Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Table of Contents

1	E	Experimental Section			
	1.1	C	General methods and Instrumentation	3	
	1.2	S	Synthesis and Characterization	5	
		1.2.1	Synthesis and characterization of 1. MeCN	5	
		1.2.2	Synthesis and characterization of acetonitrile-free germane 1	6	
		1.2.3	Synthesis and characterization of acetonitrile-free silane 2	7	
		1.2.4	Synthesis of and characterization of [K·(18-c-6)][1-F]	8	
		1.2.5	Synthesis of and characterization of [MeCN·SiEt ₃][H-1]	8	
		1.2.6	Synthesis of and characterization of dioxane-bridged germylene 3	9	
2	N	NMR	experiments with 1.MeCN	. 10	
	2.1	Ι	Lewis acidity determination by Gutmann-Beckett method	. 10	
	2.2	N	MR-Scale Abstraction Experiments	. 12	
	4	2.2.1	Reaction of 1·MeCN with AgSbF ₆	. 12	
	4	2.2.2	Reaction of 1·MeCN with [Mes ₃ PH][HB(C ₆ F ₅) ₃]	. 13	
	4	2.2.3	Reaction of 1 MeCN with Et ₃ SiF	. 15	
	4	2.2.4	Reaction of acetonitrile-free 1 with Et ₃ SiH	16	
	4	2.2.5	Reaction of 1 with Et ₃ SiH in presence of acetonitrile	. 19	
	2.3	(Catalytic experiments	. 23	
	4	2.3.1	Dimerization of α -methylstyrene and 1,1-diphenylethylene	. 23	
	4	2.3.2	Hydrosilylation of α -methylstyrene	. 26	
	4	2.3.3	Stoichiometric hydrosilylation of methylstyrene with Et ₃ SiH	. 28	
	4	2.3.4	Hydrosilylation of α -methylstyrene with mixed silanes (iPr ₃ SiH vs Et ₃ SiH)	. 30	
		2.3.5	Hydrosilylation of α -methylstyrene with isotopically marked Et3SiD	. 32	
3	(Comp	utational Section	. 37	
	3.1	C	General Information	. 37	
	3.2	H	And the activation mechanism	. 37	

	3.3	Thermochemistry analysis of the hydrosilylation catalytic cycle	. 39
	3.4	Alternative mechanisms for the catalytic hydrosilylation	. 39
	3.5	Calculated energies for compounds in Figure 3 and Scheme 2B	. 41
	3.6	Calculation of ion affinities	. 42
4	Sing	gle-Crystal X-ray Diffraction Analysis	. 43
	4.1	Crystal Structure of 1·MeCN	. 43
	4.2	Crystal Structure of [K·(18-c-6)][F-1]	. 43
	4.3	Crystal Structure of donor-free silane 2	. 44
	4.4	Crystal Structure of dioxane-coordinated germylene 3	. 44
	4.5	Preliminary crystal structure of donor-free 1	. 45
5	NM	R Spectra	. 49
	5.1	NMR spectra of 1·MeCN	. 49
	5.2	NMR spectra of 1	. 51
	5.3	NMR spectra of 2	. 53
	5.4	NMR spectra of [K·18-c-6][1-F]	. 55
	5.5	NMR spectra of [Et ₃ Si·MeCN][H-1]	. 57
	5.6	NMR spectra of compound mixture 3 and 4	. 59
	5.7	NMR spectra of 1,4-dioxane-coordinated germylene 3	. 61
6	Refe	erences	. 63
7	App	endix A	. 64

1 Experimental Section

1.1 General methods and Instrumentation

Materials

All mentioned reactions were carried out in properly dried borosilicate glassware, filled with argon 4.6 (\geq 99.996%; *Westfalen* AG) or in *LABstar* gloveboxes from *MBraun Inertgas-Systeme* GmbH with H₂O and O₂ levels not exceeding 5 ppm. In each reaction small overpressure of argon atmosphere was used to additionally prevent the intrusion of air. For sealing glass apparatuses *Triboflon III* PTFE/PEPE grease from *Freudenberg* & Co. KG was used. All heat-sensitive plastic materials such as syringes or cannulas were stored originally packed and flushed three times with argon.

Chemicals

The Chemicals for this project were purchased from the commercial distributers: *Merck KGaA* (*Sigma-Adrich*), *ABCR* GmbH and *TCI* Co. Ldt. The used hexafluoropinacol (H_2pin^F) was purchased from *Sigma-Aldrich* and *ABCR* GmbH and dried with molecular sieves (4 Å) in diluted Et₂O solution. After filtration and solvent removal in fine vacuo a mixture of 80 – 88 w% H_2pin^F in Et₂O was obtained. Li₂pin^F,^[1] [Mes₃PH][HB(C₆F₅)₃]^[2] and B(C₆F₅)₃^[3] were synthesized according to literature procedures. Safety note: The use of directly dried, Et₂O-free H_2pin^F in one lithiation experiment resulted in an explosion in the glovebox when the product was scraped from the glass wall with a spatula. Reactants for catalytic experiments were degassed and stored over molecular sieves. The used solvents for applications were distillated over elemental sodium/benzophenone (toluene, *n*-hexane, Et₂O), calcium hydride (acetonitrile, chloroform, acetonitrile-*d₃*, chloroform-*d* and dichloromethande-*d₂*), additionally degassed and stored over molecular sieves.

NMR-spectroscopy

All NMR samples were prepared in an argon (4.6) atmosphere using *J-Young* PTFE valve NMR tubes. The recorded ¹H,¹³C, ¹⁹F and ²⁹Si NMR spectra were obtained from a *Bruker Avance Neo* 400 MHz spectrometer and a *Bruker AV500C* spectrometer at ambient temperatures (300 K), unless otherwise stated. The VT-NMR experiments were carried out the *Bruker Avance Neo* 400 MHz spectrometer at the given temperature. The obtained ¹H- and ¹³C-NMR spectra were calibrated on the residual proton and natural abundance carbon signals of deuterated NMR solvents acetonitrile-*d*₃ and dichloromethane-*d*₂. The obtained chemical shifts δ are reported in ppm values, calibrated on tetramethylsilane. The observed signals were abbreviated as following: s = singlet, br = broad signal and combinations, d = doublet, t = triplet, q = quartet, p = quintet, h = septet, m = multiplet and qm = quartet of multiplets. The spectra were processed and analyzed on the software *MestReNova* (version 12.0.1-20560).

FT-ATR-IR spectra

The attenuated total reflection infrared ATR-IR spectra were recorded on a *Perkin Elmer* spectrometer (*diamond ATR, Spectrum Two*) in the range of $400 - 4000 \text{ cm}^{-1}$ at room temperature under an argon atmosphere.

Elemental analysis

The analysis was carried out by the central analytics laboratory of the *TUM Catalysis Research Center*. For the procedure 0.5 - 1.0 mg of the investigated compounds were closely packed within two layers of tin foil under an argon atmosphere and subsequently handed to the elemental analysis team. The Analysis was performed on a *EURO EA* (*HEKAtech*) instrument equipped with a CHNS combustion analyzer.

LIFDI

Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS) was measured directly from an argon-filled glovebox with a *Thermo Fisher Scientific Exactive Plus Orbitrap* equipped with a *Linden CMS* ion source.^[4]

Melting Point

The Melting Points (m.p.) were determined in sealed glass capillaries under argon atmosphere using a *Büchi B-540* melting point apparatus.

Single crystal X-ray diffraction analysis

The X-ray intensity data were collected on an X-ray single crystal diffractometer equipped with a CMOS detector (Bruker Photon-100), a rotating anode (Bruker TXS) with MoK α radiation ($\lambda = 0.71073$ Å) and a Helios mirror optic by using the APEX4 software package^[5] or an X-ray single crystal diffractometer equipped with a CMOS detector (Bruker Photon-100), an IMS microsource with MoKa radiation $(\lambda = 0.71073 \text{ Å})$ and a Helios mirror optic by using the APEX III software package.^[5] The measurement was performed on single crystals coated with perfluorinated ether. The crystal was fixed on the top of a microsampler, transferred to the diffractometer and measured under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[6] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[7] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX4^[5] and OLEX2^[8] in conjunction with SHELXL-2014^[9] and SHELXLE.^[10] Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of 0.98 Å and Uiso(H) = 1.5 Ueq(C). Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C–H distances of 0.99 and 0.95 Å, respectively, and $Uiso(H) = 1.2 \cdot Ueq(C)$. If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Fullmatrix least-squares refinements were carried out by minimizing $\Delta w(Fo^2-Fc^2)^2$ with SHELXL-97^[11] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[12] Images of the crystal structures were generated by PLATON and MERCURY.^[13] The CCDC numbers CCDC- (2286080-2286083, 2286830) contain the supplementary crystallographic data for the structures 1MeCN, [K(18c6)][1-F], 2, 3 and 1. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

1.2 Synthesis and Characterization

1.2.1 Synthesis and characterization of 1·MeCN

To a solution of 3.0 g (8.67 mmol, 2.0 equiv.) Li_2pin^F in 40 ml MeCN were added 0.49 ml (4.30 mmol, 1.0 equiv.) GeCl₄ at room temperature. The obtained solution slowly turned cloudy, and the reaction mixture was heated to 85 °C and stirred for 3 h. Afterwards, all volatiles were stripped off in vacuum and the obtained off-white solid was slowly heated to 150 °C and sublimated at a pressure of 0.02 mbar to give a colorless solid in 60 % yield.

Crystals suitable for SC-XRD analysis were obtained from a DCM solution at room temperature. For crystal structure please see Figure S 38.

m.p.: 142 -179 °C (sublimation and molten parts).

¹**H-NMR** (400 MHz, acetonitrile- d_3) δ (ppm) = 1.96 (s, 3H, NCC H_3).

¹³C NMR (126 MHz, acetonitrile- d_3) δ (ppm) = 122.2 (q, ${}^{1}J_{C-F}$ = 293 Hz, CF₃), 81.5 (br, OC(CF₃)₂).

¹⁹**F** NMR (377 MHz, acetonitrile- d_3) δ (ppm) = -69.04 - -70.93 (m, 24F, CF₃).

Elemental Analysis calcd. [%] for C₁₄**H**₃**F**₂₄**NO**₄**Ge:** C (21.62), H (0.39), N (1.80), S (-); found (%): C (21,15), H (0.30), N (1.17), S (-).

Figure S 1: FT-IR-spectrum of $1 \cdot CH_3CN$ showing two superimposed frequencies of blue-shifted C=N and C-H vibrations originating from the coordinated acetonitrile.

1.2.2 Synthesis and characterization of acetonitrile-free germane 1

A mixture of 800 mg (1.03 mmol, 1.0 equiv.) $1 \cdot \text{MeCN}$ and 1.05 g (2.06 mmol, 2.0 equiv.) $B(C_6F_5)_3$ were dissolved in 4 mL of benzene and heated to 80 °C. For ensuring a complete dissolution and thus mixture of the reactants, the walls of the glass vessel were additionally gently heated with a heat gun. Afterwards, the obtained clear solution was slowly cooled to 0 °C. The formed precipitation was collected by filtration dried under reduced pressure. For a complete product separation, the crude-product was sublimated at 60 °C and a pressure of 0.02 mbar. Compound 1 was then collected as a crystalline, colorless solid in 65 % yield.

In comparison to compound $1 \cdot \text{MeCN}$, donor-free 1 shows slightly enhanced solubility in non-coordinating solvents like DCM or benzene.

Crystals suitable for SC-XRD analysis were obtained from a slow sublimation at 40 °C temperature and 1 bar of argon atmosphere. For crystal structure please see S 42.

m.p.: 67.1 - 71.9 °C (partially sublimated).

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ (ppm) = 122.2 (q, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 81.5 (br, OC(CF₃)₂). ¹⁹F NMR (377 MHz, acetonitrile-*d*₃) δ (ppm) = -68.93 - -71.19 (m, 24F, CF₃).

Elemental Analysis calcd. [%] for C₁₂F₂₄O₄Ge: C (19.56), H (-), N (-), S (-); found (%): C (20.02), H (0.06), N (-), S (-).

Figure S 2: FT-IR-spectrum of **1** showing the absence of the characteristic acetonitrile vibrations in the region of $2000 - 2500 \text{ cm}^{-1}$.

1.2.3 Synthesis and characterization of acetonitrile-free silane 2

A mixture of 500 mg (682 μ mol, 1.0 equiv.) **2**·MeCN and 524 mg (614 μ mol, 1.5 equiv.) B(C₆F₅)₃ were dissolved in 6 mL of benzene and heated to 80 °C. Complete dissolution was obtained by gently heating the glass walls with a heat gun. The obtained clear solution was slowly cooled to 0 °C and the formed precipitation was filtered off and washed with 1 ml benzene in the cold. After drying under reduced pressure, the solvent-free product **2** was obtained as a colorless solid in 54 % yield. Alternatively, the crude product can be purified by sublimation (60 °C, 0.04 mbar).

Crystals suitable for SC-XRD analysis were obtained from a slow sublimation at 40 °C temperature under 1 bar of argon atmosphere in a screw-cap glass vessel. For crystal structure please see Figure S 40.

m.p.: 66 – 68 °C.

¹³**C** NMR (126 MHz, acetonitrile- d_3) δ (ppm) = 122.0 (qm, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 83.5 (br, OC(CF₃)₂).

¹⁹**F** NMR (377 MHz, acetonitrile- d_3) δ (ppm) = -69.48 - -70.05 (m, 12F, CF₃), -70.05 - -70.55 (m, 12F, CF₃).

²⁹Si NMR (99 MHz, acetonitrile- d_3) δ (ppm) = -110.33 (*Si*).

Elemental Analysis calcd. [%] for C₁₂F₂₄O₄Si: C (20.82), H (-), N (-), S (-); found (%): C (21.19), H (0.09), N (-), S (-).

Figure S 3: FT-IR-spectrum of 2 showing the absence of the characteristic acetonitrile vibrations in the region of $2000 - 2500 \text{ cm}^{-1}$.

1.2.4 Synthesis of and characterization of [K·(18-c-6)][1-F]

To synthesize the pentavalent fluorogermanate species $[1-F]^-$, 100 mg 1·MeCN (129 µmol, 1.0 equiv.), 7.50 mg KF (129 µmol, 1.0 equiv.) were dissolved in 1.0 ml acetonitrile. To this solution and 34.0 mg (129 µmol, 1.0 equiv.) 18-crown-6 dissolved in another 2.0 ml acetonitrile were added and the obtained solution was stirred for 230 minutes at room temperature. Afterwards, all volatile components were removed under reduced pressure. The obtained crude product was dissolved in 2.0 ml dichloromethane and precipitated by the addition of 10 ml hexane. The supernatant liquid phase was filtered off and the step was repeated once again. The obtained precipitation was then dried under reduced pressure to give a off-white solid in 55 % yield.

Crystals suitable for SC-XRD analysis were obtained from a saturated dichloromethane solution at -30 °C. For crystal structure please see Figure S 39.

m.p.: 204 -225 °C (decomposition).

¹**H** NMR (400 MHz, acetonitrile- d_3) δ (ppm) = 3.57 (s, 24H, O-CH₂-CH₂-O).

¹³**C** NMR (126 MHz, acetonitrile- d_3) δ (ppm) = 122.8 (qm, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 81.6 (br, OC(CF₃)₂), 70.8 (s, OCH₂).

¹⁹**F** NMR (377 MHz, acetonitrile-*d*₃) δ (ppm) = -69.79 - -70.14(m, 12F, C*F*₃), -70.76 - -70.97 (m, 12F, C*F*₃), -145.04 - -145.25 (h, *J* = 8.3 Hz, 1F, Si-*F*).

Elemental Analysis calcd. [%] for C₂₄H₂₄F₂₅GeKO₁₀: C (27.22), H (2.28), N (-), S (-); found (%): C (27.36), H (1.95), N (-), S (-).

1.2.5 Synthesis of and characterization of [MeCN·SiEt₃][H-1]

To a solution of 100 mg (129 μ mol, 1.0 equiv.) **1**·MeCN diluted in 2.0 ml acetonitrile were added 15 mg (129 μ mol, 5.0 equiv.) Et₃SiH at room temperature. The obtained solution was heated to 80 °C for 30 minutes. Afterwards all volatiles were removed under reduced pressure to give the product as a colorless solid in 53 % yield.

m.p.: 81-86 °C.

¹**H NMR** (400 MHz, acetonitrile- d_3) δ (ppm) = 6.44 – 6.38 (m, 1H, GeH), 1.96 (s, 3H, NCCH₃), 1.10 – 0.99 (m, 15H, CH₂CH₃).

¹³**C** NMR (126 MHz, acetonitrile- d_3) δ (ppm) = 123.5 (q, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 123.1 (q, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 82.2 (br, OC(CF₃)₂), 6.13 (s, *C*H₂), 4.11 (s, *C*H₃).

¹⁹**F-NMR** (377 MHz, acetonitrile- d_3) δ (ppm) = -70.18 - -70.35 (m, 12F, CF₃), -70.63 - -70.82 (m, 12F, CF₃).

²⁹Si NMR (99 MHz, acetonitrile- d_3) δ (ppm) = 36.38 (s, Et₃Si⁺).

Elemental Analysis calcd. [%] for C₂₀H₁₉F₂₄GeNO₄Si: C (26.87), H (2.44), N (1.57), S (-); found (%): C (26.58), H (1.63), N (1.67), S (-).

1.2.6 Synthesis of and characterization of dioxane-bridged germylene 3

A mixture of 600 mg (1.73 mmol, 1.0 equiv.) Li_2pin^F and 402 mg (1.73 mmol, 1.0 equiv.) $GeCl_2 \cdot 1, 4$ -dioxane was dissolved in 5 ml acetonitrile. The solution immediately turned opaque because of LiCl precipitation and was further heated to 80 °C for 1 hour to ensure complete conversion. Afterwards all volatiles were removed under reduced pressure at 0 °C to give the crude product. The title compound was isolated by twofold sublimation at 0.02 mbar while slowly heating from 80 °C to 140 °C over a 2-hour period.

Dioxane could not be removed under reduced pressure. The product additionally contains impurities of acetonitrile, which could not be removed. Single crystals suitable for XRD analysis were obtained from saturated DCM solution at -30 °C (Figure S 41).

m.p.: 72 - 75 °C.¹**H NMR** (500 MHz, dichloromethane- d_2) δ (ppm) = 3.89 (s, CH₂). ¹³**C NMR** (126 MHz, dichloromethane- d_2) δ (ppm) = 122.2 (q, ¹J_{C-F} = 294 Hz), 88.4 (br, OC(CF₃)₂), 67.1 (s, CH₂). ¹⁹**F-NMR** (377 MHz, dichloromethane- d_2) δ (ppm) = -70.6 (s, 12F, CF₃).

2 NMR experiments with 1·MeCN

2.1 Lewis acidity determination by *Gutmann-Beckett* method

For the Lewis acidity assessment of the obtained compounds the by Gutmann-Beckett was applied. In case of $1 \cdot \text{MeCN}$, 6.00 mg (7.71 µmol, 1.0 equiv.) of the Lewis acid were dissolved in 0.4 ml dichloromethaned₂ and reacted with 1.03 mg Et₃PO (7.71 µmol, 1.0 equiv.) in a gas-tight J-Young NMR tube. The obtained clear solution was analyzed by ¹H, ¹⁹F and ³¹P NMR spectroscopy. The exact same spectra were also obtained for solvent free **1**. In this case, however, the broad signal overlapping signal at 2.03 ppm was absent.

¹**H NMR** (400 MHz, CD₂Cl₂) δ (ppm) = 2.03 (br, 3H, NCCH₃) 2.11 (dq, ²*J*_{P-H} = 12.4 Hz, ³*J*_{H-H} = 7.7 Hz, 6H, PC*H*₂), 1.26 (dt, ²*J*_{P-H} = 12.4 Hz, ³*J*_{H-H} = 7.7 Hz, 9H, PCH₂C*H*₃). ¹⁹**F-NMR** (149 MHz, CD₂Cl₂) δ (ppm) = -69.19 - -69.99 (m, 24F, C*F*₃). ³¹**P NMR** (162 MHz, CD2Cl₂) δ (ppm) = 89.13 (s).

Figure S 4: ³¹P NMR spectrum of $1 \cdot OPEt_3$ obtained by the reaction of $1 \cdot MeCN$ with Et_3PO in dichloromethande- d_2 .

The same sample was additionally treated with another equivalent of Et_3PO (total of 2.0 equiv.) and again analyzed by ³¹P NMR spectroscopy. Figure S 5 shows a stack of free Et_3PO and the obtained coordination products.

Figure S 5: Stacked ³¹P NMR spectra of the reaction of 1·MeCN with 1.0 and 2.0 equiv. of Et₃PO in dichloromethaned₂ at 300 K.

2.2 NMR-Scale Abstraction Experiments

2.2.1 Reaction of 1-MeCN with AgSbF₆

A mixture of 16.0 mg (20.6 μ mol, 1.0 equiv.) **1**·MeCN and 7.10 (20.7 μ mol, 1.0 equiv.) AgSbF₆ was placed in a PTFE-valved J-Young NMR tube and dissolved in 0.4 ml of acetonitrile- d_3 . The obtained solution was heated to 60 °C for one hour and afterwards analyzed by multinuclear NMR spectroscopy.

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ (ppm) = 122.7 (qm, ${}^{1}J_{C-F}$ = 295 Hz, *C*F₃), 81.6 (br, OC(CF₃)₂). ¹⁹F-NMR (149 MHz, acetonitrile-*d*₃) δ (ppm) = -69.83 - -70.12 (m, 12F, CF₃), -70.67 - -71.02 (m, 12F, CF₃), -145.00 - -145.24(m, 1F, Ge-*F*).

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -18

Figure S 6: ¹⁹F NMR of the reaction mixture after 1h at 60 °C showing the formation of the fluorogermanate anion $[1-F]^-$, thus confirming a successful fluoride abstraction.

2.2.2 Reaction of 1·MeCN with [Mes₃PH][HB(C₆F₅)₃]

To a solution of $[Mes_3PH][HB(C_6F_5)_3]$ in 0.4 ml CD2Cl2 was added 1·MeCN. The reaction mixture was transferred into a J-Young NMR tube and shaken until a clear solution was obtained. Reaction progress was traced by ¹H, ¹¹B and ¹⁹F NMR spectroscopy.

For further verifying the hydride abstraction from $[HB(C_6F_5)_3]^-$ the obtained reaction mixture was compared to separately synthesized MeCN·B(C₆F₅)₃.

¹**H** NMR (400 MHz, CD₂Cl₂) δ (ppm) = δ 8.25 (d, ¹*J*_{P-H} = 478.1 Hz, 1H, P*H*), 7.13 (d, ⁴*J*_{P-H} = 36.1 Hz, 6H, *m*-Ar*H*), 6.47 – 6.41 (m, 1H, Ge*H*), 2.39 (s, 9H, *p*-Ar-CH₃), 2.30 (s, 9H, *o*-Ar-CH₃), 2.02 (s, 9H. *o*-Ar-CH₃). ¹¹**B** NMR (128 MHz, CD₂Cl₂) δ (ppm) = -10.68 (s, *B*(C₆F₅)₃).

¹⁹**F-NMR** (377 MHz, CD₂Cl₂) δ (ppm) = -69.80 - -69.98 (m, 12F, CF₃), -70.36 - -70.53 (m, 12F, CF₃).

Figure S 7: ¹H NMR of the reaction mixture after complete dissolution of the reactants in CD_2Cl_2 showing the formation of the hydrido germanate anion [H-1]⁻ with the [Mes3PH] (A) counter cation . No [HB(C₆F₅)₃] signal could be observed.

Figure S 8: ¹⁹F NMR of the reaction mixture showing the presence of hydrido germanate anion $[H-1]^-$ and MeCN-coordinated BCF. No $[HB(C_6F_5)_3]$ signals are present.

Figure S 9: Stacked ¹¹B NMR showing the characteristic doublet of $[HB(C_6F_5)_3]$ before **1**·MeCN was added to the reaction mixture (top) and the signal of MeCN-coordinated BCF after addition of **1**·MeCN (bottom).

