7805344	1 0012718	1 1020672
	-3.7603344	1.0012/10	1.1930072
п	-3.4411343	1.4003370	-1.48////4
H	-3.6188024	-0.189/999	-2.0/16605
H	-4.9764505	0.6299064	-1.2/61358
Н	-3.5837580	-1.7391956	1.3685170
Η	-5.0728415	-1.3360380	0.4927320
Η	-3.7280598	-2.1066825	-0.3716997
Η	-4.8663166	1.1169632	1.2611998
Н	-3.4041305	0.6470601	2.1566764
Н	-3.3375374	1.9768329	0.9737698
В	1.7909534	0.8993918	2.2778702
F	0.9493631	-0.0065910	2.8112740

F 2.7683275 1.3816798 3.0728809 F 1.2867386 1.7443935 1.3504818 **TSD1** : proton transfer from tBu_+ 35 Energy = -938.8190472929 -1.3810224 -0.8641281 -0.4473507 Ν N -0.5810303 -0.7201225 0.4724765 С -0.7410206 -0.0790393 1.7996111 O -0.1254301 1.0499535 1.9555141 O -1.2749826 -0.7441815 2.6675877 С -2.7522786 -0.2602089 -0.5057692 С -3.1187399 0.7834692 0.5492957 С -2.8012355 0.3555133 -1.9167917 С -3.6798332 -1.4898768 -0.4281583 Η -3.2209889 0.3523726 1.5469458 Η -2.3943892 1.6013716 0.5705414 1.2071057 0.2706720 Η -4.0887252 Η -2.5087624 -0.3824764 -2.6683955 Η -3.8238741 0.6863916 -2.1211314 Η -2.1310535 1.2169703 -1.9810075 Η -4.7076467 -1.1585488 -0.6046782 -3.4111054 -2.2285467 -1.1882068 Η Η -3.6237330 -1.9542351 0.5606067 С 2.6592377 -1.6200363 -0.5462145 С 2.7620471 -0.9308718 -1.8553587 С 3.7605456 -1.4299813 0.4269723 С 1.5225123 -2.3720637 -0.2183884 1.9336221 -1.1713331 -2.5228316 Η Η 2.7990409 0.1527122 -1.6844615 3.7137697 -1.1975056 -2.3334007 Η Η 4.0142940 -0.3689536 0.5201070 Η 3.5329950 -1.8562474 1.4048715 Η 4.6550542 -1.9282966 0.0235127 Η 1.6003370 -3.0357547 0.6431016 Η 0.7423890 -1.5000214 0.1737218 Η 0.9338417 -2.7575687 -1.0535716 В 0.6943461 1.7846344 0.8806517 F 1.0911300 2.9721858 1.4820143 F 1.7992741 0.9822625 0.5534000 F -0.1004312 2.0165958 -0.2458652 **TSD** : tBu^+ binding to N-atom 35 Energy = -938.8178525862N -1.0282900 -1.1110912 -0.2817978 N -0.1352732 -0.5801083 0.3593843 C -0.1389813 0.4093975 1.4292327 0 0.2843315 1.5954756 1.0990080 -0.3132978 0.0078644 2.5690599 0 C -2.4993699 -0.7696361 -0.2088687