2.2.3 Reaction of 1·MeCN with Et₃SiF

To 10 mg (12.9 μ mol, 1.0 equiv.) of **1**·MeCN in 0.4 ml acetonitrile-*d*₃ were added 17.3 mg (129 μ mol, 10.0 equiv.) Et₃SiF in a PTFE-valved J-Young NMR tube. The obtained solution was analyzed by multinuclear NMR spectroscopy. No difference in reaction conversion was observed at longer periods at room temperature or upon heating to 80 °C for several hours. The conversion progress correlated with the amount of added Et3SiF. When fewer equivalents Et₃SiF were used, significantly lower conversion was observed.

¹**H-NMR** (500 MHz, acetonitrile-*d*₃) δ (ppm) = 1.96 (s, 3H, NCC*H*₃), 1.11 – 1.02 (m, 15H, C*H*₃). ¹³**C NMR** (126 MHz, acetonitrile-*d*₃) δ (ppm) = 122.8 (qm, ¹*J*_{C-F} = 295 Hz, *C*F₃), 81.5 (br, OC(CF₃)₂), 6.18 (s, *C*H₂), 4.16 (s, *C*H₃).

¹⁹**F-NMR** (377 MHz, acetonitrile-*d*₃) δ (ppm) = -69.88 – -70.11 (m, 12F, C*F*₃), -70.76 – -70.99 (m, 12F, C*F*₃), -145.05 – -145.31 (m, 1F, Ge-*F*).

²⁹Si NMR (99 MHz, acetonitrile- d_3) δ (ppm) = 36.60 (s, Et₃Si⁺).

Figure S 10: ¹⁹F NMR of the reaction mixture showing the partial formation of the fluorogermanate anion $[1-F]^{-in}$ an reaction equilibrium, thus confirming a successful fluoride abstraction when a surplus of Et₃SiF is present. No further reaction progress was observed after various periods or upon heating.

Figure S 11: ²⁹Si{¹H} NMR of the reaction mixture showing the partial formation of the MeCN-coordinated silyl cation (Et₃Si⁺) next to the characteristic doublet (${}^{1}J_{Si-F} = 286 \text{ Hz}$) of Et₃SiF.

2.2.4 Reaction of acetonitrile-free 1 with Et₃SiH

To a suspension of 30 mg (40.7 mmol, 1.0 equiv.) of **1** in 0.4 ml of dichloromethande- d_2 were added 6.50 µl (40.7 mmol, 1.0 equiv.). Et₃SiH in a PTFE-sealed J-Young NMR tube. The obtained solution was analyzed by multi nuclear NMR spectroscopy. Product separation and isolation failed in multiple attempts.

¹**H-NMR** (400 MHz, dichloromethane-*d*₂) δ (ppm) = 3.94(s, 1H, O*H*), 0.98 (t, ³*J*_{H-H} = 7.9 Hz, 9H, C*H*₃), 0.80 (q, ³*J*_{H-H} = 8.0 Hz, 6H, C*H*₂).

¹³C NMR (126 MHz, dichloromethane- d_2) δ (ppm) = 121.5 (qm, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 121.9 (q, ${}^{1}J_{C-F}$ = 293 Hz, *C*F₃), 88.8 (br, GeOC(CF₃)₂), 82.9 (p, ${}^{2}J_{C-F}$ = 31.2 Hz, HO(*C*(CF₃))₂OSi), 81.4(p, ${}^{2}J_{C-F}$ = 30.4 Hz, HO(*C*(CF₃))₂OSi), 6.41 (s, *C*H₂), 5.76 (s, *C*H₃).

¹⁹**F-NMR** (377 MHz, dichloromethane- d_2) δ (ppm) = -68.97 – -69.26 (m, 6F, HO-CCF₃), -69.90 – -70.14(m, 6F, SiO-CCF₃), -70.91 (s, 12F, Ge(OC(CF₃)₂)₂). ²⁹Si NMR (99 MHz, dichloromethane- d_2) δ (ppm) = 31.69 (s, *Si*Et₃).

LIFDI-MS

For further investigation a high resolution LIFDI-MS analysis of the reaction mixture was performed, revealing the cleavage of the Si-O bond and consecutive hydride abstraction, by selectively giving the mass pattern for the hydrido germanate anion $[H-1]^-$ in negative mode:

calculated for $[C_{12}HF_{24}GeO_4]^-$: 738.87056 observed: 738.87157

Figure S12: : LIDFI-MS spectrometry (detail view with isotope pattern) of **3** obtained in negative mode. Measured (right; m/z = 738.87157) and simulated (left; m/z = 738.87056) mass spectrum.

Low Temperature NMR

At lower temperatures the thermodynamically favored dimerization of the perfluoropinacolato germylene is observed, leading to the formation of complex **4**. As a result of decreasing symmetry upon dimerization the sharp singlet at $\delta = -70.91$ ppm completely disappears at -80 °C due to heavy broadening. A related trend is also seen in the ²⁹Si NMR spectra were the silicon signal of the silylated alcohol shifts from $\delta = -31.69$ ppm (25 °C) to $\delta = -33.65$ ppm (-80 °C). This could be an effect of weak coordination at room temperature that decreases in favor of the germylene dimerization at low temperatures.

room temperature

lower temperatures

-68.2 -68.4 -68.6 -68.8 -69.0 -69.2 -69.4 -69.6 -69.8 -70.0 -70.2 -70.4 -70.6 -70.8 -71.0 -71.2 -71.4 -71.6 -71

Figure S 13: Stacked ¹⁹F NMR spectra in CD_2Cl_2 of a freshly prepared mixture of **3** and **4** at a temperature range from -80 °C to 25 °C.

Figure S 14: Stacked ²⁹Si{¹H} NMR spectra in CD₂Cl₂ of freshly prepared **3** and **4** at a temperature range from -80 °C to 25 °C.

2.2.5 Reaction of 1 with Et₃SiH in presence of acetonitrile

In a PTFE-sealed J-Young NMR tube was dissolved 15 mg (20.4 μ mol, 1.0 equiv.) **1** in 0.4 ml CD₂Cl₂. To the mixture were subsequently added 1.2 μ l (22.4 μ mol, 1.0 equiv.) MeCN and 3.6 μ l Et₃SiH. The NMR tube was shaken vigorously and analyzed by multinuclear NMR spectroscopy. Afterwards, the product mixture was heated to 80 °C for 30 min and again analyzed.

The first NMR outlined the presence of the two main reaction products **3** (with by-product **4**) and $[MeCN \cdot SiEt_3][H-1]$ in a molar ratio of 0.58/1.00 (referenced by integration of the Ge-H and OH signals). The second NMR (after heating) showed the selective formation of reaction product mixture **3** and **4**. No residual traces of ionic [MeCN \cdot SiEt₃][H-1] could be observed.

Note: The same results were obtained when 1 MeCN was used instead of 1 and additional MeCN.

Observed product signals for 3 and 4:

¹**H-NMR** (400 MHz, dichloromethane- d_2) δ (ppm) = 4.04/4.07 (s, 1H, OH), 0.97 (t, ³ $J_{\text{H-H}}$ = 7.9 Hz, 9H, CH₃), 0.80 (q, ³ $J_{\text{H-H}}$ = 8.0 Hz, 6H, CH₂).

¹⁹**F-NMR** (377 MHz, dichloromethane-*d*₂) δ (ppm) = -69.06 – -69.20/-69.03 – -69.25 (m, 6F, HO-CC*F*₃), -69.92 – -70.07/-69.90 – -70.11 (m, 6F, SiO-CC*F*₃), -70.61/-70.55 (s, 12F, Ge(OC(C*F*₃)₂)₂). ²⁹Si NMR (99 MHz, dichloromethane-*d*₂) δ (ppm) = 31.61/31.53 (s, *Si* Et₃).

Observed product signals of [MeCN·SiEt₃][H-1]:

¹**H-NMR** (400 MHz, dichloromethane- d_2) δ (ppm) = 6.50 (s, 1H, GeH), 2.28 (s, 3H, CH₃CN), 1.14 – 1.02 (m, 15H, CH₂CH₃).

¹⁹**F-NMR** (377 MHz, dichloromethane- d_2) δ (ppm) = -69.66 - -69.88 (m, 12F, CF₃), -70.25 - -70.43 (m, 12F, CF₃).

²⁹Si NMR (99 MHz, dichloromethane- d_2) δ (ppm) = 40.38 (s, Si Et₃).

Figure S 15: ¹H NMR spectrum of the reaction mixture after 10 minutes at room temperature in CD_2Cl_2 , showing the formation of two main reaction products **4** (#) and [MeCN·SiEt₃][H-**1**] with an integral ratio of 0.58/1.00 and residual/unreacted Et₃SiH.

Figure S 16: ¹H NMR spectrum of the reaction mixture after 30 minutes at 80 °C in CD₂Cl₂, showing the selective formation of **4** (#) as the main reaction product. No more [MeCN·SiEt₃][H-**1**] can be observed.

Figure S 17: Stacked ¹⁹F NMR spectra of the reaction mixture after 10 minutes at room temperature in CD₂Cl₂, showing the formation of two main reaction products **3**, **4**(#) and [MeCN·SiEt₃][H-1] (top) and the selective conversion to towards **3** and **4** (#) after 30 min at 80 °C (bottom).

showing the formation of two main reaction products 4 (#) and [MeCN·SiEt₃][H-1] (top) and the selective conversion to 3 and 4 (#) after 30 min at 80 °C (bottom).

2.3.1 Dimerization of α-methylstyrene and 1,1-diphenylethylene

In a PTFE-sealed J-Young NMR tube was dissolved 15 μ l a-methyl styrene or 15 μ l 1,1-diphenylethylene as well as 3 μ L of the internal standard mesitylene in 0.4 mL CD₂Cl₂. After zero-point measurements, 0.05 mol% of the respective catalyst were added and the NMR tube was vigorously shaken. The mixture was then analyzed by ¹H NMR spectroscopy after 10 minutes at r.t. and several more intervals if necessary.

1,1,3-Trimethyl-3-phenyl-2,3-dihydro-1H-indene (R = Me)

¹**H** NMR (400 MHz, CD₂Cl₂) δ (ppm) = 7.34 – 7.07 (m, 9H, Ar*H*), 2.44(d, ²*J*_{H-H} = 13.1 Hz, 1H, CH*H*), 2.22 (d, ¹*J*_{H-H} = 13.1 Hz, 1H, C*H*H), 1.69 (s, 3H, C*H*₃), 1.36 (s, 3H, C*H*₃), 1.05 (s, 3H, C*H*₃).

¹³**C NMR** (101 MHz, CD_2Cl_2) δ (ppm) = 152.69, 151.53, 149.24(Ar*C*), 128.35, 127.09, 125.35, 122.96 (Ph*C*), 59.54(*C*H₂), 51.19 (*C*MePh), 43.21 (*C*Me₂), 31.17 (*C*H₃), 30.89 (*C*H₃), 30.50 (*C*H₃).

1-Methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene (R = Ph)

¹**H** NMR (400 MHz, CD₂Cl₂) δ (ppm) = 7.36 – 7.01 (m, 19H, Ar*H*), 3.41 (d, ²*J*_{H-H} = 13.5 Hz, 1H, CH*H*), 3.14(d, ²*J*_{H-H} = 13.5 Hz, 1H, CHH), 1.57 (s, 3H, CH₃).

¹³**C NMR** (101 MHz, CD₂Cl₂) δ (ppm) = 150.97, 149.81, 149.21, 149.08, 148.07 (Ar*C*), 129.11, 129.07, 128.36, 128.23, 127.98, 127.86, 127.22, 126.40, 126.06, 125.95, 125.49 (Ph*C*), 61.49 (*C*H₂), 61.33 (*C*Ph₂), 51.57 (*C*MePh), 29.28 (*C*H₃).

Product signals correspond with pattern given in the literature.^[14]

Table S 1: Reaction conditions and conversion and yield of dimerization experiments after several hours at room
temperature. Product yield and conversion of reactants were calculated by integration with respect to the internal
standard.

Samula	Reagent	Catalyst	Temp.	Time	Conversion	Yield
Sample			[°C]	Time	[%]	[%]
Ι	α -methyl styrene	1	25	10 min	99	65
II	α-methyl styrene	1·MeCN	25	10 min	99	83
III	1,1-diphenylethylene	1	25	1 h	99	99
IV	1,1-diphenylethylene	1·MeCN	25	10 min	75	70
IV	1,1-diphenylethylene	1·MeCN	25	5 h	94	88
IV	1,1-diphenylethylene	1·MeCN	25	48 h	99	98

Figure S 19: Stacked ¹H NMR spectra in CD₂Cl₂ of the dimerization experiment of α -methyl styrene (@) using **1** as catalyst. After 10 min full conversion was obtained showing giving the dimer (C) as the main reaction product as well as minor amounts of trimeric side product (**X**).^[15]

Figure S 20: Stacked ¹H NMR spectra in CD_2Cl_2 of the dimerization experiment of α -methyl styrene (@) using 1·MeCN as catalyst. After 10 min full conversion was obtained showing giving the dimer (C) as the main reaction product as well as minor amounts of trimeric side product (X).^[15]

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.: **Figure S 21:** Stacked ¹H NMR spectra in CD_2Cl_2 of the dimerization experiment of 1,1-diphenylethylene (&) using 1 as catalyst. After 10 min full conversion was obtained selectively yielding the dimerization product (**D**).

9.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 2.0 0.5 9.0 8.5 3.0 2.5 1.5 1.0 o Figure S 22: Stacked ¹H NMR spectra in CD₂Cl₂ of the dimerization experiment of 1,1-diphenylethylene (&) using 1. MeCN as catalyst. After 2 days at room temperature nearly quantitative conversion was obtained selectively yielding the dimerization product (**D**).

2.3.2 Hydrosilylation of α-methylstyrene

To a solution 3.70 mg (500 μ mol, 0.05 equiv.) **1** in 0.4 ml CD₂Cl₂ were added 16 μ l (100 mmol, 1.00 equiv.) Et₃SiH in a PTFE-sealed J-Young NMR tube. After complete dissolution 13.0 μ l (100 mmol, 1.00 equiv.) α -methylstyrene and the internal standard mesitylene (3.00 μ l) was added. The reaction mixture was analyzed by ¹H NMR spectroscopy after several periods at defined temperatures.

Triethyl(2-phenylpropyl)silane:

¹**H** NMR (400 MHz, CD₂Cl₂) δ (ppm) = 7.32 – 7.21 (m, 4H, *o*,*m*-CH), 7.20 – 7.10 (m, 1H, *p*-CH), 2.96 – 2.83 (m, 1H, PhCHCH₃), 1.29 (d, ³*J*_{H-H} = 6.9 Hz, 3H, PhCHCH₃), 0.97 (dd, ¹*J*_{H-H} = 17.2, ³*J*_{H-H} = 7.5 Hz, 2H, CH(CH₃)CH₂), 0.90 (t, ³*J*_{H-H} = 7.9 Hz, 9H, SiCH₂CH₃), 0.54 – 0.35 (m, 6H, SiCH₂CH₃).

¹³**C** NMR (101 MHz, CD₂Cl₂) δ (ppm) = 150.75 (*C*), 128.64(*o*,*m*-CH), 127.04(*o*,*m*-CH), 126.09 (*p*-CH), 36.60 (*C*H), 26.82 (*C*H₃), 21.92 (*C*H₂), 7.62 (SiCH₂CH₃), 4.09 (SiCH₂CH₃).

Product signals corresponds to separately synthesized triethyl(2-phenylpropyl)silane and NMR signals given in the literature.^[16]

Table S 2: Reaction conditions and yield hydrosilylation experiments several hours at various temperatures. Product yield was calculated by integration of the PhCHCH₃-Signal with respect to the internal standard.

Sample	Temp. [°C]	Time [h]	Conversion [%]	Yield [%]
Ι	25	24	28	26
Ι	25	72	33	31
Ι	25	216	69	65
Ι	25	336	95	89
II	-35	18	98	96

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -o.

Figure S 23: Stacked ¹H NMR spectra in CD₂Cl₂ of sample **II** after 18 hours at -35 °C, showing complete conversion, selectively forming the hydrosilylation product (E) from α -methylstyrene (@) and Et₃SiH (\$).

Tracing the reaction progress

To additionally monitor the reaction progress, an equal NMR sample as described above was placed in a cooled NMR probe head at -44.3 $^{\circ}$ C (displayed value: -50 $^{\circ}$ C) and measured over the course of 12 hours. The obtained reaction progress is displayed in Table S 3.

Table S 3: Reaction progress of a freshly prepared sample at -44.3 °C. Conversion and product yield was calculated by integration of the Et₃Si*H*- and PhC*H*CH₃ signals with respect to the internal standard.

Time [min]	Conversion [%]	Yield [%]
1	19	17
2	30	29
3	41	39
4	49	47
6	59	59
9	72	71
12	78	77

at -44.3 °C. Selected reactant (Et₃SiH) and product (E) signals are highlighted by dashed frames.

2.3.3 Stoichiometric hydrosilylation of methylstyrene with Et₃SiH

In this stoichimetric experiment compound **1** (6.00 mg, 8.14 µmol, 1.00 equiv.) was reacted with Et₃SiH (1.30 µl, 8.14 µmol, 1.00 equiv.) in 0.4 ml CD₂Cl₂ to selectively form hydrosilane activation products **3** and **4**. Afterwards another equivalent of Et₃SiH (1.30 µl, 8.14 µmol, 1.00 equiv.) and one equivalent of α -methylstyrene (1.06 ml, 8.14 µmol, 1.00 equiv.) were added. The mixture was analysed after 15 min at room temoerature and then stored for 18 h at -36 °C. Multinuclear NMR analysis revealed the quantitative formation of hydrosilylation product **E**. The initially formed germylene species **3** as well as the silyated alcohol **4** stayed intact during this experiment, which could be observed by ¹⁹F NMR spectroscopy.

Figure S 25: Stacked ¹H NMR spectra of stepwise hydrosilylation experiment in CD₂Cl₂. The experiments showed the selective formation of the product mixture containing **4** (#), which stayed intact over the course the catalytic reaction. Et₃SiH (\$) and α -methylstyrene (@) were fully converted to hydrosilylation product **E**.

Figure S 26: Stacked ¹⁹F NMR spectra of stepwise hydrosilylation experiment in CD_2Cl_2 . No change of the germylene species **3** and triethylsilyl perfluoropinacol **4** (#) is observed over the course of the reaction.

2.3.4 Hydrosilylation of α-methylstyrene with mixed silanes (iPr₃SiH vs Et₃SiH)

Initiation with *i*Pr₃SiH

In a first experiment **1** (6.00 mg, 8.14 µmol, 1.00 equiv.) was reacted with iPr_3SiH (1.67 µl, 8.14 µmol, 1.00 equiv.) in 0.4 ml CD₂Cl₂ to generate the hydrosilane activation products **3** and Hpin^{*F*}Si*i*Pr₃. Full conversion but less selective product formation, when compared to Et₃SiH, was confirmed by NMR analysis. Afterwards Et₃SiH (1.30 µl, 8.14 µmol, 1.00 equiv.) and α -methylstyrene (1.06 ml, 8.14 µmol, 1.00 equiv.) were added and the mixture was stored for 18 h at -36 °C. Subsquent multinuclear NMR analysis revealed the quantitative formation of hydrosilylationproduct **E**. The formation of **E*** was not observed. The catalyst mixute stayed intact as no change could be observed within the ¹⁹F NMR spectrum.

Figure S 27: Stacked ¹H NMR spectra of stepwise hydrosilylation experiment in CD₂Cl₂ selectively forming product **E**. The experiments initiated with the addition of *i*Pr₃SiH, followed by Et₃SiH (\$) and α -methylstyrene (@). The formation of two alcohol species is observed after *i*Pr₃SiH addition.

2.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5

Figure S 28: Stacked ¹⁹F NMR spectra of stepwise hydrosilylation experiment in CD_2Cl_2 . No change of the germylene species **3** is observed after reactant addition and after full conversion.

Initiation with Et₃SiH

In this experiment **1** (6.00 mg, 8.14 μ mol, 1.00 equiv.) was reacted with Et₃SiH (1.30 μ l, 8.14 μ mol, 1.00 equiv.) in 0.4 ml CD₂Cl₂ to generate the hydrosilane activation product **3** and **4**. Afterwards *i*Pr₃SiH (1.67 μ l, 8.14 μ mol, 1.00 equiv.) and α -methylstyrene (1.06 ml, 8.14 μ mol, 1.00 equiv.) were added and the mixture was stored for 18 h at -36 °C. Subsquent multinuclear NMR analysis revealed the quantitative conversion of α -methylstyrene but no hydrosilylation product could be identified. An ill-defined product mixutre containing various dimerization products was obtained.

2.3.5 Hydrosilylation of α-methylstyrene with isotopically marked Et₃SiD

Here **1** (6.00 mg, 8.14 μ mol, 1.00 equiv.) was reacted with Et₃SiD (1.67 μ l, 8.14 μ mol, 1.00 equiv.) in 0.4 ml CD₂Cl₂ to generate **3** and deuterated Dpin^{*F*}SiEt₃. Full conversion was confirmed by NMR analysis. Afterwards Et₃SiH (1.30 μ l, 8.14 μ mol, 1.00 equiv.) and α -methylstyrene (1.06 ml, 8.14 μ mol, 1.00 equiv.) were added and the mixture was stored for 18 h at -36 °C. NMR analysis revealed the quantitative formation of hydrosilylationproduct **E** while both **3** and **6** stayed intact. The formation of deuterated **E**-*d* was not observed.

Initiation with Et₃SiD

Figure S 29: Stacked ¹H NMR spectra of stoichiometric hydrosilylation experiment with isotopically marked Et₃SiD in CD₂Cl₂ selectively forming product **E**. The spectra show additionally show reactants Et₃SiH (\$) and α -methylstyrene (@) directly after the addition. No formation of the Ge-H species or potential reaction product **E**-*d* was observed.

66.8 - 67.0 - 67.2 - 67.4 - 67.6 - 67.8 - 68.0 - 68.2 - 68.4 - 68.6 - 68.8 - 69.0 - 69.2 - 69.4 - 69.6 - 69.8 - 70.0 - 70.2 - 70.4 - 70.6 - 70.8 - 71.0 - 71.2 - 71.4 - 71.6 - 71.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.4 - 72.6 - 72.2 - 72.4 - 72.6 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.2 - 72.4 - 72.6 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.0 - 72.2 - 72.4 - 72.6 - 72.8 - 72.

Figure S 30: Stacked ¹⁹F NMR spectra of stoichiometric hydrosilylation experiment with Et_3SiD in CD_2Cl_2 . The formation of an undefined side product **X** is observed while the germylene species **3** and **6** (#) stayed intact.

Initiation with Et₃SiH

To double check the obtained results **1** (6.00 mg, 8.14 μ mol, 1.00 equiv.) was reacted with non-deuterated Et₃SiH (1.67 μ l, 8.14 μ mol, 1.00 equiv.) in 0.4 ml CD₂Cl₂ to generate perfluoropinacolatogermylene **3** and triethylsilyl perfluoropinacol **4**. Full conversion was confirmed by NMR analysis. Afterwards deuterated Et₃SiD (1.30 μ l, 8.14 μ mol, 1.00 equiv.) and α -methylstyrene (1.06 ml, 8.14 μ mol, 1.00 equiv.) were added and the mixture was stored for 18 h at -36 °C. NMR analysis revealed the quantitative formation of hydrosilylationproduct **E**-*d* while catalyst **3** and **4** stayed intact. This time, no formation of non-deuterated **E** was observed.

Figure S 31: Stacked ¹H NMR spectra of stoichiometric hydrosilylation experiment with Et₃SiD (initiating with Et₃SiH addition) in CD₂Cl₂ selectively forming hydrosilylation product **E**-*d*. The spectra additionally contain reactants isotopically marked Et₃SiD (\$) and α -methylstyrene (@) directly after the addition. No conversion of **4** (#) species or formation of reaction product **E** was observed in this case.