С	-2.8822714	0.4053484	0.6879958
С	-2.8799525	-0.4971232	-1.6738904
С	-3.1416230	-2.0813377	0.2760150
Н	-2.7019724	0.1931879	1.7438034
Н	-2.3543586	1.3178840	0.3992718
Н	-3.9539793	0.5886177	0.5595011
Н	-2.5700479	-1.3294385	-2.3122567
Н	-3.9666364	-0.3860707	-1.7417855
Н	-2.4061374	0.4217532	-2.0279481
Н	-4.2301485	-1.9705869	0.2503295
Н	-2.8569411	-2.9147609	-0.3723601
Н	-2.8376641	-2.3065604	1.3028310
С	2.3359339	-2.1544191	-0.2845730
Č	2.0359990	-1 9430556	-1 7049958
Ċ	3 3212451	-1 3210217	0.4093692
C	1 7337028	-3 3143911	0.3928493
н	0.9461201	-1 9866251	-1 8545184
н	2 4515690	-1 0195081	-2 1034857
н	2.4313070	-2 8072991	-2 2689069
н	3 3699754	-0.3086749	0.0046259
н	3 1999184	-0.3000749	1 4938526
ц	1 3023202	1 7805601	0.1022782
н	4.3023292 2.3368678	-1.7895001	0.1922782
и Ц	2.3308078	3 2202505	1 4706303
н Ц	1.7304382	-3.2292303	1.4790393
п р	0.7221393	-3.3093110	0.0219341
D E	0.3946363	2.0972777	-0.3133713
Г	0.9300411	3.4323340	-0.1439047
Г	1.0327792	1.5557022	-0.8382091
Г	-0.5492174	1.977/505	-1.1102303
тс	E. CO alim	ination	
13	\mathbf{E} : \mathbf{CO}_2 emm	mation	
55 Em	-0.200	540102044	
En(ergy = -938.8	0 2205050	2 0402700
IN N	0.5190778	0.3203939	-2.0403799
N	-0.4431579	-0.005/243	-1.3/80191
C	-0.5983085	-0.7991079	0.6531851
0	-0.2848817	0.2141925	1.22/4346
0 C	-0.9588172	-1.91583/1	0.5/6/496
C	1.9138050	0.0211789	-1.5908642
C	2.0696249	-1.1984430	-0.6//8933
C	2.6/3/909	-0.2079279	-2.908/816
C	2.4059534	1.31358/1	-0.9131600
H	1.///4900	-0.9986081	0.3544972
H	1.4972884	-2.0501630	-1.0576485
H	3.1265433	-1.4808370	-0.6579533
H	2.5321765	0.6409365	-3.5833306
H	3.7412208	-0.3235557	-2.6985387
H	2.3176183	-1.1151060	-3.4080623
Н	3.4750547	1.2179768	-0.7003623

2.2565463 2.1745858 -1.5714798

1.8716196 1.4852109 0.0250415

Η

Η

С	-1.8008021	0.2466594	-1.9705524
С	-2.3707361	-1.1151675	-2.4080084
С	-2.6570127	0.8565468	-0.8523599
С	-1.6990848	1.2023908	-3.1584736
Η	-1.7535664	-1.5513427	-3.1994960
Η	-2.4171160	-1.8133377	-1.5689557
Η	-3.3829677	-0.9658446	-2.7959453
Η	-2.1986697	1.7670201	-0.4559488
Η	-3.6385045	1.1105859	-1.2628224

Η	-2.8163140	0.1511721	-0.0308679
Η	-2.7085633	1.3935045	-3.5351687
Η	-1.2482297	2.1533428	-2.8597176
Η	-1.0954131	0.7749686	-3.9621910
В	0.4295078	0.2376450	3.0480089
F	1.1935384	1.3343891	2.9081172
F	-0.7227402	0.3518277	3.7321935
F	1.0488301	-0.9604875	3.0581162

References

- ¹ Sheldrick, G. M. Acta Cryst. Sec. A **2008**, 64, 112-122.
- ² Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- ³ Hara, K.; Akiyama, R.; Sawamura, M., Org. Lett. **2005**, 7, 25, 5621–5623.
- ⁴ *TURBOMOLE V7.4*, **2019**, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from <u>http://www.turbomole.com</u>.
- ⁵ a) P. Pracht, F. Bohle, S. Grimme, *Phys. Chem. Chem. Phys.* **2020**, *22*, 7169-7192; b) S. Grimme, *J. Chem. Theory Comput.* **2019**, *15*, 2847-2862.
- ⁶ J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys. Rev. Lett.* **2003**, *91*, 146401.
- ⁷ a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104-154119; b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456-1465.
- ⁸ a) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143-152; b) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.
- ⁹ A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799-805.
- ¹⁰ a) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* **1997**, *97*, 119-124; b) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.
- ¹¹ P. Deglmann, K. May, F. Furche, R. Ahlrichs, *Chem. Phys. Lett.* **2004**, *384*, 103-107.
- ¹² S. Grimme, *Chem. Eur. J.* **2012**, *18*, 9955-9964.
- ¹³ F. Eckert, A. Klamt, AIChE J. **2002**, 48, 369-385.
- ¹⁴ Eckert, F.; Klamt, A. COSMOtherm, Version C3.0, Release 16.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany 2015.
- ¹⁵ Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656-5667.
- ¹⁶ F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753-12762.
- ¹⁷ L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, *Phys. Chem. Chem. Phys.* **2017**, *19*, 32184-32215.