-67.0 -67.2 -67.4 -67.6 -67.8 -68.0 -68.2 -68.4 -68.6 -68.8 -69.0 -69.2 -69.4 -69.6 -69.8 -70.0 -70.2 -70.4 -70.6 -70.8 -71.0 -71.2 -71.4 -71.6 -71.8 -72.0 -72.2 -72.4 -72.6 -72.8 -73.0

Figure S 32: Stacked ¹⁹F NMR spectra of stoichiometric hydrosilylation experiment with Et₃SiD (initiating with Et₃SiH addition) in CD₂Cl₂. The formation of an undefined side product **X** was observed while the germylene species **3** and **4** (#) stayed untouched.
3 Computational Section

Calculations were carried out using ORCA 5.0.4.^[17]

Geometry optimizations for the mechanistic investigations were carried out at the PBE0^[18] level of theory. The calculations utilized the atom-pairwise dispersion correction based on tight binding partial charges (D4),^[19] the def2-TZVP basis set,^[20] CPCM solvation model with the corresponding parameters for dichloromethane, benzene, and acetonitrile. The method is denoted as PBE0-D4(CPCM)/def2-TZVP. The calculations were accelerated by resolution-of-identity (RI) approximation with def2/J auxiliary basis set.^[21] The optimized geometries were verified as minima or transition states by analytical frequency calculations. The transition states were verified by IRC calculations. Cartesian coordinates of the optimized geometries are given in Appendix A.

For details regarding the ion affinities calculations see section 3.6 Calculation of ion affinities.

3.2 Hydrosilane activation mechanism

The activation of HSiEt₃ with donor-free germane **1** and silane **2** was calculated on the BPE0-D4(CPCM=DCM)/BPE0-D4(CPCM=DCM) level of theory (Figure S 33). The reactions are predicted to proceed in two step. First, the silane coordinates to the Lewis acidic center to form the intermediate **INT_A**. The second step involves the formal metathesis reaction of Si-H E-O bond to form the ring-opening product **3***. With a barrier of 12.8 kcal mol⁻¹ (TS(1_INT_A_Ge)) the hydride abstraction and the ring opening are easily accessible in the case of germane **1**. In the silicon case, the barrier (TS(INT_A_Si_3*)) is significantly higher in energy (28.8 kcal mol⁻¹). Furthermore, the overall process is endergonic by 5.9 kcal mol⁻¹. In contrast, for germane **1** the reaction is exergonic by 13.0 kcal mol⁻¹. The calculations align well with the experimentally observed reactivity, as no interaction between silane **2** and hydrosilanes was monitored. Germylene **1** on the other hand readily activates Et₃SiH forming compound **3*** that decomposes to release the germylene **3** and mono-silylated perfluoropinacol **4**.

Compound	Е	Н	G	Gs
HSiEt ₃	-527.47794089	-527.26095375	-527.30955265	-527.3065325
1	-5229.60383427	-5229.40102877	-5229.50026724	-5229.497247
TS(1_INT_A_Ge)	-5757.08372525	-5756.66273811	-5756.78633436	-5756.783314
INT_A_Ge	-5757.09570753	-5756.67461003	-5756.79886433	-5756.795844
TS(INT_A_3*_Ge)	-5757.08459280	-5756.66407390	-5756.78714612	-5756.784126
3*_Ge	-5757.12723823	-5756.70436594	-5756.82749411	-5756.784126
2	-3442.33762144	-3442.13280403	-3442.23043761	-3442.227417
TS(1_INT_A_Si)	-3969.80591658	-3969.38299325	-3969.50463621	-3969.501616
INT_A_Si	-3969.80988667	-3969.38569342	-3969.50849320	-3969.505473
TS(INT_A_3*_Si)	-3969.79415802	-3969.37080317	-3969.49109157	-3969.488071
3*_Si	-3969.83058328	-3969.40556420	-3969.52758424	-3969.524564

3.3 Thermochemistry analysis of the hydrosilylation catalytic cycle

The reported energy differences for reaction components are at the PBE0-D4(CPCM)/def2-TZVP//PBE0-D4(CPCM)/def2-TZVP level of theory with the gas to liquid phase correction term, i.e. concentration-induced free-energy shift $G_{conc} = RTln(24.5)$ (1.51, 1.90 and 2.24 kcal mol⁻¹ at 238.15, 298.15 and 298.15K, respectively) is included in the free energy G_s of each compound.

Table S 5: Thermochemistry analysis at 238.15, 298.15 and 353.15 K for the components of the reaction mechanism in Figure 4, calculated at the PBE0-D4(CPCM=DCM)/def2-TZVP level of theory. $E - Electronic energy (E_h)$; $(G-E)_T - Gibbs energy minus the electronic energy at the different temperatures <math>(E_h)$; $G_T - Gibbs energy at the different temperatures <math>(E_h)$; $G_T = E + (G-E)_T + G_{cone,T}$.

		igj at the unit	ient temperata		2 (0 2)] : 0	colic 1.	
Compound	E	(G-E) _{238.15K}	(G-E) _{298.15K}	(G-E) _{353.15K}	G _{S,238.15K}	G _{S,298.15K}	G _{S,353.15K}
HSiEt ₃	-527.47794	0.17746	0.16839	0.15941	-527.29806	-527.30653	-527.31495
$C_6H_5C(CH_3)=CH_2$	-348.67931	0.13738	0.12950	0.12174	-348.53952	-348.54679	-348.55399
PhC(H)(CH ₃)-CH ₂ SiEt ₃	-876.20164	0.33974	0.32769	0.31545	-875.85948	-875.87093	-875.88261
(pin ^F)Ge: (3)	-3653.18557	0.04907	0.03726	0.02535	-3653.13409	-3653.14529	-3653.15664
INT1	-7655.09020	0.27477	0.25312	0.23058	-7654.81303	-7654.83406	-7654.85605
TS1	-7655.08522	0.27506	0.25363	0.23130	-7654.80775	-7654.82857	-7654.85034
INT2	-8182.57273	0.47418	0.44852	0.42165	-8182.09614	-8182.12119	-8182.14750
TS2	-8182.56381	0.47632	0.45096	0.42439	-8182.08508	-8182.10984	-8182.13585

3.4 Alternative mechanisms for the catalytic hydrosilylation

Initially we considered a few proposed mechanisms for catalytic hydrosilylation of the α -methylstyrene mediated by the germylene **3**, which involved one molecule of the germylene.

In the mechanism shown in Figure S34, α -methylstyrene coordinates to the germylene to form the coordination intermediate **INT1'**. The concerted addition of the silane across the C-C bond is exergonic by 12.3 kcal mol⁻¹, however it need to overcome a very high lying transition state **TS3** at 37.0 kcal mol⁻¹, making this reaction pathway infeasible under the experimental conditions.

Figure S 34: Alternative mechanism for hydrosilylation by 3, via olefin activation.

In an additional mechanism that was considered by us, the silane an the olefin are activated in a concerted fashion via a 5-membered transition state **TS4** at 23.8 kcal mol⁻¹ to form the Ge(IV) intermediate **INT3**. However, **TS4** is by 2.0 kcal mol⁻¹ higher in energy that the rate determining transition state **TS2**. Additionally, the intermediate **INT3** is a very deep minimum. The reductive elimination of the silylated product from **INT3** is endergonic by 8.8 kcal mol⁻¹ and would need to overcome a barrier of 54.6 kcal mol⁻¹, which is unfeasible. Since **INT3** is not observed in the catalytic reaction mixtures we also rule out this scenario.

Figure S 35: Alternative mechanism for hydrosilylation by 3, via concerted activation of the silane and the olefin.

We also considered a possibility in which the germylene activates the silane at the first step of the catalytic cycle. Thus, we calculated the transition states and the products of the oxidation addition of the germanium center across the Si-H bond to form the corresponding germane **5** (Figure 36, purple), as well the addition across the Ge-O bond to form the silyl ether **6** (Figure 36, orange). In the former case, the reaction is exergonic by 2.5 kcal mol⁻¹, however the barrier, **TS6** at 34.5 kcal mol⁻¹ is too high to overcome at rt. The formation of **6**, is both endergonic and requires a very high barrier, **TS7** at 36.0 kcal mol⁻¹. Thus, we had to rule out the mechanism of the catalytic hydrosilylation that involve initial activation of the silane by **3**.

Figure S 36. Activation of Et_3SiH by 3. .

Table S 6: PBE0-D4(CPCM=**DCM**)/def2-TZVP//PBE0-D4(CPCM=**DCM**)//def2-TZVP calculated energies (E_h) (E – electronic energy; H – total enthalpy; G – Gibbs energy; G_S = G + G_{conc}) of the compounds in Figures S34, S35, S36. Thermochemistry at 298.15 K.

1,5		1	6	
Compound	Е	Н	G	Gs
Et ₃ SiH	-527.47794089	-527.26095375	-527.30955265	-527.3065325
C ₆ H ₅ C(CH ₃)=CH ₂	-348.67930941	-348.50860159	-348.54980691	-348.5467868
PhC(H)(CH ₃)-CH ₂ SiEt ₃	-876.20163736	-875.80789303	-875.87394682	-875.8709267
(pin ^F)Ge: (3)	-3653.18556968	-3653.08432860	-3653.14830528	-3653.145285
INT1'	-4001.88343534	-4001.60950462	-4001.69322602	-4001.690206
INT3	-4529.42479979	-4528.92716084	-4529.03327144	-4529.030251
5	-4180.68961685	-4180.36895133	-4180.45874709	-4180.455727
6	4180.66063500	-4180.34073622	-4180.43037547	-4180.427355
TS3	-4529.33050459	-4528.83632640	-4528.94268493	-4528.939665
TS4	-4529.34815297	-4528.85730789	-4528.96362146	-4528.960601
TS5	-4529.33432713	-4528.83959212	-4528.94643774	-4528.943418
TS6	-4180.62860727	-4180.31071973	-4180.39985862	-4180.396838
TS7	-4180.62859703	-4180.31011627	-4180.39745030	-4180.394430

3.5 Calculated energies for compounds in Figure 3 and Scheme 2B.

Table S 7: PBE0-D4(CPCM=**Benzene**)/def2-TZVP/PBE0-D4(CPCM=**Benzene**)//def2-TZVP calculated energies (E_h) (E – electronic energy; H– total enthalpy; G – Gibbs energy; G_S = G + G_{conc}) of the compounds in Figure 3. Thermochemistry at 298.15 K.

Compound	Е	Н	G	Gs
1·MeCN	-5362.27989486	-5362.02487581	-5362.13407019	-5362.13105
2·MeCN	-3575.00611941	-3574.74907229	-3574.85531876	-3574.852299
$B(C_{6}F_{5})_{3}$	-2207.04435998	-2206.85835763	-2206.94390926	-2206.940889
$MeCN \cdot B(C_6F_5)_3$	-2339.72502805	-2339.48685703	-2339.58041533	-2339.577602
1	-5229.60274820	-5229.39943902	-5229.49860457	-5229.495584
2	-3442.33672263	-3442.13138544	-3442.22895812	-3442.225938

Compound	Е	Н	G	Gs
Et ₃ SiH	-527.47794089	-527.26095375	-527.30955265	-527.3065325
1	-5229.60383427	-5229.40102877	-5229.50026724	-5229.497247
1·MeCN	-5362.28957277	-5362.03518325	-5362.14349099	-5362.140471
B[H-1]	-5230.38307456	-5230.17303971	-5230.27259092	-5230.269571
$[MeCN \rightarrow Et_3Si]^+$	-659.40109109	-659.13947027	-659.19731608	-659.1942959
3	-3653.18556968	-3653.08432860	-3653.14830528	-3653.145285
3·MeCN	-3785.85639647	-3785.70362806	-3785.77885706	-3785.775837
3*_Ge	-5757.12723823	-5756.70436594	-5756.82749411	-5756.784126
4	-2103.92509554	-2103.60313079	-2103.68923676	-2103.686217

Table S 8: PBE0-D4(CPCM=DCM)/def2-TZVP//PBE0-D4(CPCM=DCM)//def2-TZVP calculated energies (E_h) (E – electronic energy; H – totalenthalpy; G – Gibbs energy; G_S = G + G_{conc}) of the compounds in Scheme 2B. Thermochemistry at 298.15 K.

Table S 9: PBE0-D4(CPCM=acetonitrile)/def2-TZVP//PBE0-D4(CPCM=acetonitrile)//def2-TZVP calculated energies (E_h) (E – electronicenergy; H – total enthalpy; G – Gibbs energy; G_S = G + G_{conc}) of the compounds in Scheme 2B. Thermochemistry at 298.15 K.

Compound	Е	Н	G	Gs
Et ₃ SiH	-527.47814599	-527.26125033	-527.30985532	-527.3068352
1	-5229.60411347	-5229.40144558	-5229.50070480	-5229.497685
1·MeCN	-5362.29230028	-5362.03809409	-5362.14640094	-5362.143381
B[H-1]	-5230.38799575	-5230.17806933	-5230.27760702	-5230.274587
$[MeCN \rightarrow Et_3Si]^+$	-659.40790905	-659.14636791	-659.20410583	-659.2010857
3·MeCN	-3785.85836779	-3785.70572528	-3785.78067625	-3785.777656
4	-2103.92589053	-2103.60407120	-2103.69020638	-2103.687186

For comparison with the previously published results,^[1] the gas phase ion affinities of **1** were calculated at the same level of theory, i.e. PBE0-D3BJ^[22]/def2-TZVPP//DLPNO-CCSD(T)/aug-cc-pVQZ.^[23] The ion affinity values of the reference compound Me₃Si⁺ (FIA = 953 kJ, HIA = 924 kJ) calculated at the CCSD(T)/CBS level of theory are taken from literature (Figure S 37).^[24] The calculated energies are given in Table 1.

Figure S 37. . Hydride and fluoride ion affinities of 1, relative to the reference compound Me₃Si⁺.

 $Table \ 1. \ Calculated \ E_{PBE0-D3} (electronic \ energy, (E_h)) \ and \ H_{PBE0-D3} (enthalpy, (E_h)) \ at \ the \ PBE0-D3/def2-TZVPP/PBE0-D3/def2-TZVPP \ level \ of \ theory. \ E_{(DLPNO-CCSD(T))} - electronic \ energy \ at \ the \ DLPNO-CCSD(T)/aug-cc-pVQZ/PBE0-D3/def2-TZVPP \ level \ of \ theory.$

, (======(=))	0,		() 0 1
Compound	E _{PBE0-D3}	H _{PBE0-D3}	E _{(DLPNO-CCSD(T))}
(pin ^F) ₂ Ge	-5229.589261	-5229.385278	-5227.503704
$[(pin^{F})_{2}GeH]^{-}(B[H-1])$	-5230.319351	-5230.108305	-5228.237155
$[(pin^{F})_{2}GeF]^{-}(B[F-1])$	-5329.565126	-5329.358558	-5327.464448
Me ₃ SiH	-409.6509397	-409.5238372	-409.254734
Me ₃ SiF	-508.9243983	-508.8018046	-508.5078966
Me ₃ Si ⁺	-408.7706389	-408.6529826	-408.3665695

4 Single-Crystal X-ray Diffraction Analysis

4.1 Crystal Structure of 1. MeCN

Figure S 38: Molecular structure of 1·MeCN with translational ellipsoids plotted at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ge1–N1 1.933(4), Ge1–O1 1.827(3), Ge1–O2 1.794(3), Ge1–O3 1.782(3), Ge1–O4 1.833(3); O1–Ge1–O2 88.39(12), O1–Ge1–O4 179.20(13), O3–Ge1–O4 88.12(12), O2–Ge1–O3 136.47(13).

4.2 Crystal Structure of [K·(18-c-6)][F-1]

Figure S 39: Molecular structure of $[K \cdot (18-c-6)][F-1]$ with translational ellipsoids plotted at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ge1–F1 1.7274(16), Ge1–O1 1.8122(19), Ge1–O2 1.841(2), Ge1–O3 1.8100(19), Ge1–O4 1.8467(19), F1–K1 2.8189(18); O1–Ge1–O4 90.60(9), O2–Ge1–O3 87.58(8), O1–Ge1–O2 86.70(9), O3–Ge1–O4 86.88(8).

4.3 Crystal Structure of donor-free silane 2

Figure S 40: Molecular structure of MeCN-free **2** with translational ellipsoids plotted at 50% probability level. Hydrogen atoms are omitted for clarity. The structure contains a second, twisted overlaying disordered, that is also omitted for clarity reasons. Selected bond lengths [Å] and angles [°]: Si1–O1 1.744(18), Si1–O2 1.754(17), Si1–O3 1.779(18), Si1–O4 1.684(18); O1–Si1–O4 131.7(8), O2–Si1–O3 166.0(8).

4.4 Crystal Structure of dioxane-coordinated germylene 3

Figure S 41: Molecular structure of 1,4-dioxane-coordinted germylene **3** with translational ellipsoids plotted at 50% probability. Hydrogen atoms are omitted for clarity. The figure contains two symmetry-generated unit cells. Selected bond lengths [Å] and angles [°]: Ge011–O1 1.853(2), Ge01–O2 1.853(2), Ge01–O3 2.241(3); O1–Ge01–O2 85.60(10), O1–Ge01–O3 84.71(10), O2–Ge01–O3 106.29(11).

4.5 Preliminary crystal structure of donor-free 1

Figure S 42: Preliminary molecular structure of **1** with translational ellipsoids plotted at 50% probability. Because of heavy disorder only insufficient data refinement was possible. The depicted structure demonstrates a similar connectivity as for compound **2**. However, no bond lengths and angles can be discussed. This depiction is no structure evidence due to lacking data quality.

Table S 10: Crystallographic Details.

	1·MeCN	[K·(18-c-6)][F-1]	2
CCDC-Number	2286080	2286083	2286081
		Crystal Data	
Chemical formula	C14H3F24GeNO4	$C_{48}H_{47}F_{50}Ge_2K_2O_{20}$	$C_{12}F_{24}O_4Si$
$M_{ m r}$	777.78	2116.91	692.21
Crystal system, space group	Orthorhombic, <i>Pbcn</i>	Triclinic, -P1	Orthorhombic, $P2_12_12$
Temperature (K)	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	23.5238(15), 8.6067(5), 21.8982(13)	11.2001(10), 15.7831(14), 22.3057(19)	8.3174(7), 10.3383(8), 11.4253(8)
α, β, γ (°)	90, 90, 90	107.062(3), 102.834(3), 95.235(3)	90, 90, 90
$V(Å^3)$	4433.6(5)	3623.2(6)	982.44(13)
Ζ	8	2	2
Radiation type	Mo Ka	Mo Ka	Mo Ka
μ (mm ⁻¹)	1.611	1.141	0.369
Crystal size (mm)	$0.174 \times 0.112 \times 0.068$	$0.58 \times 0.318 \times 0.279$	$0.255\times0.207\times0.160$
Crystal shape	Fragment	Block	Fragment
Color	Clear colorless	Clear colorless	Clear colorless
		Data Collection	
Diffractometer	Bruker Photon CMOS	Bruker Photon CMOS	Bruker Photon CMOS
Absorption correction	Multi-scan	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.7453, 0.6764	0.7453, 0.6350	0.7452, 0.5419
No. of measured, independent, and observed $[I > 2\sigma(I)]$ reflections	117042, 4064, 3029	133009, 13270, 11373	6489, 1797, 1437
$R_{ m int}$	0.0960	0.0472	0.0820
θ range (°) for cell measurement	2.52-25.35	2.33-25.72	2.66-25.34
Data completeness	0.999	1.000	0.998
		Refinement	
$R[F^2 > 2\sigma(F^2)], R(F^2), S$	0.0458, 0.1171, 1.017	0.0348, 0.0717, 1.087	0.0619, 0.1409, 1.047
No. of reflections	4046	13270	1797
No. of parameters	270	1277	177
No. of restraints	398	56	523
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	2.38, -2.38	0.55, -0.48	0.47, -0.49

	1	$(3)_2 \cdot C_4 H_8 O_2$
CCDC-Number	2286830	2286082
	Crysta	l Data
Chemical formula	C12F24GeO47	$C_{16}H_8F_{24}Ge_2O_6$
$M_{ m r}$	736.73	897.40
Crystal system, space group	Orthorhombic, $P2_12_12$	Monoclinic, P2 ₁ /n
Temperature (K)	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	18.5204(10), 18.7351(9), 11.6382(6)	11.8448(8), 7.7953(5), 14.4848(9)
α, β, γ (°)	90, 90, 90	90, 93.398(2), 90
$V(\text{\AA}^3)$	4038.2(4)	1335.08(15)
Ζ	8	2
Radiation type	Mo Ka	Mo Ka
μ (mm ⁻¹)	1.760	2.454
Crystal size (mm)	$0.258\times0.245\times0.201$	$0.298 \times 0.25 \times 0.154$
Crystal shape	Fragment	Block
Color	Clear colorless	Clear colorless
	Data Co	ollection
Diffractometer	Bruker Photon CMOS	Bruker Photon CMOS
Absorption correction	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.7453, 0.5705	0.7453, 0.5707
No. of measured, independent, and observed $[I > 2\sigma(I)]$ reflections	154374, 8248, 7776	54591, 2443, 2328
$R_{ m int}$	0.0486	0.0412
θ range (°) for cell measurement	2.20-26.67	2.16-25.35
Data completeness	0.999	1.000
	Refine	ement
$R[F^2 > 2\sigma(F^2)], R(F^2), S$	0.1054, 0.3131, 1.618	0.0374, 0.0891, 1.157
No. of reflections	8248	2443
No. of parameters	720	217
No. of restraints	2945	0
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	1.93, -1.34	1.59, -0.62

The data have been assigned the following deposition numbers which can either be quoted as CCDC Numbers or CSD Numbers. A CCDC Number is usually quoted for an organic or metalorganic structure, whereas a CSD Number is usually quoted for an inorganic structure.

CCDC XXXXXX-YYYYYYY (generally used for organic and metal-organic structures)

CSD XXXXXX-YYYYYYY (generally used for inorganic structures)

Deposition Number 2286080-2286083, 2286830 _____ Summary of Data - Deposition Number 2286080 _____ Compound Name: Data Block Name: data_GraAn1_fine Unit Cell Parameters: a 23.5238(15) b 8.6067(5) c 21.8982(13) Pbcn _____ _____ Summary of Data - Deposition Number 2286081 _____ Compound Name: Data Block Name: data_TscFl23_fine Unit Cell Parameters: a 8.3174(7) b 10.3383(8) c 11.4253(8) P21212 _____ _____ Summary of Data - Deposition Number 2286082 _____ Compound Name: Data Block Name: data mo tscfl32 0ma a Unit Cell Parameters: a 11.8448(8) b 7.7953(5) c 14.4848(9) P21/n _____ Summary of Data - Deposition Number 2286083 _____ Compound Name: Data Block Name: data_mo_tscfl29_0m Unit Cell Parameters: a 11.2001(10) b 15.7831(14) c 22.3057(19) P-1 _____ _____ Summary of Data - Deposition Number 2286830 _____ Compound Name:

Data Block Name: data_TscFl26_fine2 Unit Cell Parameters: a 18.5204(10) b 18.7351(9) c 11.6382(6) P21212

5 NMR Spectra

5.1 NMR spectra of 1·MeCN

-3 ò -1 -2 Figure S 43: ¹H NMR spectrum of 1·MeCN in CD₃CN at 300 K.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S 44:** ¹³C NMR spectrum of **1**·MeCN in CD₃CN at 300 K.

-22 40 20 0 -20 -40 -60 -80 -100 -120 -180 -200 60 -140 -160 **Figure S 45:** ¹⁹F NMR spectrum of **1**·MeCN in CD₃CN at 300 K.

5.2 NMR spectra of 1

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S 47:** ${}^{13}C$ NMR spectrum of **1** in CD₃CN at 300 K.

60 40 20 0 -20 -40 -60 -80 -100 -180 -200 -22 -120 -140 -160 Figure S 48: ¹⁹F NMR spectrum of 1 in CD₃CN at 300 K.

5.3 NMR spectra of 2

²⁴⁰ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S 50:** ¹³C NMR spectrum of **2** in CD₃CN at 300 K.

Figure S 51: ¹⁹F NMR spectrum of 2 in CD₃CN at 300 K.

Figure S 52: ²⁹Si{¹H} NMR spectrum of **2** in CD₃CN at 300 K.

5.4 NMR spectra of [K·18-c-6][1-F]

 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3

 Figure S 53: 1 H NMR spectrum of [K·(18-c-6)][1-F] in CD₃CN at 300 K.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S 54: ^{13}C NMR spectrum of [K·(18-c-6)][1-F] in CD₃CN at 300 K.

40 20 -20 -40 -60 -80 -100 -120 -22 60 0 -140 -160 -180 -200 Figure S 55: ¹⁹F NMR spectrum of [K·(18-c-6)][1-F] in CD₃CN at 300 K. The spectrum additionally contains little amounts of an impurity (A) which could be identified as unreacted 1. MeCN.

5.5 NMR spectra of [Et₃Si·MeCN][H-1]

Figure S 56: ¹H NMR spectrum of [Et₃Si·MeCN][H-1] in CD₃CN at 300 K.

²⁴⁰ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S 57**: ¹³C NMR spectrum of [Et₃Si·MeCN][**1**-F] in CD₃CN at 300 K.

Figure S 59: ²⁹Si{¹H} NMR spectrum of [Et₃Si·MeCN][**1**-F] in CD₃CN at 300 K.

5.6 NMR spectra of compound mixture 3 and 4

²⁴⁰ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 **Figure S 61:** ¹³C NMR spectrum of **3** and **4** in CD₂Cl₂ at 300 K.

60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -22 Figure S 62: ¹⁹F NMR spectrum of 3 and 4 in CD₂Cl₂ at 300 K.

180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 **Figure S 63:** 29 Si{ 1 H} NMR spectrum of **3** and **4** in CD₂Cl₂ at 300 K.

Figure S 64: ¹H NMR spectrum of (3)₂·dioxane in CD₂Cl₂ at 300 K.

Figure S 65: ¹³C NMR spectrum of (3)₂·dioxane in CD₂Cl₂ at 300 K.

Figure S 66: ¹⁹F NMR spectrum of (3)₂·dioxane in CD₂Cl₂ at 300 K.

6 References

- [1] F. S. Tschernuth, T. Thorwart, L. Greb, F. Hanusch, S. Inoue, *Angew. Chem. Int. Ed.* **2021**, *60*, 25799-25803.
- [2] G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881.
- [3] Y. Soltani, L. C. Wilkins, R. L. Melen, Angew. Chem. Int. Ed. 2017, 56, 11995-11999.
- [4] M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, R. A. Fischer, *Dalton Trans.* 2021, 50, 9031-9036.
- [5] Bruker AXS Inc., Madison, Wisconsin, USA, **2015**.
- [6] SAINT, Version 8.40A ed., Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- [7] SADABS, Version 2016/2, ed., Bruker AXS Inc., Madison, Wisconsin, USA, **2016**.
- [8] (a) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Acta Crystallogr., Sect. A* 2015, *71*, 59-75; (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2009, *42*, 339-341; (c) G. M. Sheldrick, *Acta Crystallogr., Sect. C* 2015, *71*, 3-8.
- [9] G. M. Sheldrick, University of Göttingen, Göttingen, Germany, 2014.
- [10] C. B. Huebschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
- [11] G. M. Sheldrick, University of Göttingen, Göttingen, Germany, 1998.
- [12] A. J. C. Wilson, *International Tables for Crystallography, Vol. C*, Kluwer Academic Publishers, Dordrecht, Netherlands **1992**.
- [13] (a) A. L. Spek, Utrecht University, Utrecht, Netherlands 2010; (b) C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, *J. Appl. Crystallogr.* 2020, *53*, 226-235.
- [14] (a) X. Yuan, Y. Wang, *Angew. Chem. Int. Ed.* 2022, *61*, e202203671; (b) N. Bartalucci, M. Bortoluzzi, S. Zacchini, G. Pampaloni, F. Marchetti, *Dalton Trans.* 2019, *48*, 1574-1577.
- [15] A. T. Henry, D. A. R. Nanan, K. M. Baines, *Dalton Trans.* **2023**, *52*, 10363-10371.
- [16] R. J. Andrews, S. S. Chitnis, D. W. Stephan, *Chemical Communications* 2019, 55, 5599-5602.
- [17] F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.
- [18] C. Adamo, V. Barone, *The Journal of Chemical Physics* **1999**, *110*, 6158-6170.
- [19] (a) E. Caldeweyher, J.-M. Mewes, S. Ehlert, S. Grimme, *Physical Chemistry Chemical Physics* 2020, 22, 8499-8512; (b) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, *The Journal of Chemical Physics* 2019, 150; (c) E. Caldeweyher, C. Bannwarth, S. Grimme, *The Journal of Chemical Physics* 2017, 147.
- [20] F. Weigend, R. Ahlrichs, *Physical Chemistry Chemical Physics* 2005, 7, 3297-3305.
- [21] F. Weigend, *Physical Chemistry Chemical Physics* **2006**, *8*, 1057-1065.
- [22] (a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465; (b) S.
 Grimme, J. Antony, S. Ehrlich, H. Krieg, The Journal of Chemical Physics 2010, 132.
- [23] (a) A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., *The Journal of Chemical Physics* 1999, *110*, 7667-7676; (b) R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, *The Journal of Chemical Physics* 1992, *96*, 6796-6806.
- [24] (a) P. Erdmann, L. Greb, *ChemPhysChem* 2021, 22, 935-943; (b) P. Erdmann, J. Leitner, J. Schwarz, L. Greb, *ChemPhysChem* 2020, 21, 987-994.

7 Appendix A

Calculated energies and coordinates of **1** at PBE0-D4(CPCM=DCM)/def2-TZVP

		,	
Elect	ronic energy		-5229.60383427 Eh
Total	Enthalpy		-5229.40102877 Eh
Final	Gibbs free	energy	5229.50026724 Eh
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)
Ge	4.685199	14.396301	8.765874
0	3.400303	14.407805	7.561079
0	5.968291	14.387158	7.558922
0	4.503637	13.123260	9.970294
0	4.867964	15.666865	9.972762
С	3.918783	14.673253	6.291482
С	5.447681	14.122588	6.289949
С	2.933721	14.010537	5.270178
F	2.726050	12.736069	5.563454
F	3.400052	14.098629	4.031885
F	1.750827	14.612131	5.307761
С	3.834705	16.236199	6.149355
F	4.150103	16.662887	4.937730
F	4.654749	16.797439	7.045402
F	2.617044	16.666525	6.437658
С	5.531834	12.559691	6.146527
F	6.750730	12.129629	6.429950
F	5.211964	12.133313	4.936010
F	4.715328	11.997694	7.045382
С	6.430489	14.786252	5.267081
F	7.614271	14.186346	5.303116
F	6.636861	16.061142	5.559341
F	5.962245	14.696999	4.029548
С	4.844835	13.598852	11.239649
С	4.527968	15.188572	11.241476
С	4.045778	12.726153	12.265204
F	2.756748	12.695973	11.965633
F	4.188409	13.182577	13.502119
F	4.481358	11.473039	12.238279
С	6.377693	13.284298	11.385876
F	6.832931	13.511492	12.607785
F	7.064497	14.028300	10.512440
F	6.625161	12.022199	11.075366
С	2.995291	15.502877	11.390005
F	2.307268	14.760211	10.516445
F	2.747454	16.765457	11.081687
F	2.541760	15.273873	12.612236
С	5.327789	16.058812	12.268524
F	4.890622	17.311460	12.247018
F	6.616231	16.091654	11.966783
F	5.187776	15.597790	13.504033

Calculated energies and coordinates of **1** at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Elect	ronic energy	y	-5229.60411347 Eh
Total	Enthalpy		-5229.40144558 Eh
Final	Gibbs free	energy .	5229.50070480 Eh
CAR	TESIAN CO	OORDINATI	ES (ANGSTROEM)
Ge	4.685208	14.396305	8.765831
0	3.400375	14.407608	7.560853
0	5.968231	14.387365	7.558691
0	4.503546	13.123351	9.970455
0	4.868078	15.666779	9.972926
С	3.918751	14.673209	6.291305
С	5.447717	14.122640	6.289769
С	2.933685	14.010358	5.270076
F	2.726365	12.735773	5.563236
F	3.399694	14.098727	4.031695
F	1.750524	14.611511	5.308049
С	3.834579	16.236193	6.149051
F	4.150346	16.662657	4.937426
F	4.654262	16.797565	7.045179

F	2.616702	16.666361	6.436814
С	5.531953	12.559704	6.146226
F	6.751059	12.129792	6.429107
F	5.211703	12.133548	4.935714
F	4.715805	11.997585	7.045166
С	6.430526	14.786426	5.266964
F	7.614566	14.186940	5.303368
F	6.636575	16.061428	5.559107
F	5.962584	14.696905	4.029350
С	4.844797	13.598832	11.239770
С	4.528018	15.188596	11.241595
С	4.045565	12.726174	12.265220
F	2.756451	12.696478	11.965869
F	4.188539	13.182175	13.502250
F	4.480579	11.472822	12.237822
С	6.377681	13.284214	11.386250
F	6.832579	13.511656	12.608282
F	7.064600	14.027991	10.512912
F	6.625052	12.021961	11.076178
С	2.995313	15.502957	11.390361
F	2.307189	14.760504	10.516897
F	2.747567	16.765685	11.082467
F	2.542109	15.273711	12.612708
С	5.327996	16.058793	12.268554
F	4.891368	17.311672	12.246598
F	6.616521	16.091182	11.967037
F	5.187644	15.598168	13.504173

Calculated energies and coordinates of **1** at PBE0-D4(CPCM=benzene)/def2-TZVP level of theory

Electronic energy	5229.60274820 Eh
Total Enthalpy	5229.39943902 Eh
Final Gibbs free energy	5229.49860457 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	4.685159	14.396278	8.766037
0	3.400027	14.408503	7.561928
0	5.968514	14.386406	7.559797
0	4.503965	13.122915	9.969689
0	4.867537	15.667182	9.972142
С	3.918895	14.673396	6.292163
С	5.447549	14.122414	6.290641
С	2.933897	14.011170	5.270558
F	2.724846	12.737162	5.564280
F	3.401474	14.098159	4.032600
F	1.752007	14.614445	5.306566
С	3.835142	16.236194	6.150513
F	4.149021	16.663698	4.938822
F	4.656629	16.796962	7.046130
F	2.618322	16.667110	6.440935
С	5.531425	12.559665	6.147664
F	6.749502	12.129044	6.433206
F	5.213111	12.132489	4.937059
F	4.713488	11.998092	7.046072
С	6.430309	14.785644	5.267529
F	7.613125	14.184130	5.302067
F	6.637957	16.060091	5.560250
F	5.960903	14.697465	4.030303
С	4.844963	13.598921	11.239188
С	4.527789	15.188490	11.241016
С	4.046565	12.726069	12.265129
F	2.757850	12.694010	11.964770
F	4.187900	13.184070	13.501630
F	4.484300	11.473848	12.240018
С	6.377710	13.284568	11.384469
F	6.834191	13.510772	12.605975
F	7.064131	14.029418	10.510749
F	6.625511	12.023050	11.072317
С	2.995232	15.502637	11.388668
F	2.307528	14.759179	10.514830
F	2.747098	16.764657	11.078757
F	2.540502	15.274615	12.610514
С	5.327033	16.058878	12.268384
F	4.887846	17.310671	12.248584

F	6.615158	16.093442	11.965846
F	5.188286	15.596394	13.503507

Calculated energies and coordinates of 1 at PBE0-D3/def2-TZVPP

Electronic energy	5229.58926089 Eh
Total Enthalpy	5229.38527772 Eh
Final Gibbs free energy	5229.48435440 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	4.684919	14.396541	8.766367
0	3.399086	14.412018	7.562320
0	5.969183	14.382601	7.560445
0	4.506453	13.121920	9.969751
0	4.864792	15.668539	9.972346
С	3.918862	14.674686	6.291791
С	5.447532	14.121081	6.290399
С	2.933239	14.012655	5.269991
F	2.722095	12.739530	5.565186
F	3.402303	14.097044	4.032190
F	1.752695	14.618443	5.303234
С	3.836937	16.237708	6.149144
F	4.149339	16.664890	4.936867
F	4.661179	16.798339	7.043268
F	2.621726	16.671221	6.441714
С	5.528933	12.558146	6.146174
F	6.745049	12.124259	6.434428
F	5.212506	12.131806	4.934668
F	4.707386	11.996959	7.042419
С	6.431544	14.783798	5.267429
F	7.612518	14.178800	5.299191
F	6.642368	16.057085	5.562082
F	5.960840	14.699001	4.030238
С	4.846105	13.598709	11.240026
С	4.526538	15.188882	11.241986
С	4.048964	12.723829	12.266021
F	2.760739	12.687565	11.964553
F	4.187659	13.183269	13.502525
F	4.491165	11.473290	12.242906
С	6.379292	13.285847	11.385148
F	6.836488	13.510751	12.606599
F	7.065632	14.032787	10.512081
F	6.629081	12.025397	11.070870
С	2.993620	15.501896	11.389709
F	2.305667	14.756853	10.516345
F	2.743842	16.763008	11.078032
F	2.538224	15.275022	12.611489
С	5.324900	16.060913	12.269420
F	4.881691	17.311181	12.251892
F	6.612498	16.099226	11.965588
F	5.188811	15.596806	13.504466

Calculated energies and coordinates of $1\cdot$ MeCN at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Elect Total Final	ronic energy Enthalpy Gibbs free o	energy	5362.28957277 Eh 5362.03518325 Eh 5362.14349099 Eh
CAR	TESIAN CO	ORDINAT	ES (ANGSTROEM)
Ge	7.941027	6.425840	12.129435
F	10.650589	5.585874	13.222187
F	10.003093	3.775457	14.131377
F	10.993176	5.254610	15.333120
F	8.275080	3.786967	15.924550
F	8.797273	5.563325	17.009722
F	6.861235	5.370436	16.083213
F	11.097633	7.784765	14.388082
F	10.253484	7.702834	16.369903
F	9.880015	9.383743	15.089405
F	7.501127	7.967676	16.520499
F	7.406383	9.306875	14.843194
F	6.366733	7.456059	14.750052

F	9.838419	3.420537	9.189356
F	11.086210	4.991779	9.900026
F	10.261287	5.091347	7.910933
F	6.366974	5.426940	9.495620
F	7.505170	4.888682	7.735565
F	7.366022	3.553359	9.412842
F	11.046699	7.522922	8.947431
F	10.681527	7.203471	11.056494
F	10.081800	9.026340	10.139616
F	8.858120	7.263922	7.255576
F	6.919424	7.499549	8.166545
F	8.365936	9.052019	8.335627
0	7.912244	5.318295	13.587399
0	8.672917	7.679395	13.196825
0	8.652723	5.154543	11.069285
0	7.952680	7.532476	10.670618
Ν	6.014015	6.451158	12.121214
С	8.720782	5.731518	14.614932
С	8.746126	7.355197	14.536179
С	8.746106	5.475172	9.730490
С	8.758984	7.099198	9.649744
С	10.127604	5.081240	14.339260
С	8.154227	5.112732	15.936520
С	10.021270	8.059976	15.110325
С	7.486580	8.027801	15.192919
С	10.010057	4.740717	9.168702
С	7.477774	4.830068	9.062944
С	10.178203	7.717680	9.934794
С	8.216496	7.729188	8.323374
С	4.871807	6.456613	12.108538
С	3.444045	6.465372	12.092814
Η	3.099708	6.220020	11.085471
Η	3.095965	7.462334	12.373813
Η	3.076746	5.725778	12.807771

Calculated energies and coordinates of $1\cdot$ MeCN at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	5362.29230028 Eh
Total Enthalpy	5362.03809409 Eh
Final Gibbs free energy	5362.14640094 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Cr m	I Lon II CC		LD (/ II (OD II
Ge	7.930206	6.422622	12.129657
F	10.652518	5.589092	13.218577
F	10.010828	3.777110	14.128164
F	10.998191	5.259113	15.328957
F	8.286886	3.783436	15.924501
F	8.806611	5.561343	17.008514
F	6.868719	5.362555	16.087213
F	11.093057	7.789951	14.381337
F	10.253640	7.706748	16.364935
F	9.871969	9.385565	15.084002
F	7.502475	7.961833	16.522945
F	7.398174	9.300596	14.845654
F	6.364201	7.446211	14.756276
F	9.839248	3.419613	9.194039
F	11.085562	4.991525	9.905478
F	10.263986	5.089612	7.915064
F	6.367163	5.425837	9.491312
F	7.509609	4.888113	7.733932
F	7.366787	3.552282	9.410692
F	11.046778	7.523820	8.951148
F	10.680849	7.202661	11.059558
F	10.080360	9.025752	10.144221
F	8.863042	7.264189	7.257320
F	6.922181	7.498763	8.163889
F	8.367666	9.051632	8.337146
0	7.914313	5.313411	13.588064
0	8.665882	7.676754	13.195626
0	8.649985	5.153681	11.070542
0	7.950898	7.531590	10.670971
Ν	6.010001	6.444837	12.120900
С	8.723110	5.729491	14.613649
С	8.742881	7.353154	14.534762

С	8.745315	5.474331	9.731986
С	8.758339	7.098337	9.651577
С	10.131579	5.083612	14.336110
С	8.161588	5.109088	15.936818
С	10.016858	8.062091	15.105704
С	7.482637	8.021439	15.195072
С	10.010099	4.739996	9.172598
С	7.478119	4.829513	9.061562
С	10.177202	7.716942	9.938149
С	8.218308	7.728491	8.324043
С	4.867424	6.457451	12.108450
С	3.440968	6.476778	12.091577
Η	3.096587	6.228996	11.084651
Η	3.101154	7.478342	12.366940
Η	3.067547	5.743499	12.810017

Calculated energies and coordinates of 1. MeCN at PBE0-D4(CPCM=benzene)/def2-TZVP level of theory

Electronic energy	5362.27989486 Eh
Total Enthalpy	5362.02487581 Eh
Final Gibbs free energy	5362.13407019 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	7.979426	6.424732	12.128480
F	10.649927	5.576141	13.235244
F	9.991239	3.767957	14.142598
F	10.981727	5.242783	15.348469
F	8.251139	3.788144	15.925208
F	8.767469	5.563868	17.013445
F	6.840568	5.376560	16.066835
F	11.105869	7.771797	14.411163
F	10.247176	7.687402	16.387079
F	9.890646	9.374289	15.110198
F	7.490642	7.974244	16.512473
F	7.419747	9.312157	14.833506
F	6.370072	7.468114	14.731497
F	9.851700	3.429953	9.165345
F	11.096649	5.004028	9.876352
F	10.258730	5.108506	7.892552
F	6.371651	5.413639	9.512165
F	7.496644	4.884165	7.740782
F	7.381825	3.547172	9.418031
F	11.037518	7.536977	8.933571
F	10.681411	7.211462	11.044070
F	10.070029	9.033519	10.131563
F	8.832608	7.264837	7.250374
F	6.901702	7.493844	8.179523
F	8.344869	9.051491	8.333943
0	7.912341	5.321924	13.583823
0	8.691794	7.679396	13.201197
0	8.672826	5.153258	11.063041
0	7.952376	7.527563	10.671940
Ν	6.027545	6.449310	12.120395
С	8.716637	5.729745	14.618866
С	8.752658	7.353077	14.541323
С	8.754503	5.476781	9.723523
C	8.756331	7.100588	9.644481
C	10.121394	5.071844	14.350489
C	8.135509	5.113381	15.934614
C	10.027490	8.050406	15.126988
C	7.492160	8.034322	15.186062
C	10.018890	4.750354	9.150381
C	7.485297	4.823314	9.067058
C	10.173144	7.727043	9.924616
C	8.200778	7.729037	8.323417
C	4.886662	0.455184	12.111010
C	5.455042	0.465/99	12.099322
H	5.104217	0.112203	11.12/500
H	5.10//92	/.48/450	12.268202
н	3.085131	5.812042	12.891586

Calculated energies and coordinates of **B[H-1]** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Elect	tronic energy	y	-5230.38307456 Eh
Tota	l Enthalpy		-5230.17303971 Eh
Final	l Gibbs free	energy	5230.27259092 Eh
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)
Ge	1.084469	-2.222684	-0.633854
0	-0.173615	-1.450155	-1.721323
0	1.787132	-2.932278	-2.238259
0	0.881109	-3.926621	0.017242
0	0.054349	-1.710609	0.866204
С	0.116479	-1.430656	-3.059612
С	1.030650	-2.750814	-3.350123
С	-1.245689	-1.337826	-3.822472
F	-2.090048	-2.290435	-3.448007
F	-1.087875	-1.416225	-5.143006
F	-1.858938	-0.180207	-3.568047
С	0.895750	-0.088022	-3.308534
F	1.095826	0.178226	-4.599145
F	2.077912	-0.107666	-2.691840
F	0.232100	0.943606	-2.789161
С	0.175547	-4.058817	-3.522639
F	0.959134	-5.135558	-3.471789
F	-0.490835	-4.110013	-4.680300
F	-0.694780	-4.190781	-2.527487
С	1.990192	-2.652943	-4.584818
F	2.606404	-3.815908	-4.805081
F	2.953642	-1.758528	-4.394460
F	1.346042	-2.334244	-5.708154
С	0.455542	-4.023072	1.315870
C	-0.492793	-2.722688	1.584419
С	-0.217838	-5.423845	1.484724
F	-1.161974	-5.633840	0.576828
F	-0.763520	-5.572849	2.691166
F	0.672265	-6.406868	1.331716
С	1.760823	-4.013033	2.189944
F	1.540355	-4.286306	3.475633
F	2.374135	-2.832454	2.106037
F	2.635344	-4.909845	1.735505
C	-1.957385	-2.913115	1.043074
F	-1.949962	-3.375131	-0.202061
F	-2.587737	-1.739599	0.996561
F	-2.700314	-3.732095	1.795037
Ċ	-0.603390	-2.246875	3.072607
F	-1.478442	-1.244406	3.184550
F	0.553938	-1.779391	3 527289
F	-1.010197	-3.211488	3 897797
Ĥ	2.327244	-1.427602	-0 254208
	2.02/211	1.12,002	

Calculated energies and coordinates of ${\bf B[H-1]}$ at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	5230.38799575 Eh
Total Enthalpy	5230.17806933 Eh
Final Gibbs free energy	5230.27760702 Eh

CARTESIAN COORDINATES (ANGSTROEM)

· · · · ·	1 201 11 00		L D (1 m (D D)
Ge	1.081630	-2.224234	-0.634726
0	-0.176247	-1.451850	-1.723010
0	1.783342	-2.936136	-2.238893
0	0.878953	-3.928015	0.017599
0	0.049629	-1.711907	0.864466
С	0.116819	-1.430205	-3.061097
С	1.028507	-2.751378	-3.351873
С	-1.243440	-1.333125	-3.826880
F	-2.090118	-2.285684	-3.456565
F	-1.082697	-1.408385	-5.146803
F	-1.855248	-0.175448	-3.569830
С	0.899155	-0.088518	-3.306124
F	1.101498	0.179438	-4.595562
F	2.080173	-0.111816	-2.687351
F	0.236329	0.942878	-2.785202
С	0.171015	-4.057419	-3.526999
F	0.952410	-5.135950	-3.474755
F	-0.493209	-4.106629	-4.685322

M)

F	-0.701244	-4.188521	-2.532843
С	1.990159	-2.654207	-4.585057
F	2.604727	-3.818283	-4.803933
F	2.954644	-1.761547	-4.392174
F	1.348395	-2.334103	-5.708909
С	0.455820	-4.023063	1.317600
С	-0.494430	-2.724464	1.585181
С	-0.214676	-5.424853	1.490008
F	-1.160572	-5.637335	0.584115
F	-0.757241	-5.573100	2.697467
F	0.676940	-6.406056	1.335344
С	1.762569	-4.009209	2.189629
F	1.544318	-4.280642	3.475617
F	2.373521	-2.827632	2.102371
F	2.637701	-4.905167	1.734678
С	-1.959085	-2.918459	1.045610
F	-1.951595	-3.381205	-0.199685
F	-2.591615	-1.745912	0.997884
F	-2.699635	-3.737775	1.798477
С	-0.604172	-2.246635	3.072846
F	-1.480459	-1.245092	3.183494
F	0.553118	-1.776736	3.524977
F	-1.008655	-3.210459	3.899487
Н	2.324015	-1.428819	-0.255437

Calculated energies and coordinates of B[H-1] at PBE0-D3/def2-TZVPP

Electronic energy	5230.31935171 Eh
Total Enthalpy	5230.10830518 Eh
Final Gibbs free energy	5230.20821438 Eh

CARTESIAN COORDINATES (ANGSTROEM)

	I LSIAN CC	JORDINAI	LS (AROS II
Ge	7.823400	6.436069	12.130075
F	10.826701	5.806517	13.319296
F	10.290230	3.915316	14.127873
F	11.080994	5.430654	15.432488
F	8.570607	3.749251	15.935007
F	8.864150	5.572819	17.023877
F	6.982468	5.161948	16.063516
F	10.991087	8.042926	14.474086
F	10.119053	7.832470	16.431051
F	9.595996	9.490088	15.177262
F	7.356366	7.846098	16.522433
F	7.145428	9.166852	14.842430
F	6.302419	7.219073	14.741018
F	9.518145	3.325227	9.090864
F	10.957480	4.719034	9.812361
F	10.109938	4.968063	7.849403
F	6.301136	5.702229	9.511787
F	7.344502	5.029538	7.740761
F	7.078729	3.727439	9.427965
F	11.140745	7.323893	8.856201
F	10.849100	6.969724	10.967928
F	10.386418	8.873311	10.141873
F	8.930690	7.255678	7.243526
F	7.052976	7.724820	8.185031
F	8.680792	9.089686	8.325762
0	8.064273	5.265838	13.584850
0	8.629398	7.681948	13.219083
0	8.602713	5.164900	11.050579
0	8.114790	7.596831	10.676345
С	8.810766	5.732181	14.612606
С	8.691221	7.362077	14.545357
С	8.682052	5.480072	9.724039
С	8.852156	7.104006	9.653999
С	10.280274	5.222723	14.376880
С	8.299589	5.057779	15.928970
С	9.870234	8.181552	15.166615
С	7.359218	7.897626	15.186627
С	9.838067	4.623027	9.109863
С	7.337195	4.985952	9.076960
С	10.335261	7.565462	9.900659
С	8.371561	7.790021	8.332018
Н	6.299502	6.460467	12.122742

Calculated energies and coordinates of B[F-1] at PBE0-D3/def2- TZVPP			
Electronic energy -5329 56512578 Eh			
Total Enthalpy5329.35855798 Eh			
Final Gibbs free energy5329.46017603 Eh			
CARTESIAN COORDINATES (ANGSTROEM)			
Ge 7.892306 6.433745 12.130303			
F 10.806868 5.808770 13.312452			
F 10.271362 3.921531 14.128929			
F 11.071891 5.436697 15.425557			
F 8.538057 3.752433 15.911734			
F 8.853375 5.564069 17.014963			
F 0.904327 3.177803 10.038274 F 10.989581 8.072717 17.459325			
F = 10,130066 = 7,810069 = 16,424582			
F 9.612114 9.491760 15.190988			
F 7.392955 7.874086 16.550071			
F 7.159013 9.191349 14.868156			
F 6.299891 7.249317 14.794033			
F 9.533155 3.323402 9.071044			
F 10.952511 4.717835 9.828689			
F 10.132359 4.983608 7.856164			
F 6.296275 5.672579 9.454613			
F 7.380235 4.999294 7.710573			
F 7.088924 3.702470 9.400021			
F 11.130596 7.319276 8.868315			
F 10.824107 6.966195 10.978722			
F 10.363051 8.866748 10.146229			
F 8.921817 7.208011 7.202802			
F 7.054654 7.712549 6.166102 E 8.640258 0.088800 8.252408			
0 = 8.060187 = 5.283612 = 13.570686			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
O = 8.583671 = 5.141420 = 11.039614			
O 8.105064 7.576733 10.689274			
C 8.799087 5.746172 14.611933			
C 8.684757 7.375781 14.554962			
C 8.673116 5.465890 9.712455			
C 8.837602 7.089598 9.654567			
C 10.266462 5.228164 14.376978			
C 8.277442 5.062546 15.919803			
C 9.877870 8.182836 15.167417			
C = 7.362939 = 7.920823 = 15.212569			
C = 7.238616 + 4.062250 + 0.048242			
C 10.318108 7.559807 9.048342			
C 8 349491 7 787533 8 341436			
F 6.167886 6.460910 12.124341			
Calculated energies and coordinates of 2 at PBE0- D4(CPCM=DCM)/def2-TZVP level of theory			
Electronic energy3442.33762144 Eh			
Total Enthalpy3442.13280403 Eh			
Final Gibbs free energy3442.23043761 Eh			
CARTESIAN COORDINATES (ANGSTROEM)			
Si 6.241492 7.760971 4.237656			
O 6.213586 6.537301 5.325411			

51	0.241472	1.100711	4.237030
0	6.213586	6.537301	5.325411
0	6.278562	8.983590	5.326575
0	5.012339	7.710685	3.156829
0	7.457513	7.812316	3.141670
С	6.492106	6.989285	6.619950
С	6.003057	8.530428	6.621419
С	5.452926	7.997748	1.860262
С	6.999952	7.530484	1.849380
С	5.789244	6.017728	7.624251
С	6.707763	9.501203	7.625183
С	4.484088	7.283945	0.861241
С	7.953533	8.248474	0.838467
С	5.280406	9.553708	1.716583

С	7.170630	5.975172	1.696457
С	4.445381	8.680576	6.772567
С	8.049986	6.838437	6.766452
F	6.344312	4.813274	7.574040
F	4.507221	5.864056	7.333336
F	5.898196	6.472486	8.865994
F	6.601174	9.045054	8.866632
F	6.152235	10.705548	7.577313
F	7.989169	9.655713	7.332150
F	4.025210	8.407999	7.997428
F	4.064525	9.908784	6.461843
F	3.839062	7.867741	5.904342
F	8.473701	7.109437	7.990489
F	8.429381	5.610388	6.453344
F	8.654122	7.651716	5.897118
F	9.165063	7.707985	0.875357
F	8.094115	9.531455	1.131345
F	7.488181	8.137500	-0.399250
F	4.928434	7.398783	-0.383651
F	3.273814	7.825358	0.920563
F	4.347798	6.000023	1.152363
F	5.532276	9.980930	0.489516
F	4.051309	9.916814	2.043992
F	6.095137	10.168572	2.576960
F	6.897793	5.552831	0.472274
F	8.405519	5.611406	2.000780
F	6.370692	5.356095	2.567471

Calculated energies and coordinates of **2** at PBE0-D4(CPCM=benzene)/def2-TZVP level of theory

F

F

F F

F

Elect Total Final	ronic energy Enthalpy Gibbs free	energy	3442.33672263 Eh 3442.13138544 Eh 3442.22895812 Eh
CAR	TESIAN CO	ORDINAT	ES (ANGSTROEM)
Si	6.241477	7.760966	4.237644
õ	6.213627	6 537278	5 325321
õ	6.278502	8.983605	5.326480
0	5.012309	7.710710	3.156898
õ	7.457520	7.812266	3.141744
C	6.492019	6.989255	6.619875
C	6.003131	8.530460	6.621340
С	5.452882	7.997668	1.860322
С	6.999971	7.530564	1.849439
C	5.789252	6.017675	7.624073
С	6.707750	9.501273	7.624982
С	4.484025	7.283959	0.861382
С	7.953604	8.248448	0.838635
С	5.279901	9.553507	1.716809
С	7.171131	5.975382	1.696645
С	4.445577	8.681086	6.772399
С	8.049776	6.837924	6.766269
F	6.344982	4.813595	7.574377
F	4.507378	5.863349	7.333005
F	5.897808	6.472635	8.865798
F	6.601577	9.044940	8.866420
F	6.151562	10.705243	7.577617
F	7.989005	9.656436	7.331780
F	4.025086	8.410615	7.997683
F	4.064829	9.908811	6.459952
F	3.838814	7.867298	5.905322
F	8.473843	7.106867	7.990702
F	8.429052	5.610347	6.451478
F	8.654351	7.652112	5.898027
F	9.164764	7.707297	0.875060
F	8.094845	9.531295	1.131642
F	7.488088	8.137856	-0.399073
F	4.928528	7.398510	-0.383503
F	3.274066	7.825926	0.920261

4.347188 6.000145 1.152578

5.5296949.9810970.4893824.0513239.9165142.0459606.09555810.1687832.576074

6.900359 5.552705 0.472058

F	8.405560	5.611742	2.002674
F	6.370288	5.355857	2.566567

Calculated energies and coordinates of 2·MeCN at PBE0-D4(CPCM=benzene)/def2-TZVP level of theory

Electronic energy	3575.00611941 Eh
Total Enthalpy	3574.74907229 Eh
Final Gibbs free energy	3574.85531876 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Si	7.968816	6.417901	12.130199
F	10.651801	5.509481	13.194334
F	9.930128	3.725002	14.096314
F	10.935683	5.182846	15.313637
F	8.172199	3.781415	15.847277
F	8.716822	5.551328	16.934100
F	6.794146	5.397694	15.971660
F	11.107344	7.711511	14.284951
F	10.267011	7.679465	16.270438
F	9.929488	9.348265	14.962164
F	7.532046	8.000424	16.442965
F	7.464743	9.321677	14.749159
F	6.369517	7.504567	14.688391
F	9.905416	3.457569	9.311339
F	11.103727	5.074148	10.001026
F	10.281031	5.122613	8.008659
F	6.372956	5.356143	9.557116
F	7.543105	4.842289	7.812956
F	7.440428	3.522333	9.506160
F	10.979314	7.608347	8.970343
F	10.674777	7.283601	11.086887
F	9.986732	9.079889	10.182044
F	8.767833	7.273399	7.332301
F	6.840574	7.457850	8.280064
F	8.243666	9.051591	8.415520
0	7.907768	5.357852	13.483132
0	8.642800	7.601097	13.110591
0	8.631488	5.224299	11.154689
0	7.934709	7.478595	10.776713
Ν	6.129225	6.433397	12.122930
С	8.695209	5.716926	14.546516
С	8.748114	7.329780	14.460986
С	8.752207	5.494120	9.805300
С	8.725190	7.107614	9.719744
С	10.090159	5.027144	14.299203
С	8.084708	5.108386	15.851161
С	10.041795	8.023259	15.005027
С	7.512160	8.046756	15.116437
С	10.039412	4.780672	9.271518
С	7.510834	4.796315	9.139275
С	10.128636	7.775732	9.978597
С	8.134761	7.726203	8.410535
С	4.988988	6.442476	12.110941
С	3.558060	6.456184	12.097399
Н	3.210047	6.721974	11.097333
Н	3.206781	7.194111	12.822347
Н	3.189331	5.465863	12.372601

Calculated energies and coordinates of Compound 3 at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	3653.18556968 Eh
Total Enthalpy	3653.08432860 Eh
Final Gibbs free energy	3653.14830528 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	-0.000129	2.529572	0.000093
0	-0.971458	1.204605	0.792892
0	0.971511	1.204906	-0.792825
С	-0.757176	-0.063161	0.285918
С	0.757212	-0.063020	-0.286240
С	-1.069636	-1.081325	1.430953
F	-0.412555	-0.770233	2.540674

F	-0.753468	-2.324591	1.085207
F	-2.363709	-1.067533	1.739124
С	-1.838791	-0.236670	-0.843042
F	-1.867504	-1.463007	-1.350781
F	-1.613590	0.635383	-1.830044
F	-3.050957	0.040123	-0.378364
С	1.838341	-0.236669	0.843143
F	3.050625	0.041169	0.379393
F	1.867438	-1.463323	1.350087
F	1.611950	0.634530	1.830632
С	1.070264	-1.081046	-1.431311
F	0.413712	-0.769984	-2.541345
F	0.754119	-2.324391	-1.085823
F	2.364466	-1.067105	-1.738918

Calculated energies and coordinates of $3\cdot$ MeCN at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	3785.85639647 Eh
Total Enthalpy	3785.70362806 Eh
Final Gibbs free energy	3785.77885706 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	1.510846	1.421875	-0.648441
0	0.478545	0.012467	-1.307624
0	0.520514	1.179007	0.926000
С	-0.442759	-0.535898	-0.451338
С	-0.687297	0.566834	0.721116
С	-1.702441	-0.922584	-1.298596
F	-1.435224	-1.943718	-2.114505
F	-2.095111	0.081299	-2.073364
F	-2.731468	-1.289764	-0.537877
С	0.183620	-1.874802	0.076704
F	1.208051	-1.652488	0.892324
F	0.671504	-2.586203	-0.938314
F	-0.703372	-2.640972	0.715944
С	-1.668517	1.712061	0.269555
F	-1.635657	2.722809	1.132068
F	-2.936071	1.330381	0.149352
F	-1.264838	2.218480	-0.903346
С	-1.186457	0.030776	2.102693
F	-1.407109	1.039344	2.946428
F	-0.285211	-0.750367	2.684015
F	-2.322919	-0.655780	1.999215
Ν	3.105356	0.172225	0.150571
С	4.032149	-0.388554	0.523460
С	5.171490	-1.120706	1.004298
Н	5.452141	-1.871363	0.263121
Н	4.908191	-1.613489	1.942202
Н	6.005035	-0.436090	1.168715

Calculated energies and coordinates of **3**·MeCN at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	3785.85836779 Eh
Total Enthalpy	3785.70572528 Eh
Final Gibbs free energy	3785.78067625 Eh

CAR	CARTESIAN COORDINATES (ANGSTROEM)			
Ge	1.558017	1.267225	-0.631483	
0	0.423254	-0.014588	-1.376760	
0	0.585183	0.959432	0.941971	
С	-0.517117	-0.570638	-0.547590	
С	-0.661737	0.440346	0.724630	
С	-1.816198	-0.792939	-1.394325	
F	-1.632816	-1.739015	-2.317254	
F	-2.161261	0.307121	-2.053850	
F	-2.850526	-1.171611	-0.645980	
С	0.028944	-1.987052	-0.149900	
F	1.099920	-1.895652	0.629975	
F	0.418763	-2.654813	-1.234911	
F	-0.883761	-2.735834	0.473839	
С	-1.583222	1.677205	0.409260	
F	-1.451895	2.611622	1.346661	

F	-2.876630	1.381695	0.316982
F	-1.195893	2.253959	-0.735044
С	-1.152269	-0.192194	2.068615
F	-1.322913	0.747144	3.000442
F	-0.267110	-1.049194	2.562493
F	-2.313599	-0.828959	1.932223
Ν	3.096472	-0.058874	0.092034
С	4.078768	-0.369973	0.596241
С	5.304427	-0.771137	1.227595
Н	5.105099	-1.596483	1.913445
Η	5.714282	0.076146	1.781147
Н	6.016809	-1.088160	0.463920

Calculated energies and coordinates of Compound **3*_Ge** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Elect Total	ronic energy Enthalpy	· ···	-5757.12723823 Eh -5756.70436594 Eh
Final	Gibbs free	energy	5756.82749411 Eh
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)
Ge	0.682796	-1.060073	-0.827283
0	-0.855276	-0.498433	-1.554416
0	0.930780	-2.184535	-2.210720
0	0.315017	-2.159560	0.498172
0	0.174515	0.305897	1.399935
С	-0.961172	-0.857607	-2.890068
С	-0.157555	-2.261202	-3.056956
С	-2.488959	-0.876560	-3.230158
F	-3.166101	-1.668659	-2.412868
F	-2.699455	-1.277609	-4.479919
F	-3.013082	0.338883	-3.100138
С	-0.291383	0.315358	-3.699085
F	-0.415598	0.188315	-5.011959
F	1 009135	0 383384	-3 390516
F	-0.812899	1 485802	-3 356487
Ċ	-0.990372	-3 507727	-2 585160
F	-0.201612	-4 566956	-2 443376
F	-1.951154	-3.826962	-3 118785
F	1 534000	3 286380	1 302501
г С	-1.334009	-3.260369	-1.392391
E	0.403297	2 704519	4.400007
Г	1 282400	1 722101	4.040497
Г	1.562400	-1./55191	-4.60/199
Г С	-0.540955	-2.490776	-5.420100
C	0.4/4/63	-2.025990	1.855641
C	-0.201864	-0.632442	2.338060
C	-0.162634	-3.36/129	2.399487
F	-1.3/9888	-3.539778	1.903824
F	-0.238397	-3.432971	3.719375
F	0.572462	-4.399049	1.991194
C	2.021687	-2.066446	2.146881
F	2.300671	-2.298497	3.422585
F	2.593586	-0.916071	1.790851
F	2.603975	-3.013061	1.420971
С	-1.768810	-0.703561	2.280750
F	-2.190580	-1.206289	1.128916
F	-2.287592	0.517154	2.372960
F	-2.261714	-1.431745	3.281024
С	0.206893	-0.195274	3.798451
F	-0.651752	0.689765	4.295303
F	1.408054	0.378645	3.776280
F	0.247071	-1.201380	4.655820
Si	0.491637	2.022801	1.309402
С	-0.236790	3.021070	2.712629
С	-0.307242	2.521215	-0.294966
С	2.349384	2.285251	1.272556
Н	-1.266675	2.728384	2.921317
С	-0.183517	4.511683	2.359917
Н	0.335869	2.845551	3.626035
Н	-0.832120	4.750568	1.514604
Н	0.827876	4.838249	2.101974
Н	-0.512423	5.116572	3.208109
C	-1.828056	2.415984	-0.335222
Ĥ	0.141650	1.971622	-1.125038
н	0.005443	3.561449	-0.451541
••	0.000110	2.201119	

Н	-2.157149	1.381095	-0.238938
Н	-2.223464	2.798263	-1.278956
Η	-2.290041	2.988081	0.473073
Н	2.843736	1.449174	1.771607
Η	2.524761	3.151226	1.921914
С	2.985115	2.546712	-0.091054
Η	2.872732	1.701166	-0.773925
Η	4.056531	2.737592	0.008543
Η	2.540097	3.415379	-0.581315
Н	1.867915	-0.138768	-0.685677

Calculated energies and coordinates of Compound $3^{*}Si$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Elect Total	ronic energy Enthalpy	/ 	-3969.83058328 Eh -3969.40556420 Eh
Final	Gibbs free	energy	3969.52758424 Eh
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)
Si	0.590319	-1.126301	-0.923720
0	-0.804881	-0.508939	-1.578391
0	0.871172	-2.176068	-2.186058
0	0.260584	-2.006267	0.396751
0	0.179193	0.386232	1.431928
Ĉ	-0.970318	-0.852257	-2 915380
č	-0.188266	-2 264650	-3.077317
c	2 502860	-2.204050	2 224405
E	2 170182	1 620658	-3.224493
Г	-3.170183	-1.039038	-2.391307
г	-2.729500	-1.200055	-4.408000
F	-3.015384	0.362062	-3.093802
C	-0.300809	0.319703	-3.725769
F	-0.446488	0.194094	-5.036358
F	1.000649	0.377520	-3.433734
F	-0.813619	1.489139	-3.368748
С	-1.028196	-3.508809	-2.610539
F	-0.244945	-4.572559	-2.482658
F	-1.997331	-3.810205	-3.467503
F	-1.557160	-3.289276	-1.410935
С	0.399660	-2.573833	-4.494648
Ē	0.915556	-3 797556	-4 540907
F	1 379098	-1 736516	-4 801708
F	0.540207	2 404761	5.430616
C	-0.340207	1 056/19	1 740622
C	0.492133	-1.950418	1.749033
C	-0.168231	-0.592223	2.324099
C	-0.101/02	-3.334968	2.248464
F	-1.341083	-3.495203	1.8061/4
F	-0.107920	-3.478531	3.563065
F	0.622549	-4.330092	1.739251
С	2.052341	-1.996863	1.955082
F	2.381509	-2.371594	3.184442
F	2.607347	-0.815219	1.711607
F	2.598213	-2.854453	1.098403
С	-1.737207	-0.677894	2.309413
F	-2.189200	-1.135849	1.149598
F	-2.266243	0.530233	2.469778
F	-2.193651	-1.457344	3.288697
C	0.280791	-0.229422	3.791637
Ē	-0 556481	0 646044	4 340353
F	1 486562	0.331864	3 775563
F	0.326506	1 276103	4 600102
C;	0.320500	2 084644	1 3/6070
C	0.492079	2.064044	1.340970
C	-0.265300	3.060438	2.755285
C	-0.291861	2.572295	-0.268812
C	2.333319	2.412291	1.341549
Н	-1.275894	2.710276	2.969403
С	-0.301715	4.554537	2.417645
Н	0.321361	2.904655	3.662538
Н	-0.949209	4.760692	1.562582
Н	0.689976	4.947886	2.179878
Н	-0.684320	5.130339	3.263943
С	-1.811126	2.444736	-0.314763
Н	0.166697	2.005207	-1.082045
Н	0.009456	3.613191	-0.441285
Н	-2.126797	1.407936	-0.191140
Н	-2.209444	2.794819	-1.269903

н	-2 287202	3 030426	0.475571
11	-2.207202	5.050420	0.775571
Н	2.787750	1.923557	2.208259
Н	2.389094	3.487739	1.558281
С	3.132831	2.119678	0.075895
Н	3.251709	1.048350	-0.092168
Н	4.136747	2.547087	0.141356
Н	2.655590	2.541335	-0.812118
Н	1.711674	-0.214318	-0.774573

Calculated energies and coordinates of **4** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	2103.92509554 Eh
Total Enthalpy	2103.60313079 Eh
Final Gibbs free energy	2103.68923676 Eh

CARTESIAN COORDINATES (ANGSTROEM)

0	-2 560390	-0.458770	1 112834
ŏ	0.647962	0 190914	-0.165216
č	-1.672346	0.212335	0.295832
Č	-0.337001	-0.634404	0.267369
č	-2.350036	0.413034	-1.110235
F	-3.356866	1.287768	-0.978701
F	-2.890610	-0.715778	-1.549394
F	-1.530505	0.874562	-2.043661
С	-1.404458	1.682165	0.841922
F	-2.539242	2.121024	1.400099
F	-1.081662	2.529044	-0.131753
F	-0.462927	1.779139	1.765708
С	-0.042929	-1.252232	1.703124
F	1.262161	-1.522015	1.785476
F	-0.703774	-2.391102	1.894740
F	-0.335661	-0.457347	2.720409
С	-0.395732	-1.879078	-0.701662
F	-1.483756	-2.625004	-0.555823
F	0.661085	-2.664522	-0.481657
F	-0.323749	-1.486187	-1.968396
Si	2.319227	0.468045	-0.250706
С	2.939990	1.034089	1.426504
С	2.393450	1.843176	-1.511840
С	3.223068	-1.047817	-0.867634
Η	2.088033	1.434617	1.984655
С	4.054746	2.079146	1.371523
Н	3.278207	0.154180	1.983000
Η	3.720607	2.994428	0.877770
Н	4.928799	1.714913	0.825909
Н	4.387974	2.350585	2.376657
С	1.942111	1.439713	-2.913162
Н	3.424390	2.213851	-1.539777
Н	1.787112	2.675159	-1.135591
Н	1.975556	2.286457	-3.603796
Н	0.919282	1.057499	-2.909239
Н	2.581950	0.655487	-3.326263
Н	2.720180	-1.416442	-1.767611
Н	3.143388	-1.844121	-0.122361
С	4.694648	-0.761978	-1.172921
Н	4.805104	0.012605	-1.936453
Н	5.202291	-1.657549	-1.540181
H	5.233727	-0.424326	-0.284126
Н	-3.371183	0.049921	1.243635

Calculated energies and coordinates of **4** at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	2103.92589053 Eh
Total Enthalpy	2103.60407120 Eh
Final Gibbs free energy	2103.69020638 Eh

CARTESIAN COORDINATES (ANGSTROEM)

0	-2.560156	-0.463934	1.111694
0	0.647741	0.193354	-0.162901
С	-1.673303	0.212735	0.298573
С	-0.337182	-0.633169	0.266436
С	-2.349040	0.420726	-1.107500

-3.353448	1.297625	-0.975730
-2.891512	-0.705491	-1.551655
-1.526410	0.883135	-2.038224
-1.406093	1.680069	0.851680
-2.540899	2.116876	1.410343
-1.081824	2.531157	-0.118335
-0.465050	1.772839	1.776476
-0.043064	-1.256557	1.700008
1.262245	-1.523998	1.782753
-0.701690	-2.398222	1.885905
-0.339028	-0.467477	2.720882
-0.396065	-1.874658	-0.706890
-1.485031	-2.620620	-0.564994
0.659651	-2.662029	-0.488615
-0.322828	-1.477971	-1.972337
2.319994	0.469097	-0.250574
2.939561	1.039163	1.425514
2.394175	1.840134	-1.515999
3.223390	-1.048685	-0.863370
2.086954	1.440046	1.982450
4.053298	2.085269	1.368382
3.278757	0.160581	1.983582
3.718232	2.998819	0.872005
4.927806	1.720299	0.824020
4.385665	2.359525	2.373077
1.944120	1.431514	-2.916292
3.425332	2.210127	-1.544519
1.787940	2.673583	-1.142843
1.977804	2.275858	-3.609911
0.921435	1.048736	-2.912041
2.584799	0.646092	-3.325812
2.720735	-1.419815	-1.762443
3.144399	-1.842721	-0.115585
4.694874	-0.762957	-1.169692
4.804553	0.009278	-1.935700
5.202695	-1.659623	-1.534145
5.233723	-0.422120	-0.281983
-3.375034	0.038594	1.243322
	-3.353448 -2.891512 -1.526410 -1.406093 -2.540899 -0.465050 -0.043064 1.262245 -0.701690 -0.339028 -0.390065 -1.485031 0.659651 -0.322828 2.319994 2.939561 2.394175 3.223390 2.086954 4.053298 3.278757 3.718232 4.927806 4.385665 1.944120 3.425332 1.787940 1.977804 0.921435 2.584799 2.720735 3.14399 4.694874 4.804553 5.202695 5.233723 -3.375034	-3.353448 1.297625 -2.891512 -0.705491 -1.526410 0.883135 -1.406093 1.680069 -2.540899 2.116876 -1.081824 2.531157 -0.465050 1.772839 -0.043064 -1.256557 1.262245 -1.523998 -0.701690 -2.398222 -0.339028 -0.467477 -0.396065 -1.874658 -1.485031 -2.62029 -0.322828 -1.477971 2.319994 0.469097 2.939561 1.039163 2.394175 1.840134 3.223390 -1.048685 2.086954 1.440046 4.053298 2.085269 3.278757 0.160581 3.718232 2.998819 4.927806 1.720299 4.385665 2.359525 1.944120 1.431514 3.425332 2.210127 1.787940 2.673583 1.977804 2.275858 0.921435 1.048736 2.584799 0.646092 2.720735 -1.419815 3.144399 -1.842721 4.694874 -0.762957 4.804553 0.009278 5.202695 -1.659623 5.233723 -0.422120 -3.375034 0.038594

Calculated Energies and Coordinates of **5** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4180.68961685 Eh
Total Enthalpy	4180.36895133 Eh
Final Gibbs free energy	4180.45874709 Eh

CARTESIAN COORDINATES (ANGSTROEM) Ge 1.250435 -0.269376 0.955904

0	-0.004367	1.072603	0.962854
0	0.052254	-1.304277	0.031089
С	-1.050391	0.836954	0.104142
С	-1.219019	-0.779462	0.014031
С	-2.278435	1.635384	0.655360
С	-0.638624	1.476997	-1.272337
С	-1.960365	-1.379304	1.263426
С	-1.916866	-1.335062	-1.272224
F	-2.511637	1.356248	1.930709
F	-3.387347	1.387120	-0.036165
F	-2.052259	2.947503	0.591777
F	-1.628786	1.510956	-2.159396
F	0.386896	0.810203	-1.808271
F	-0.213016	2.724662	-1.096536
F	-1.801695	-2.699199	1.305430
F	-3.268710	-1.129579	1.264553
F	-1.435812	-0.908240	2.393506
F	-2.084711	-2.654074	-1.185708
F	-1.182303	-1.120016	-2.356518
F	-3.115924	-0.794002	-1.466835
Si	3.306104	0.156925	-0.249563
С	3.345839	1.989893	-0.644177
С	3.294853	-0.879333	-1.814596
С	4.649436	-0.281254	0.985527
Н	2.561261	2.205110	-1.374600
Η	4.296803	2.157562	-1.166202
С	3.232519	2.924664	0.556229

TT	4 400492	0.254019	1 965010
п	4.499483	0.554018	1.803919
Н	5.596109	0.049513	0.539980
С	4.746891	-1.745757	1.401877
Н	4.313599	-0.812461	-2.217974
Η	2.655783	-0.357784	-2.534575
С	2.867884	-2.340704	-1.698576
Н	3.311775	3.970379	0.248785
Н	4.019527	2.737619	1.290421
Н	2.271819	2.810168	1.065931
Н	5.502335	-1.883117	2.179544
Н	5.023201	-2.382855	0.559914
Н	3.799967	-2.122828	1.799993
Н	1.839653	-2.430272	-1.342101
Н	3.505765	-2.899342	-1.011620
Н	2.919797	-2.837959	-2.670539
Н	1.256443	-0.755094	2.419695

Calculated energies and coordinates of **6** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4180.66063500 Eh
Total Enthalpy	4180.34073622 Eh
Final Gibbs free energy	4180.43037547 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	0.093836	2.665039	0.723946
0	-1.149136	1.310592	0.845998
0	0.914745	-0.110126	0.058480
С	-1.423598	0.284039	-0.010243
С	-0.241077	-0.824563	0.134235
С	-2.873382	-0.154941	0.425558
С	-1.511500	0.826943	-1.486672
С	-0.278441	-1.533846	1.534979
С	-0.244358	-1.949578	-0.968190
F	-3.347972	-1.225439	-0.197875
F	-3.720903	0.848128	0.189611
F	-2.916888	-0.394866	1.731354
F	-2.185151	1.976958	-1.511809
F	-2.132455	-0.024253	-2.301112
F	-0.312835	1.085873	-2.000295
F	0.884355	-2.145547	1.764290
F	-1.238475	-2.457013	1.595347
F	-0.447127	-0.676927	2.531926
F	0.235942	-1.473029	-2.112566
F	-1.444659	-2.459217	-1.203160
F	0.541007	-2.965234	-0.609687
Si	2.610240	-0.166514	-0.068592
С	3.280370	-1.840617	-0.555227
С	3.235508	0.321003	1.624746
С	2.968609	1.137090	-1.364621
Н	2.827818	-2.156610	-1.499209
Н	2.984571	-2.577966	0.195862
С	4.804958	-1.826173	-0.698205
Н	2.171355	1.884940	-1.313188
Н	2.864410	0.659604	-2.346164
C	4.326013	1.828035	-1.246078
H	4.309340	0.519246	1.534004
Н	3.141920	-0.547219	2.285436
C	2.535340	1.523336	2.243375
H	5.182638	-2.82/936	-0.91/189
н	5.297853	-1.483378	0.215101
н	5.12/564	-1.1/26/9	-1.511/44
Н	5.156220	1.120300	-1.296408
H	4.415163	2.366502	-0.299308
H U	4.40/4/8	2.334/28	-2.030203
н U	2.940330	1./89184	5.22008/ 2.410467
н	1.4/2804	1.3098//	2.41940/
н	2.035/18	2.414851	1.011989
н	-0.262165	5.065610	2.231063

Calculated energies and coordinates of **INT1** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy ... -7655.09020443 Eh

Total Final	Enthalpy Gibbs free o	energy	-7654.71296486 Eh 7654.83708072 Eh				
CARTESIAN COORDINATES (ANGSTROEM)							
0	1.587694	-0.731176	-1.302240				
0	2.553278	1.257381	-0.104446				
С	2.711852	-1.082982	-0.594523				
С	3.515059	0.299550	-0.309282				
С	2.204068	-1.773814	0.720084				
F	1.619421	-0.888265	1.531094				
F	3.181626	-2.378242	1.393612				
F	1.276511	-2.683884	0.445220				
С	3.478644	-2.164590	-1.428778				
F	2.803796	-3.314272	-1.452167				
F	4.684769	-2.425901	-0.930631				
F	3.623499	-1.784549	-2.692347				
С	4.476138	0.324416	0.923943				
F	5.112513	1.493367	1.000486				
F	5.401611	-0.629406	0.858091				
F	3.815510	0.185128	2.065780				
С	4.327301	0.790068	-1.565049				
F	4.729032	2.046999	-1.402508				
F	3.533172	0.798018	-2.643210				
F	5.399356	0.054726	-1.836401				
Ge	1.045510	1.047539	-1.183120				
Ge	-0.908522	0.666631	0.920318				
0	-2.630242	0.985017	0.323847				
0	-1.551639	-0.918575	1.593355				
C	-3.371649	-0.165625	0.196187				
C	-2.895842	-1.147959	1.407803				
C	-4.881201	0.252583	0.179812				
C	-3.013318	-0.737810	-1.225206				
C	-3.574404	-0.801165	2.778877				
C	-3.063516	-2.685418	1.158592				
F	-5.689114	-0.803094	0.159395				
F	-5.156263	0.98/9//	-0.896/58				
F	-5.196158	0.998390	1.230992				
Г	-3./458/5	-1./85980	-1.577921				
F	-1./20128	-1.080488	-1.200829				
Г	-5.101075	0.193313	-2.130197				
Г	-2.945615	-1.406267	2 827005				
Г	-4.034/9/	-1.100342	2.02/993				
Г	-3.469000	2 002722	0.804272				
F	2 772708	3 3703/7	2 258002				
F	-2.772798	-3 113831	0.215025				
Ċ	-0.769169	2 113534	2 707297				
c	-1 320508	3 164392	2.005018				
н	0 307949	1 973603	2 733814				
н	-1 327462	1.667275	3 522485				
C	-0 560414	3 803912	0.936895				
č	-2 741257	3 541152	2 213830				
н	-3.119421	3.146369	3,154296				
Н	-3.359728	3.138786	1 404312				
Н	-2.853319	4.626840	2.199929				
C	-1.232744	4.364231	-0.158013				
Ċ	-0.526392	4.844088	-1.245259				
Ċ	0.861883	4.801077	-1.248300				
С	1.544229	4.282295	-0.153963				
С	0.841749	3.779652	0.924626				
Н	-2.314771	4.390469	-0.173817				
Н	-1.059833	5.250495	-2.096071				
Н	1.414626	5.181655	-2.099343				
Н	2.626904	4.262350	-0.145270				
Н	1.389166	3.388710	1.772748				

Calculated energies and coordinates of **INT1'** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4001.88343534 Eh
Total Enthalpy	4001.60950462 Eh
Final Gibbs free energy	4001.69322602 Eh

CARTESIAN COORDINATES (ANGSTROEM) Ge -0.353138 -2.112188 0.243427

0	1.068321	-1.536388	-0.804147			
0	-0.433026	-0.345211	0.818608			
С	1.418539	-0.210968	-0.705165			
С	0.749520	0.334717	0.675295			
С	2.979487	-0.132427	-0.791674			
F	3.554571	-0.941019	0.089995			
F	3.436348	1.101752	-0.588921			
F	3.408971	-0.521582	-1.992115			
С	0.837042	0.481552	-1.987072			
F	1.266197	1.733677	-2.144014			
F	-0.493214	0.491146	-1.957818			
F	1.176046	-0.199532	-3.079158			
С	1.594781	-0.033910	1.950323			
F	0.892044	0.187297	3.056519			
F	2.733319	0.642018	2.054771			
F	1.871925	-1.344688	1.951177			
С	0.440010	1.867372	0.742516			
F	1.533125	2.600923	0.536209			
F	-0.043577	2.199852	1.939653			
F	-0.475477	2.230812	-0.143836			
С	-2.376485	-1.987688	-1.374523			
С	-3.181155	-1.574517	-0.364674			
Н	-1.977906	-1.298875	-2.108151			
Н	-2.267111	-3.047606	-1.578788			
С	-3.704699	-2.569019	0.616297			
С	-3.493630	-0.156817	-0.150257			
Н	-3.196776	-2.457927	1.582885			
Н	-3.541143	-3.588000	0.267948			
Н	-4.769127	-2.413480	0.803669			
С	-3.754323	0.323793	1.135818			
С	-4.012808	1.667163	1.349797			
С	-4.038923	2.550978	0.280148			
С	-3.805158	2.082022	-1.006076			
С	-3.532923	0.742281	-1.218765			
Η	-3.369720	0.384383	-2.228222			
Η	-3.730345	-0.351843	1.981762			
Η	-4.195220	2.025280	2.356525			
Н	-4.247175	3.601643	0.447311			
Н	-3.838006	2.764142	-1.847820			

Calculated energies and coordinates of $\mathbf{TS1}$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	8182.56427396 Eh
Total Enthalpy	8181.96958506 Eh
Final Gibbs free energy	8182.11783335 Eh

CARTESIAN COORDINATES (ANGSTROEM)

1		I LSIAN CO	JORDINAI	LS (ANOSI
	0	1.820067	-2.804771	-2.743941
	0	2.325025	-0.580658	-1.662804
	С	2.830037	-2.917169	-1.828886
	С	3.405945	-1.411367	-1.593728
	С	2.194913	-3.536662	-0.534566
	F	1.378481	-2.662310	0.067959
	F	3.099601	-3.932054	0.360912
	F	1.442545	-4.586847	-0.839467
	С	3.855017	-3.966508	-2.378276
	F	3.323201	-5.190509	-2.390490
	F	4.964157	-4.027799	-1.642618
	F	4.204067	-3.696842	-3.629696
	С	4.129966	-1.132235	-0.232391
	F	4.602145	0.115413	-0.195915
	F	5.160668	-1.948328	-0.024550
	F	3.303748	-1.242434	0.802614
	С	4.381366	-0.956076	-2.742996
	F	4.593726	0.357148	-2.683473
	F	3.827197	-1.180230	-3.937645
	F	5.570769	-1.552963	-2.709993
	Ge	1.039969	-1.100548	-2.964978
	Ge	-0.818254	-1.330274	-1.039221
	0	-2.609415	-0.971271	-1.369285
	0	-1.364314	-3.031409	-0.577138
	С	-3.353274	-2.105164	-1.575574
С	-2.717243	-3.250259	-0.603781	
--------	-----------	------------	-----------	
С	-4.852714	-1.731894	-1.321221	
С	-3.204390	-2.446814	-3.102832	
С	-3.198213	-3.125724	0.886003	
С	-2.933625	-4.737308	-1.048586	
F	-5 649696	-2.795309	-1.363123	
F	-5 292485	-0.868808	-2 237190	
F	-5.014352	-1 138876	-0 144440	
L.	4.010220	2 41 42 44	2 511182	
Г	-4.019239	-3.414344	-3.311162	
г	-1.940200	-2.802075	-3.360317	
F	-3.452053	-1.3/1500	-3.844855	
F	-2.436223	-3.868296	1.684884	
F	-4.462422	-3.506380	1.064236	
F	-3.069871	-1.872184	1.319676	
F	-4.220161	-5.025589	-1.233939	
F	-2.466076	-5.580888	-0.128419	
F	-2.279607	-5.009877	-2.170156	
С	-0.448886	-0.255207	0.699135	
С	-1.147052	0.983686	0.506776	
Н	0.633717	-0.196418	0 591548	
н	-0.743820	-0.827367	1.574617	
C	-0.800211	1 763813	-0.690598	
č	-2 511/91	1 127086	1.087285	
ы	2 550020	0.660011	2.072281	
п	-2.339930	0.009011	2.073381	
п	-3.214023	0.000708	0.454594	
Н	-2.81/685	2.169859	1.148690	
C	-1.803081	2.385551	-1.43/304	
С	-1.498473	2.992406	-2.644280	
С	-0.191612	3.005926	-3.109321	
С	0.818604	2.413241	-2.360593	
С	0.516366	1.796450	-1.161836	
Н	-2.830068	2.363197	-1.097694	
Н	-2.288370	3.450882	-3.227044	
Н	0.042894	3.482117	-4.054229	
Н	1.844026	2.433679	-2.710014	
Н	1.315703	1.354665	-0.582122	
Si	0.338052	2 718900	2 713214	
C	1 078793	1 335633	3 731889	
č	-0.981960	3 738974	3 562237	
č	1 613427	3 745000	1 810726	
c	1.013427	4 921242	0.010952	
C	1.030098	4.651245	0.910855	
C	2.034040	1.793903	4.834125	
C	-0.444806	4./85494	4.539/18	
Н	2.440160	0.939179	5.381307	
Н	1.535525	2.440117	5.559168	
Η	2.879396	2.352021	4.423845	
Н	1.599286	0.662337	3.041411	
Н	0.253369	0.755080	4.158134	
Н	-1.259411	5.376505	4.966009	
Н	0.240684	5.479526	4.046890	
Н	0.095720	4.325050	5.369597	
н	-1.667000	3.051481	4 070153	
н	-1.569961	4 227906	2,777296	
н	2 243034	3 0587//	1 233/06	
ц	2.243034	1 180180	2 566587	
и Ц	0.382602	4.109100	2.300307	
п п	1.010656	+.400092	0.13910/	
Н	1.819656	5.3928/5	0.405230	
H	0.432883	5.545945	1.482272	
Н	-0.428088	1.964330	1.597335	

Calculated energies and coordinates of **INT2** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

8182.57273282 Eh
8181.97493985 Eh
8182.12421382 Eh

CARTESIAN COORDINATES (ANGSTROEM)

0	1.840294	-2.913531	-2.533007
0	2.375046	-0.702835	-1.416829
С	2.824361	-3.049373	-1.598424
С	3.433789	-1.555722	-1.346544
С	2.148247	-3.649482	-0.316725
F	1.346502	-2.757510	0.276009

F	3 028170	-4.078318	0 591553
F	1 270220	1.678557	0.626001
Г С	2.925240	4.120950	-0.030901
C L	3.835349	-4.120859	-2.128109
F	3.280646	-5.335950	-2.146033
F	4.934507	-4.205027	-1.378290
F	4.208739	-3.862079	-3.375831
С	4.151219	-1.300945	0.022560
F	4.632210	-0.055356	0.079461
F	5.176737	-2.124896	0.230834
F	3.319302	-1.417657	1.052662
С	4 434076	-1.118676	-2.483194
F	4 672344	0 191607	-2 415315
F	2 000262	1 227812	2.415515
Г	5.900302	-1.32/613	-3.000202
F	5.614353	-1./36602	-2.434880
Ge	1.080323	-1.182479	-2.749550
Ge	-0.820219	-1.286533	-0.907366
0	-2.537328	-0.850733	-1.497801
0	-1.540981	-2.940286	-0.437808
С	-3.322905	-1.949152	-1.722282
С	-2.896718	-3.049865	-0.598465
Č	-4.812165	-1.461622	-1.702145
č	-3.009681	-2 /39//2	-3 185762
C	3 538042	2 752742	0.803837
c	2 100215	-2.752742	0.003037
C F	-5.199515	-4.346111	-0.939130
F	-5.682169	-2.466683	-1./6083/
F	-5.061523	-0.665514	-2.743941
F	-5.082590	-0.748215	-0.614492
F	-3.858500	-3.369316	-3.621263
F	-1.768922	-2.926102	-3.271402
F	-3.058638	-1.422003	-4.041025
F	-2.919061	-3.446474	1.756712
F	-4 835563	-3.058455	0.860926
F	-3 397452	-1 471507	1 136833
F	1 477642	1.471307	1 251708
Г	-4.477042	-4.734373	-1.231796
Г	-2.91/01/	-5.555185	0.102515
F	-2.453307	-4.981220	-1.946/29
С	-0.565117	-0.240933	0.779552
С	-1.036309	1.189379	0.652668
Н	0.520344	-0.284190	0.896344
Н	-1.021110	-0.744376	1.631966
С	-0.662422	1.818744	-0.664267
С	-2.461439	1.415770	1.096461
Н	-2.615478	1.006769	2.095071
н	-3.139407	0.901878	0.413907
н	-2 713818	2 /76991	1 10/39/
C	1 622069	2.470391	1.104394
C	-1.023908	2.300/90	-1.307030
C	-1.202837	2.880198	-2.744962
C	0.061569	2.860546	-3.152694
С	1.029237	2.319158	-2.316467
С	0.667918	1.803516	-1.082594
Н	-2.665083	2.381183	-1.213027
Н	-2.026185	3.294662	-3.393344
Н	0.340409	3.261207	-4.120333
Н	2.068047	2.293158	-2.624320
Н	1.432751	1.372801	-0.447315
Si	0.548698	2.784006	2.618696
Ĉ	1 894873	1 539617	2 873491
č	-0.760952	2 973870	3 911808
C	-0.700752	4.245508	1 5 4 9 4 5 0
Č	0.900797	4.243396	1.546459
C	-0.302141	3.094792	1.105118
C	2.900047	1.986/25	3.946111
С	-0.353913	4.005798	4.975659
Н	3.694080	1.242990	4.036620
Н	2.427185	2.089302	4.924675
Η	3.366239	2.941363	3.693488
Η	2.402790	1.380158	1.917739
Н	1.434565	0.588069	3.157621
Н	-1.155425	4.115294	5.708690
н	-0.170210	4,987964	4.534573
н	0 547753	3 70/237	5 512082
ц	-0.952564	1 007/10	1 365300
U	1 695010	2 700710	3 /1077/
п	-1.060910	3.208/48	J.418//4
H	1.452399	3.893011	0.000/39
H	1.632/97	4.836267	2.12/664
Н	-1.011165	4.525793	0.560568
Н	0.012373	5.961508	0.581006

Н	-0.832100	5.461584	2.046465
Н	-0.392692	1.776375	1.440934

Calculated energies and coordinates of Compound **INT3** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4529.42479979 Eh
Total Enthalpy	4528.92716084 Eh
Final Gibbs free energy	4529.03327144 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Н	3.280049	-0.788382	-2.281279
Ge	0.709949	-0.016175	-0.544009
0	-0.276614	-0.835179	0.788039
0	-0.897130	0.599280	-1.217935
С	-1.594550	-0.458777	0.840390
С	-2.011060	0.020723	-0.668707
С	-2.400743	-1.670189	1.420129
Ĉ	-1.674968	0.703546	1.893088
Č	-2.391896	-1.179233	-1.610273
č	-3 164326	1.077357	-0 769488
F	-3 712246	-1 436959	1 421318
F	-2 041122	-1.925038	2 677962
F	2 175606	2 785801	0.730568
Г Б	2.010700	1 080577	0.759508
Г	-2.919/99	1.069377	2.104428
г	-0.980951	1.739930	1.405844
F	-1.112/12	0.341128	3.043265
F	-2.426934	-0.780922	-2.8/9084
F	-3.578298	-1.715112	-1.326102
F	-1.468847	-2.136692	-1.554807
F	-3.475545	1.314254	-2.044347
F	-2.803451	2.246129	-0.253282
F	-4.277803	0.675372	-0.160822
С	1.378172	-1.511412	-1.620992
С	2.895811	-1.629544	-1.695122
Н	0.962115	-1.394921	-2.625438
Н	0.935651	-2.416738	-1.199578
С	3.574506	-1.573222	-0.347679
С	3.289106	-2.910173	-2.434026
Н	2.846021	-2.928098	-3.432659
Н	2.936916	-3.788403	-1.886029
Н	4.374017	-2.984198	-2.537021
C	2.932476	-1.955815	0.827269
Ĉ	3 593632	-1 911066	2 049373
č	4 911348	-1 488948	2 115225
č	5 566218	-1 111230	0.948358
c	4 901911	-1 152460	-0.266127
н	1 908517	-2 312773	0.802664
ц	2 071017	2.312773	2 051492
ц	5.071017	1 448688	2.951405
п	5.420009	-1.440000	0.000040
п	5.41(010	-0.773090	0.988080
П C:	2.090602	-0.847409	-1.1/2092
51	2.080603	1.94/441	-0.126084
C	0.970760	3.465866	-0.116936
C	3.224556	2.011490	-1.615287
C	3.036466	1.746984	1.470923
н	0.445258	3.504703	0.839626
Н	0.199322	3.360759	-0.885584
С	1.760247	4.757666	-0.327787
Н	3.614577	2.672168	1.592683
Н	3.770837	0.948553	1.330729
С	2.193610	1.482116	2.713111
Н	3.922226	1.171256	-1.567402
Н	3.837163	2.912526	-1.489209
С	2.505967	2.053148	-2.960997
Н	2.230326	4.788615	-1.313391
Н	2.552424	4.874206	0.417143
Н	1.107295	5.630920	-0.248931
Н	2.820658	1.404230	3.605162
H	1.636954	0.546595	2.622747
Н	1.467796	2.279821	2.888491
н	3.213113	2.131945	-3.790557
Н	1.825072	2,905638	-3.026001
Н	1.909725	1.151760	-3.135072

Calculated Energies and Coordinates **TS2** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	8182.56381263 Eh
Total Enthalpy	8181.96541925 Eh
Final Gibbs free energy	8182.11285675 Eh

0	-3.304682	-1.936539	1.401643
0	-2.952351	-1.726895	-1.101508
С	-3.524921	-3.125126	0.774640
С	-2.793978	-3.016224	-0.683013
С	-3.017225	-4.259238	1.727124
Ē	-1.770991	-4.041196	2.131152
F	-3.061317	-5 464686	1 159130
F	3 762012	4 320188	2 822883
C	5 005520	2 20260	2.032003
C E	-3.083338	-5.282089	0.047798
F	-5.469186	-4.48/266	0.223376
F	-5.589413	-2.365298	-0.181899
F	-5.673873	-3.068950	1.822717
С	-1.249694	-3.283344	-0.596151
F	-0.638396	-2.894670	-1.714722
F	-0.941314	-4.566360	-0.403619
F	-0.690013	-2.572454	0.386497
С	-3.356613	-3.943673	-1.812925
F	-2.608066	-3.854575	-2.916896
F	-4.585388	-3.590493	-2.170565
F	-3 382159	-5 229132	-1 463019
Ge	-3 368196	-0.431312	0 237727
Go	0.800251	0.451512	0.237727
00	-0.890331	1 95 1 6 0 9	1 200400
0	-0.730419	1.651096	1.809490
0	-0.205951	-0.570226	2.336035
C	-0.715891	1.640737	3.158991
С	0.114012	0.252291	3.380868
С	-0.112041	2.928491	3.813221
С	-2.211461	1.533708	3.636647
С	1.670114	0.460374	3.318290
С	-0.194264	-0.532728	4.701844
F	1.040027	3.274909	3.251317
F	0.093030	2.785978	5.121204
F	-0.932520	3 968667	3 653262
F	-2 348670	1 530042	4 960945
F	-2 783733	0.427220	3 153632
E	2.703733	2 540402	3.155052
Г	-2.920909	2.349402	2 177564
г	2.290620	-0.709741	3.177304
F	2.165389	1.04//10	4.408667
F	2.022953	1.18/856	2.258/41
F	0.631127	-1.573007	4.837885
F	-1.424301	-1.029917	4.700422
F	-0.053976	0.223126	5.790223
С	0.637525	0.424256	-0.453471
С	0.238693	1.132266	-1.756622
Н	0.969282	-0.600673	-0.631205
Н	1.405871	0.972648	0.090537
С	-0.547632	2.384743	-1.431642
С	-0.450398	0.193493	-2.729060
Н	0.209297	-0.633627	-2.998816
н	-0 743300	0.715833	-3 641413
н	-1 3/0609	-0.258823	-2 288051
C	0 105035	3 500201	0.013400
c	0.105935	1 617222	0.510574
C	-0.003028	4.01/222	-0.310374
C	-1.991282	4.635159	-0.611400
C	-2.6518/0	3.535100	-1.133233
С	-1.934148	2.420524	-1.5498/1
Н	1.185932	3.489900	-0.811428
Н	-0.078333	5.475120	-0.108942
Н	-2.550648	5.505511	-0.288247
Н	-3.732153	3.538184	-1.224486
Н	-2.471268	1.582753	-1.979269
Н	1.151301	1.519632	-2.269712
Si	3.093793	0.477255	-2.155347
C	2.889180	0.799925	-3.964291
Č	3.274414	-1.287035	-1.659956
č	3 849173	1.786463	-1.107747
\sim	5.5.7175	1.100405	

С	4.022102	0.169909	-4.788754
С	3.576262	-1.585071	-0.196946
С	5.352380	1.803576	-1.450562
Н	3.883324	0.419345	-5.842326
Н	4.023677	-0.917728	-4.701229
Н	5.005565	0.536628	-4.488553
Н	2.847315	1.883228	-4.111850
Н	1.927234	0.392963	-4.289397
Н	4.110856	-1.613774	-2.299968
Н	2.409238	-1.846371	-2.033450
Н	4.455844	-1.039591	0.150022
Н	3.772022	-2.650680	-0.066162
Н	2.741553	-1.319877	0.452589
Н	5.856073	2.535441	-0.816458
Н	5.529929	2.087458	-2.489769
Н	5.826086	0.834574	-1.273466
Н	3.699981	1.566787	-0.049140
Н	3.396034	2.755474	-1.326766

Calculated energies and coordinates of **TS3** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4529.33050459 Eh
Total Enthalpy	4528.83632640 Eh
Final Gibbs free energy	4528.94268493 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	1.387864	-1.270136	1.313157
0	2.715831	-1.552813	-0.063594
0	2.107709	0.517446	1.272523
С	3.536154	-0.511461	-0.360869
С	3.399626	0.568875	0.868225
С	4.971447	-1.090070	-0.610439
F	5.373129	-1.866823	0.390047
F	5.895793	-0.143260	-0.786666
F	4.994539	-1.859267	-1.705098
С	3.048274	0.082250	-1.731142
F	3.900796	0.965506	-2.264015
F	1.862392	0.678151	-1.620056
F	2.882085	-0.888901	-2.631226
С	4.294956	0.184710	2.107345
F	3.928325	0.887405	3.180643
F	5.599191	0.407834	1.917433
F	4.141071	-1.095490	2.446237
С	3.725837	2.061793	0.523624
F	4.934966	2.220780	-0.016887
F	3.688719	2.824497	1.621537
F	2.835910	2.586130	-0.313542
С	-0.249056	-0.856667	0.109761
С	-1.444225	-0.447167	0.972056
Н	0.058440	-0.065001	-0.566267
Н	-0.435816	-1.781063	-0.448489
С	-1.970857	-1.591269	1.819585
С	-1.124876	0.819839	1.734713
Н	-1.195183	-1.948101	2.499819
Н	-2.255056	-2.433199	1.188124
Н	-2.838305	-1.287641	2.407761
С	-0.966838	0.823076	3.116087
С	-0.590872	1.984070	3.780684
С	-0.382993	3.158485	3.075710
С	-0.554269	3.168024	1.696877
С	-0.918478	2.007796	1.036744
Н	-1.025366	2.027669	-0.043115
Н	-1.125173	-0.083288	3.686770
Н	-0.461672	1.964958	4.856997
Н	-0.089859	4.063464	3.595456
Н	-0.395698	4.080961	1.134134
Н	-2.350891	-0.124894	0.369224
Si	-2.550530	-0.402103	-1.530964
С	-1.327955	0.092787	-2.826783
С	-3.782762	0.955186	-1.234430
С	-3.267076	-2.101921	-1.439382
С	-0.419021	-0.956896	-3.448626
С	-4.750171	0.802044	-0.068506
С	-2.419999	-3.352302	-1.634362

Н	0.242685	-0.491638	-4.181454
Н	-0.996780	-1.725325	-3.964185
Н	0.207898	-1.445468	-2.702960
Н	-0.762457	0.946394	-2.439386
Η	-1.995622	0.524752	-3.590298
Н	-4.330366	0.984791	-2.189670
Η	-3.240019	1.904372	-1.183179
Н	-5.307625	-0.134893	-0.124570
Η	-5.473508	1.619682	-0.063954
Н	-4.228236	0.824312	0.891414
Н	-4.009224	-2.022267	-2.253792
Н	-3.867563	-2.161272	-0.526464
Н	-1.842057	-3.313816	-2.557344
Н	-3.065222	-4.231816	-1.680993
Н	-1.721959	-3.501808	-0.809979

Calculated energies and coordinates of **TS4** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4529.34815297 Eh
Total Enthalpy	4528.85730789 Eh
Final Gibbs free energy	4528.96362146 Eh

Н	2.511085	0.285203	-0.728478
Ge	0.208824	0.210682	-1.189824
0	-0.485539	-0.257040	0.495169
0	-1.540584	-0.108511	-1.802187
С	-1.848238	-0.185632	0.583362
С	-2.429267	-0.597468	-0.883739
С	-2.283752	-1.087524	1.785082
С	-2.182236	1.303999	0.963703
С	-2.475720	-2.151797	-1.108087
С	-3.844210	-0.031462	-1.247562
F	-3.607316	-1.170226	1.904089
F	-1.812069	-0.603642	2.935551
F	-1.801168	-2.319826	1.676710
F	-3.465174	1.507382	1.257655
F	-1.842355	2.128335	-0.029720
F	-1.466379	1.688157	2.017953
F	-2.638958	-2.432617	-2.399427
F	-3.463474	-2.751402	-0.440386
F	-1.324638	-2.721656	-0.755418
F	-4.282687	-0.548702	-2.397133
F	-3.812305	1.285035	-1.420586
F	-4.761311	-0.305012	-0.321028
C	1.392231	-1.500908	-1.559417
С	2.721957	-1.174395	-1.137178
Н	1.277425	-1.641464	-2.632436
Н	0.882962	-2.258874	-0.975347
С	3.205701	-1.663611	0.173384
C	3.723632	-0.934498	-2.229174
H	3.24/830	-0.429518	-3.070370
H	4.091647	-1.901582	-2.588650
П	4.581701	-0.346874	-1.904081
C	2.314938	-1.890000	1.220317
C	4 128714	-2.331363	2.430910
C	4.126/14	2 337850	2.002403
Ċ	1 565142	1 880050	0.302878
н	1 255072	-1.716196	1 094809
н	2.065608	-2 493790	3 262707
н	4 485721	-2 898489	3 627020
н	6 080468	-2 512265	1 770254
н	5.280246	-1.722283	-0.401983
Si	2.701698	1.909124	-0.602182
Ĉ	1.461756	2.957289	0.341642
C	3.050590	2.568028	-2.322192
C	4.303674	1.829404	0.383844
Н	1.112951	2.401315	1.217539
Н	0.585246	3.096518	-0.297185
С	2.031339	4.313143	0.757427
Н	4.762175	2.822837	0.293264
Н	4.994693	1.137371	-0.107708
С	4.136453	1.456913	1.854228

Н	3.909796	2.024478	-2.727538
Н	3.409438	3.591242	-2.144010
С	1.905551	2.590006	-3.325977
Н	2.369083	4.888338	-0.108830
Н	2.882603	4.208599	1.433734
Н	1.274657	4.911142	1.272221
Н	5.096149	1.469359	2.377840
Н	3.713538	0.456957	1.968823
Н	3.472808	2.153408	2.372460
Н	2.191906	3.119436	-4.238982
Н	1.020909	3.086799	-2.919344
Н	1.607689	1.578498	-3.613006

Calculated energies and coordinates of **TS5** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Elect	ronic energy		4529.33432713 Eh
Total	Enthalpy		-4528.83959212 Eh
Final	Gibbs free of	energy	4528.94643774 Eh
CAR	TESIAN CO	ORDINAT	'ES (ANGSTROEM)
Н	3.885854	-0.297343	-0.828542
Ge	0.874910	0.641874	0.422674
0	0.077399	-0.890503	1.151901
0	-0.840094	0.968708	-0.300883
С	-1.265046	-0.725725	1.357280
С	-1.823360	0.092791	0.056931
С	-1.870435	-2.149170	1.608194
С	-1.429907	0.090456	2.696315
С	-2.072266	-0.835980	-1.186090
С	-3.134726	0.927035	0.272675
F	-3.201148	-2.126946	1.665148
F	-1.433216	-2.652978	2.764057
F	-1 514390	-3.016233	0.669392
F	-2.689411	0.156722	3.124468
F	-0.971791	1 337082	2 557420
F	-0 704959	-0.455610	3 669881
F	-2 169962	-0.106163	-2 296268
F	-2.107702	-1.561302	-1.081007
F	1 057514	1 673170	1 301386
Г	2 586256	1 408266	-1.391300
Г Б	-3.380230	1.408200	1 051506
Г	4 125204	0.214068	0.807812
г С	1769047	0.214908	1 202265
C	1./0804/	-0.300568	-1.293303
C	3.093703	-1.025996	-1.034/6/
н	1.727900	0.168562	-2.279034
Н	0.960/36	-1.036807	-1.326221
C	2.9/1838	-1.8/1302	0.212924
C	3.525558	-1.821482	-2.262011
Н	3.682340	-1.149/88	-3.109422
Н	2.760787	-2.544344	-2.554654
Н	4.456599	-2.362674	-2.0/42/4
С	2.355212	-3.120057	0.188447
С	2.197355	-3.857249	1.350937
С	2.647777	-3.356011	2.565819
С	3.263945	-2.114942	2.604609
С	3.426975	-1.383393	1.434855
Н	1.985530	-3.521918	-0.748277
Н	1.715802	-4.828142	1.310151
Н	2.520858	-3.932666	3.475018
Н	3.626234	-1.714374	3.544874
Н	3.927015	-0.420940	1.473589
Si	2.506809	2.127985	-0.897191
С	1.111886	3.365918	-1.078539
С	3.446015	1.991526	-2.511912
С	3.774284	2.435001	0.437571
Н	0.588907	3.485068	-0.128361
Н	0.381310	2.986985	-1.798549
С	1.684859	4.711136	-1.541141
Н	4.312793	3.296108	0.011957
Н	4.499765	1.615391	0.422533
С	3.312913	2.750053	1.848894
Н	4.170826	1.175074	-2.462789
Н	4.051047	2.909636	-2.464645
С	2.671458	1.963532	-3.822673
- 1			

Н	2.168301	4.642261	-2.517336
Н	2.416718	5.103847	-0.831063
Н	0.879620	5.445088	-1.623233
Н	4.153487	3.088085	2.460207
Н	2.876349	1.871712	2.327528
Н	2.553831	3.535775	1.857508
Н	3.347887	2.099164	-4.669884
Н	1.919545	2.753907	-3.871335
Н	2.155886	1.013206	-3.976341

Calculated energies and coordinates of TS6 at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory % TCPCM=TCPCM

Electronic energy	4180.62860727 Eh
Total Enthalpy	4180.31071973 Eh
Final Gibbs free energy	4180.39985862 Eh

CARTESIAN COORDINATES (ANGSTROEM) Ge -0.122363 0.655842 -0.399763 O -1.451412 0.880317 0.871655

Õ	-1.253337	-0.511568	-1.268521
Č	-2.678390	0.466954	0.412201
C	-2.400758	-0.802205	-0.570017
Č	-3.575869	0.194918	1.667455
Ċ	-3.293082	1.696341	-0.356160
Č	-2.125572	-2.129781	0.226382
C	-3.497326	-1.107888	-1.645813
F	-3.009230	-0.657118	2.510953
F	-4.769499	-0.287892	1.329884
F	-3.780227	1.319333	2.352869
F	-4.562265	1.517273	-0.712734
F	-2.576444	1.969115	-1.450464
F	-3.238737	2.790162	0.397898
F	-1.578471	-3.043389	-0.572050
F	-3.235878	-2.661210	0.738935
F	-1.257639	-1.933829	1.214863
F	-3.199312	-2.224234	-2.312094
F	-3.572530	-0.139871	-2.550893
F	-4.704660	-1.273567	-1.113406
Si	2.366104	0.456902	-0.238710
С	2.965073	1.987297	-1.132346
С	2.739180	-1.056869	-1.263117
С	2.865584	0.532424	1.555224
Н	2.599345	1.937268	-2.162545
Н	4.057517	1.863120	-1.182696
С	2.609809	3.318143	-0.486850
Н	2.273982	1.321957	2.032744
Н	3.893096	0.921137	1.524258
С	2.799294	-0.758492	2.358543
Н	3.828680	-1.153216	-1.137821
Н	2.592572	-0.778780	-2.311828
С	2.049338	-2.375706	-0.947488
Н	2.996496	4.155869	-1.071889
Н	3.022019	3.400344	0.521490
Η	1.524811	3.440307	-0.413768
Н	3.122290	-0.590426	3.388624
Η	3.442421	-1.530555	1.930507
Η	1.781425	-1.154567	2.390184
Н	0.979412	-2.321315	-1.156439
Н	2.167068	-2.656826	0.100192
Н	2.464229	-3.180727	-1.559086
Н	0.743254	-0.494990	0.491639

Calculated energies and coordinates of Compound **TS7** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	4180.62859703 Eh
Total Enthalpy	4180.31011627 Eh
Final Gibbs free energy	4180.39745030 Eh

CARTESIAN COORDINATES (ANGSTROEM) Ge 0.564790 1.816858 -0.702186 O -1.052986 1.443030 0.160461 O 0.693344 -0.201719 -0.718255

С	-1.627616	0.265784	-0.218156
С	-0.424390	-0.841220	-0.211522
С	-2.841215	0.023201	0.752423
С	-2.225224	0.480117	-1.660086
С	-0.131448	-1.292348	1.260820
С	-0.661205	-2.125355	-1.079289
F	-3.392994	-1.177338	0.607041
F	-3.798817	0.923925	0.526354
F	-2.484659	0.171575	2.022066
F	-2.933378	1.602803	-1.711141
F	-3.009381	-0.515350	-2.061170
F	-1.240985	0.629071	-2.555128
F	0.986955	-2.014616	1.333110
F	-1.107289	-2.039622	1.767025
F	0.060662	-0.237832	2.046975
F	-0.631196	-1.840688	-2.374642
F	-1.823395	-2.712085	-0.808683
F	0.294402	-3.031061	-0.868040
Si	2.769894	0.104701	0.022883
С	3.187087	-1.577825	-0.705700
С	3.384190	0.135249	1.798992
С	3.529807	1.325607	-1.189219
Н	2.949866	-1.534103	-1.773771
Н	2.573301	-2.369783	-0.283519
С	4.666499	-1.917765	-0.504681
Н	2.910867	1.386627	-2.094250
Н	4.435665	0.806450	-1.525707
С	3.875896	2.712348	-0.671301
Н	4.472483	0.038963	1.677521
Н	3.060874	-0.799039	2.267645
С	3.055079	1.327396	2.682252
Н	4.924901	-2.835804	-1.039013
Н	4.900777	-2.077931	0.549977
Η	5.332425	-1.132769	-0.873597
Η	4.592312	2.661777	0.151311
Η	2.995212	3.246585	-0.301181
Η	4.316507	3.326276	-1.460347
Н	3.531872	1.228784	3.660983
Η	1.978790	1.415249	2.844276
Н	3.396155	2.265428	2.240318
Н	1.645551	1.434656	0.567801

Calculated Energies and Coordinates $TS(1_INT_A_Ge)$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	5757.08372525 Eh
Total Enthalpy	5756.66273811 Eh
Final Gibbs free energy	5756.78633436 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Ge	-0.535373	-1.190453	-0.126389
0	-1.822951	-1.727008	-1.232043
0	0.512519	-0.756597	-1.495006
0	0.180943	-2.490850	0.847071
0	-1.311169	-0.466543	1.302332
С	-1.596541	-1.322465	-2.537857
С	0.009079	-1.238211	-2.706577
С	-2.350398	-2.337885	-3.461572
F	-1.994644	-3.586542	-3.203714
F	-2.123115	-2.086277	-4.744668
F	-3.660419	-2.262569	-3.254875
С	-2.301220	0.079494	-2.646686
F	-2.308151	0.572710	-3.874807
F	-1.683322	0.942933	-1.831826
F	-3.553032	0.003119	-2.222344
С	0.682579	-2.644780	-2.896612
F	1.991534	-2.557781	-2.708829
F	0.469146	-3.148992	-4.104259
F	0.227252	-3.495762	-1.976011
С	0.536701	-0.274842	-3.822234
F	1.851588	-0.390661	-3.961470
F	0.287364	0.989445	-3.516241

F	-0.018462	-0.547046	-4.996035
С	-0.024080	-2.316203	2.211892
С	-1.336794	-1.368343	2.367264
С	-0.125935	-3.745254	2.849795
F	-1.021559	-4.495322	2.228909
F	-0.445799	-3.672212	4.136271
F	1.036597	-4.380842	2.755690
С	1.294757	-1.642721	2.738615
F	1.326444	-1.551276	4.061114
F	1.416959	-0.425161	2.212488
F	2.360282	-2.325379	2.345478
С	-2.686968	-2.164123	2.206038
F	-2.634064	-2.920917	1.109659
F	-3.702097	-1.330245	2.033719
F	-2.956468	-2.931974	3.252465
С	-1.431495	-0.503302	3.670139
F	-2.583674	0.158449	3.698454
F	-0.467853	0.401840	3.726653
F	-1.369677	-1.261409	4.757475
Si	1.227036	2.219833	0.337895
С	1.009431	2.879192	2.080832
С	0.533085	3.414844	-0.928685
С	3.025881	1.799177	0.018874
Н	-0.060668	2.936896	2.304568
С	1.668889	4.243458	2.283469
Н	1.427666	2.151454	2.782293
Н	1.250907	4.997710	1.611542
Н	2.745093	4.201505	2.096455
Н	1.529672	4.603659	3.306233
С	-0.859254	3.942502	-0.591386
Н	0.533351	2.927764	-1.907696
Н	1.243097	4.247251	-1.008964
Н	-1.579838	3.130474	-0.467877
Н	-1.238959	4.600469	-1.377600
Н	-0.853564	4.514172	0.339847
Н	3.339558	1.071010	0.774943
Н	3.589018	2.715141	0.238829
С	3.373469	1.299071	-1.378800
Н	2.886813	0.346501	-1.591954
Η	4.450952	1.150693	-1.490793
Η	3.059170	2.007232	-2.149742
Η	0.405589	0.942889	0.234055

Calculated energies and coordinates of **INT_A_Ge** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	5757.09570753 Eh
Total Enthalpy	5756.67461003 Eh
Final Gibbs free energy	5756.79886433 Eh

Ge	0.015597	-0.722304	-0.120794
0	-1.398932	-0.591784	-1.236586
0	0.992150	-1.313797	-1.572943
0	0.435506	-2.208049	0.821362
0	-0.881873	-0.150836	1.388464
С	-1.133817	-0.850896	-2.567280
С	0.201547	-1.771123	-2.597805
С	-2.435656	-1.462824	-3.184545
F	-2.861678	-2.516250	-2.504908
F	-2.257832	-1.825779	-4.451639
F	-3.421693	-0.567307	-3.157510
С	-0.908000	0.551005	-3.235284
F	-0.836315	0.494030	-4.560540
F	0.214843	1.102301	-2.773441
F	-1.888706	1.388851	-2.917890
С	-0.100244	-3.290898	-2.304331
F	1.021446	-3.934174	-1.999098
F	-0.660089	-3.911743	-3.342168
F	-0.902102	-3.422906	-1.253107
С	1.054579	-1.719905	-3.911958
F	2.034386	-2.620955	-3.863006
F	1.634999	-0.539605	-4.078967
F	0.325333	-1.983707	-4.992301
С	0.089007	-2.209552	2.151924

С	-1.123728	-1.134966	2.312945
С	-0.240514	-3.686801	2.552149
F	-1.159946	-4.219955	1.761244
F	-0.669812	-3.763592	3.809355
F	0.838902	-4.458989	2.450054
С	1.406515	-1.787273	2.893455
F	1.321262	-1.858735	4.216723
F	1.737390	-0.542088	2.543364
F	2.422233	-2.553919	2.514036
С	-2.535497	-1.727517	1.941977
F	-2.483485	-2.331113	0.757603
F	-3.425688	-0.747307	1.819988
F	-3.003750	-2.588491	2.841968
С	-1.248282	-0.449745	3.714915
F	-2.280378	0.390332	3.733931
F	-0.176230	0.272925	4.015229
F	-1.431643	-1.340197	4.685551
Si	1.204626	2.395770	0.280904
С	1.195665	2.505449	2.128245
С	-0.211393	3.273932	-0.525560
С	2.878649	2.508716	-0.502110
Н	0.273706	2.063394	2.505875
С	1.293524	3.975865	2.562824
Н	2.026415	1.927345	2.537403
Н	0.440275	4.559275	2.209991
Н	2.203857	4.454342	2.194018
Н	1.306619	4.037495	3.652989
С	-1.600713	2.996212	0.041489
Н	-0.176679	3.144937	-1.607248
Н	0.060544	4.327476	-0.349652
Н	-1.920453	1.972162	-0.156193
Н	-2.335329	3.664153	-0.412627
Н	-1.633972	3.150272	1.122025
Н	3.524155	1.778853	-0.002759
Н	3.231660	3.493570	-0.157717
С	2.982243	2.404950	-2.018187
Н	2.740156	1.399024	-2.362657
Н	3.998678	2.632915	-2.345474
Н	2.308078	3.102896	-2.518728
Н	0.909681	0.663844	-0.048971

Calculated energies and coordinates of **TS(INT_A_3*_Ge)** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	5757.08459280 Eh
Total Enthalpy	5756.66407390 Eh
Final Gibbs free energy	5756.78714612 Eh

CARTESIAN COORDINATES (ANGSTROEM)

·· ·· ·	- Lon m. e.	001001011	
Ge	0.265890	-0.756781	-0.339418
0	-1.235576	-0.560912	-1.340652
0	1.018782	-1.580589	-1.826779
0	0.462542	-2.263455	0.640955
0	-0.487279	-0.020863	1.256706
С	-1.107212	-0.881543	-2.675411
С	0.121138	-1.945845	-2.787803
С	-2.511172	-1.364632	-3.170540
F	-2.976477	-2.380548	-2.459740
F	-2.475054	-1.733341	-4.448898
F	-3.411113	-0.387605	-3.057971
С	-0.788653	0.471420	-3.406030
F	-0.779158	0.374684	-4.730379
F	0.396169	0.939913	-3.005079
F	-1.680929	1.404272	-3.080820
С	-0.314889	-3.423424	-2.462981
F	0.755957	-4.177252	-2.227850
F	-0.998824	-3.991265	-3.458712
F	-1.052057	-3.474272	-1.359440
С	0.890470	-1.979548	-4.155193
F	1.787089	-2.966183	-4.159688
F	1.571808	-0.859892	-4.365894
F	0.080996	-2.175825	-5.193622
С	0.234202	-2.177195	1.990200
С	-0.816842	-0.954973	2.206924
С	-0.231846	-3.596096	2.458366

F	-1.277477	-4.020838	1.763728
F	-0.551047	-3.617787	3.749495
F	0.737249	-4.491334	2.272876
С	1.648904	-1.899470	2.617680
F	1.669373	-1.985273	3.943667
F	2.084999	-0.687138	2.256421
F	2.542976	-2.761034	2.144400
С	-2.310913	-1.360394	1.922291
F	-2.417712	-2.006373	0.768087
F	-3.064061	-0.267605	1.813385
F	-2.839771	-2.116304	2.883673
С	-0.786982	-0.297834	3.625986
F	-1.716264	0.653894	3.727230
F	0.377875	0.283505	3.879098
F	-1.015220	-1.181926	4.591928
Si	0.959383	2.367195	0.761840
С	0.738699	2.832968	2.528199
С	-0.362605	2.923604	-0.387419
С	2.720677	2.377399	0.200139
Н	-0.245511	2.539716	2.889903
С	0.881907	4.367123	2.579788
Н	1.493724	2.355697	3.153293
Н	0.121537	4.870243	1.978166
Н	1.863789	4.705288	2.241541
Н	0.757504	4.700572	3.611981
С	-1.801720	2.845643	0.106050
Н	-0.233491	2.469751	-1.368326
Н	-0.060638	3.977467	-0.526365
Н	-2.127096	1.811037	0.211352
Н	-2.467123	3.340955	-0.603245
Н	-1.922045	3.335378	1.074447
Н	3.265186	1.622120	0.777090
Н	3.071950	3.344041	0.595759
С	3.007234	2.271595	-1.290215
Н	2.744564	1.286926	-1.681255
Η	4.071260	2.425097	-1.479451
Н	2.454416	3.018502	-1.863086
Η	1.268505	0.429344	-0.310383

Calculated Energies and Coordinates $TS(1_INT_A_Si)$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	3969.80591658 Eh
Total Enthalpy	3969.38299325 Eh
Final Gibbs free energy	3969.50463621 Eh

Si	-0.488255	-1.038130	-0.110509
0	-1.777341	-1.420063	-1.084116
0	0.519356	-0.757576	-1.409744
0	0.249532	-2.263897	0.722447
0	-1.247174	-0.433298	1.247001
С	-1.574941	-1.204818	-2.437453
С	0.024802	-1.263665	-2.611367
С	-2.418798	-2.251351	-3.238079
F	-2.188729	-3.488485	-2.826741
F	-2.153629	-2.177139	-4.537683
F	-3.717640	-2.028566	-3.072535
С	-2.176679	0.223644	-2.693736
F	-2.166915	0.566237	-3.973412
F	-1.485332	1.122506	-1.993329
F	-3.424228	0.293542	-2.253241
С	0.590241	-2.727516	-2.708403
F	1.903484	-2.726126	-2.524113
F	0.332506	-3.288694	-3.882390
F	0.076678	-3.483955	-1.742486
С	0.636630	-0.426995	-3.783686
F	1.941355	-0.648185	-3.893127
F	0.480976	0.872519	-3.584752
F	0.073067	-0.751707	-4.941645
С	0.040283	-2.256574	2.094849
С	-1.284437	-1.345658	2.299107
С	-0.044122	-3.740534	2.592818
F	-0.909931	-4.450603	1.888612

F	-0.394255	-3.781478	3.873597
F	1.129875	-4.349270	2.471967
С	1.348229	-1.619569	2.692564
F	1.358311	-1.630650	4.018667
F	1.476025	-0.365784	2.265364
F	2.423427	-2.265790	2.264326
С	-2.634830	-2.141588	2.118045
F	-2.599318	-2.870866	1.007732
F	-3.648923	-1.298605	1.978688
F	-2.895050	-2.937045	3.147771
С	-1.386742	-0.537126	3.635116
F	-2.539572	0.120813	3.694955
F	-0.426739	0.366702	3.743578
F	-1.323402	-1.351601	4.682316
Si	1.168159	2.185825	0.333294
С	0.908528	2.829437	2.073744
С	0.477162	3.376507	-0.935878
С	2.970019	1.776083	0.034033
Η	-0.165748	2.869690	2.279604
С	1.542416	4.205433	2.284482
Η	1.329313	2.111797	2.782282
Η	1.126472	4.952605	1.603819
Н	2.622708	4.179640	2.120213
Η	1.375979	4.563229	3.303852
С	-0.904988	3.929456	-0.595970
Н	0.471876	2.890836	-1.915183
Н	1.201384	4.197060	-1.015447
Н	-1.639066	3.132099	-0.460578
Н	-1.276235	4.585792	-1.387346
Н	-0.884346	4.510678	0.328848
Η	3.285228	1.052911	0.793439
Н	3.514901	2.701271	0.262742
С	3.342562	1.284249	-1.360086
Η	2.889659	0.315155	-1.570953
Η	4.425086	1.172097	-1.462814
Н	3.010024	1.978609	-2.135685
Н	0.355980	0.887426	0.210418

Calculated energies and coordinates of **INT_A_Si** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy3969.80988667 Eh				
Total	Enthalpy		-3969.38569342 Eh	
Final	Gibbs free	enerov	-3969 50849320 Fh	
1 11100	Gibbb nee	energy	5909.50019520 EA	
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)	
Si	-0.049211	-0.716556	-0.107526	
0	-1.363990	-0.588310	-1.141505	
0	0.947879	-1.166112	-1.437573	
0	0.376994	-2.107496	0.735100	
0	-0.856516	-0.141775	1.297133	
С	-1.136561	-0.855399	-2.482093	
С	0.241958	-1.695020	-2.495914	
С	-2.413801	-1.544256	-3.078750	
F	-2.880919	-2.498511	-2.291761	
F	-2.159561	-2.068202	-4.274177	
F	-3.400969	-0.662594	-3.232810	
С	-0.991580	0.542343	-3.176315	
F	-0.980883	0.449260	-4.502169	
F	0.129229	1.143581	-2.786464	
F	-1.986225	1.348207	-2.825924	
С	0.045013	-3.237534	-2.212367	
F	1.185936	-3.766846	-1.787788	
F	-0.341930	-3.903030	-3.299598	
F	-0.851099	-3.452899	-1.257802	
С	1.125370	-1.605322	-3.789641	
F	2.119427	-2.490324	-3.730242	
F	1.687076	-0.415477	-3.937182	
F	0.418352	-1.870487	-4.883974	
С	0.055311	-2.180091	2.072753	
С	-1.127673	-1.094417	2.254850	
С	-0.283053	-3.664891	2.430289	
F	-1.270366	-4.151424	1.694896	
F	-0.621661	-3.770702	3.713529	
F	0.766435	-4.453265	2.217768	

С	1.397928	-1.808350	2.801129
F	1.328162	-1.897631	4.122945
F	1.764150	-0.571360	2.464684
F	2.379977	-2.602725	2.392537
С	-2.563543	-1.647292	1.912099
F	-2.560507	-2.254555	0.730595
F	-3.423822	-0.639024	1.809488
F	-3.032061	-2.490614	2.827632
С	-1.213297	-0.402175	3.654750
F	-2.213369	0.473712	3.690588
F	-0.113127	0.275520	3.951134
F	-1.417064	-1.298808	4.616422
Si	1.132367	2.286525	0.268273
С	1.147768	2.473221	2.111764
С	-0.248935	3.241036	-0.520465
С	2.820349	2.405439	-0.491148
Н	0.195637	2.130311	2.515291
С	1.373304	3.944347	2.482577
Н	1.928788	1.847813	2.547029
Н	0.576872	4.586565	2.099888
Н	2.323336	4.324808	2.099664
Н	1.389173	4.056046	3.569010
С	-1.640834	3.002515	0.058438
Н	-0.236112	3.119126	-1.602846
Н	0.057444	4.282536	-0.340473
Н	-1.985244	1.984187	-0.126032
Н	-2.364599	3.683283	-0.394697
Н	-1.662034	3.167032	1.137869
Н	3.451595	1.662489	0.008169
Н	3.182637	3.381738	-0.137678
С	2.943387	2.308003	-2.005649
Н	2.689178	1.308683	-2.358506
Н	3.966900	2.521593	-2.321331
Н	2.285739	3.018307	-2.511169
Н	0.801752	0.676186	-0.038931

Calculated energies and coordinates of **TS(INT_A_3*_Si)** at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	3969.79415802 Eh
Total Enthalpy	3969.37080317 Eh
Final Gibbs free energy	3969.49109157 Eh

Si	0.247401	-0.734093	-0.346059
0	-1.158133	-0.502826	-1.251995
0	0.997394	-1.464050	-1.730886
0	0.485499	-2.128988	0.561835
0	-0.400078	0.017716	1.169952
С	-1.101288	-0.841283	-2.592624
С	0.134108	-1.882255	-2.706634
С	-2.511962	-1.355414	-3.040317
F	-2.980367	-2.305503	-2.247408
F	-2.465905	-1.830059	-4.283239
F	-3.412996	-0.374486	-3.017395
С	-0.825653	0.501645	-3.356974
F	-0.868688	0.363263	-4.677437
F	0.366132	0.992782	-3.019646
F	-1.717300	1.428422	-3.017859
С	-0.267278	-3.371218	-2.371763
F	0.819251	-4.090774	-2.108004
F	-0.917785	-3.963550	-3.374725
F	-1.027444	-3.436851	-1.286561
С	0.915969	-1.919942	-4.067219
F	1.826696	-2.892938	-4.050462
F	1.580033	-0.794903	-4.294366
F	0.111461	-2.144876	-5.103112
С	0.254993	-2.118174	1.914868
С	-0.765783	-0.890982	2.150469
С	-0.237498	-3.546049	2.328654
F	-1.298757	-3.922624	1.632003
F	-0.544339	-3.602925	3.621306
F	0.710373	-4.451772	2.100318
С	1.678414	-1.893511	2.547791
F	1.694242	-2.026084	3.868839

F	2.140594	-0.681280	2.226821
F	2.548527	-2.760077	2.043272
С	-2.277712	-1.245720	1.877982
F	-2.425954	-1.892541	0.732005
F	-2.987621	-0.125178	1.776544
F	-2.815998	-1.979900	2.849433
С	-0.712168	-0.261323	3.580561
F	-1.620525	0.703718	3.715466
F	0.467283	0.277754	3.848267
F	-0.955571	-1.175094	4.514107
Si	0.888703	2.179435	0.762564
С	0.673695	2.761607	2.505810
С	-0.370678	2.869699	-0.391880
С	2.676305	2.231725	0.263019
Н	-0.300699	2.488523	2.904486
С	0.807772	4.294495	2.485662
Н	1.440608	2.327069	3.147115
Н	0.009651	4.766069	1.909213
Н	1.764108	4.628584	2.076710
Н	0.742449	4.671624	3.508502
С	-1.832886	2.764520	0.020649
Н	-0.200608	2.515932	-1.405737
Н	-0.054498	3.926750	-0.402928
Н	-2.180878	1.733902	-0.031697
Η	-2.456318	3.367190	-0.642659
Н	-1.991308	3.120610	1.040947
Η	3.208733	1.459451	0.828013
Н	3.014523	3.186872	0.690573
С	3.001206	2.164026	-1.221293
Н	2.724409	1.199051	-1.650345
Н	4.073032	2.298053	-1.381053
Н	2.480639	2.941714	-1.783921
Н	1.200470	0.425046	-0.347560

Calculated energies and coordinates of Et₃SiH at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	527.47794089 Eh
Total Enthalpy	527.26095375 Eh
Final Gibbs free energy	527.30955265 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Chi	(ILSIAN CC	ORDINAL	LD (ALIODI
Si	-8.707706	2.248089	0.288698
С	-7.234249	3.042892	-0.567388
С	-8.214948	1.534636	1.957132
С	-9.481178	0.928363	-0.804467
Н	-6.778513	3.754545	0.130201
Н	-6.481327	2.263204	-0.735862
С	-7.574093	3.742204	-1.881307
Н	-6.691688	4.202032	-2.335238
Н	-8.314517	4.533037	-1.730941
Н	-7.990147	3.043610	-2.611965
С	-7.632872	2.554894	2.932329
Н	-7.495592	0.726216	1.777728
Н	-9.098530	1.056767	2.395249
Н	-6.718508	3.007973	2.540457
Н	-7.384981	2.099172	3.895122
Н	-8.339662	3.366803	3.125920
Н	-8.723534	0.156064	-0.985384
Н	-9.689126	1.378868	-1.781717
С	-10.751932	0.300611	-0.238168
Н	-11.523184	1.055987	-0.062494
Н	-11.173081	-0.445101	-0.918449
Н	-10.563209	-0.197908	0.716313
Н	-9.735931	3.317661	0.523044

Calculated energies and coordinates of Et_3SiH at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	527.47814599 Eh
Total Enthalpy	527.26125033 Eh
Final Gibbs free energy	527.30985532 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Si	-8.705984	2.246198	0.288291
С	-7.233612	3.041709	-0.568696
С	-8.213177	1.534256	1.957173
С	-9.480123	0.926167	-0.803774
Η	-6.775647	3.751207	0.129647
Н	-6.482312	2.261104	-0.740176
С	-7.575179	3.744009	-1.880642
Н	-6.692733	4.202391	-2.336049
Η	-8.313209	4.536525	-1.727056
Η	-7.994939	3.047543	-2.611248
С	-7.633971	2.555687	2.932901
Η	-7.491701	0.727750	1.777621
Η	-9.095948	1.054043	2.394402
Η	-6.720985	3.011617	2.541076
Н	-7.384746	2.099998	3.895411
Н	-8.343130	3.365451	3.127080
Η	-8.723292	0.152198	-0.980955
Н	-9.684893	1.375018	-1.782474
С	-10.753206	0.301930	-0.238694
Η	-11.523931	1.058924	-0.067434
Η	-11.173571	-0.445366	-0.917789
Η	-10.567447	-0.193723	0.717884
Η	-9.734776	3.315984	0.522312

Calculated energies and coordinates of $[MeCN \rightarrow Et_3Si]^+$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	659.40109109 Eh
Total Enthalpy	659.13947027 Eh
Final Gibbs free energy	659.19731608 Eh

CARTESIAN COORDINATES (ANGSTROEM)

CAN	I ESIAN CO	JOKDINAI	E9 (ANOPI
Si	0.460150	-0.004765	-0.256712
Ν	-1.326818	-0.011546	0.157921
С	-2.442228	-0.001290	0.413515
С	-3.835502	0.009823	0.728861
Η	-4.307075	-0.869231	0.283155
Н	-3.956399	-0.012221	1.814355
Η	-4.283987	0.919272	0.321982
С	1.269931	-0.002775	1.416255
Η	0.920556	0.872123	1.973742
Н	0.930178	-0.882928	1.971409
С	2.795756	0.005743	1.300513
Н	3.163003	-0.873462	0.765121
Н	3.153344	0.890448	0.767659
Η	3.259872	0.006894	2.288959
С	0.680698	-1.562988	-1.243136
Η	0.056185	-1.484831	-2.139636
Η	1.717988	-1.551279	-1.600171
С	0.665964	1.558121	-1.239213
Η	1.703180	1.556309	-1.596714
Η	0.041710	1.476610	-2.135582
С	0.366834	2.846119	-0.476553
Н	1.018872	2.956287	0.392896
Η	0.516337	3.720020	-1.114222
Н	-0.666258	2.872127	-0.120854
С	0.392369	-2.855440	-0.483781
Н	0.549110	-3.726415	-1.123720
Η	1.045363	-2.962482	0.385348
Η	-0.640438	-2.890908	-0.128084

Calculated energies and coordinates of $[MeCN \rightarrow Et_3Si]^+$ at PBE0-D4(CPCM=acetonitrile)/def2-TZVP level of theory

Electronic energy	659.40790905 Eh
Total Enthalpy	659.14636791 Eh
Final Gibbs free energy	659.20410583 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Si	0.458256	-0.005492	-0.255322
Ν	-1.325307	-0.013063	0.158303
С	-2.441073	-0.001210	0.412641
С	-3.834217	0.011886	0.725905
Н	-4.305439	-0.867059	0.279545

Η	-3.955827	-0.009453	1.811347
Η	-4.279983	0.922037	0.317524
С	1.271738	-0.003308	1.415868
Н	0.922202	0.871373	1.973642
Η	0.932977	-0.883905	1.970969
С	2.797297	0.006246	1.297604
Η	3.163720	-0.872591	0.760862
Η	3.152884	0.891277	0.763771
Η	3.263658	0.007522	2.285177
С	0.681784	-1.563190	-1.241876
Η	0.057099	-1.484219	-2.138238
Н	1.719546	-1.551847	-1.597430
С	0.665545	1.557354	-1.237539
Н	1.703122	1.556661	-1.593894
Η	0.040889	1.474853	-2.133585
С	0.363551	2.844446	-0.474179
Н	1.015118	2.954767	0.395708
Н	0.511346	3.719301	-1.111217
Н	-0.669702	2.867108	-0.118679
С	0.391136	-2.855151	-0.482263
Н	0.546776	-3.726842	-1.121775
Η	1.043517	-2.962253	0.387424
Н	-0.641918	-2.887914	-0.126980

Calculated energies and coordinates of Me_3SiH at PBE0-D3/def2-TZVPP

Elect Total Final	ronic energy Enthalpy Gibbs free	· · · · · · · · · · · · · · · · · · ·	409.65093967 Eh -409.52383724 Eh 409.56248516 Eh
CAR	TESIAN CO	OORDINAT	ES (ANGSTROEM)
Si	0.000000	-0.000691	-0.369206
Н	-0.000000	0.000800	-1.863390
С	1.538522	-0.887019	0.228598
Н	1.559308	-1.922108	-0.118581
Н	2.443485	-0.394280	-0.132867
Н	1.577937	-0.899397	1.320733
С	-1.538521	-0.887019	0.228598
Н	-1.577931	-0.899408	1.320733
Н	-2.443485	-0.394274	-0.132857
Н	-1.559312	-1.922105	-0.118591
С	-0.000001	1.773125	0.232764
Н	0.882553	2.310460	-0.120600
Н	-0.882548	2.310462	-0.120610
Н	-0.000007	1.811454	1.324998

Calculated energies and coordinates of Me_3SiF at PBE0-D3/def2-TZVPP

Electronic energy -508.92439829 Eh Total Enthalpy -508.80180456 Eh Final Gibbs free energy -508.84275550 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Si	0.000000	-0.000696	0.011616
С	-0.000000	1.773410	0.570554
Н	0.883505	2.301611	0.205969
Н	-0.883510	2.301607	0.205976
Н	0.000004	1.834268	1.661777
С	1.538663	-0.887273	0.566638
Н	1.597062	-0.911164	1.657753
Н	1.551666	-1.918631	0.208160
Н	2.436166	-0.388781	0.194594
С	-1.538663	-0.887271	0.566638
Н	-2.436166	-0.388785	0.194586
Н	-1.551663	-1.918633	0.208170
Н	-1.597067	-0.911152	1.657753
F	0.000002	0.001490	-1.601685

Calculated energies and coordinates of Me_3Si^+ at PBE0-D3/def2-TZVPP

408.77063889 Eh
408.65298264 Eh
408.69323035 Eh

CARTESIAN COORDINATES (ANGSTROEM)

Si	0.000200	0.000381	0.272820
С	1.574957	-0.916094	0.281046
Η	1.439742	-1.996915	0.274653
Н	2.175624	-0.617559	-0.585751
Н	2.155888	-0.627777	1.165098
С	-1.580645	-0.905301	0.273412
Н	-1.611589	-1.585573	1.132088
Η	-2.449608	-0.249031	0.296212
Н	-1.629843	-1.542176	-0.617923
С	0.005615	1.821875	0.265349
Н	1.008367	2.246538	0.241903
Η	-0.566142	2.184442	-0.596527
Н	-0.523065	2.187182	1.153771

Calculated energies and coordinates of $C_6H_5C(CH_3)=CH_2$ at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	348.67930941 Eh
Total Enthalpy	348.50860159 Eh
Final Gibbs free energy	348.54980691 Eh

CARTESIAN COORDINATES (ANGSTROEM)

~	120111.00		
С	6.998511	16.657443	6.464318
С	7.913759	16.576471	7.433194
Н	6.216591	17.407760	6.471157
Н	7.020327	15.974182	5.622694
С	7.890974	17.488014	8.598196
С	9.018971	15.566769	7.361350
Н	8.867195	14.890013	6.520245
Н	9.079810	14.978865	8.281646
Н	9.991156	16.051540	7.230792
С	9.063480	17.794202	9.292346
С	9.050895	18.669607	10.368739
С	7.861547	19.247035	10.787087
С	6.682861	18.935937	10.120359
С	6.698257	18.065447	9.044164
Н	10.004231	17.355815	8.981934
Η	9.977320	18.898231	10.883924
Н	7.849545	19.926428	11.631853
Н	5.743009	19.365998	10.448538
Н	5.766502	17.813432	8.551203

Calculated energies and coordinates of $PhC(H)(CH_3)$ - CH_2SiEt_3 at PBE0-D4(CPCM=DCM)/def2-TZVP level of theory

Electronic energy	876.20163736 Eh
Total Enthalpy	875.80789303 Eh
Final Gibbs free energy	875.87394682 Eh

С	0.578366	0.739710	0.902179
С	1.001924	1.758990	-0.169543
С	1.631291	-0.317752	1.149736
С	0.084642	1.422733	2.166978
Si	2.588710	2.794035	-0.072762
Η	1.074609	1.248644	-1.137927
Η	0.179895	2.476196	-0.291050
С	2.047904	-1.128038	0.092161
С	2.192218	-0.546150	2.402644
Η	-0.323508	0.699242	2.876967
Η	-0.707843	2.131387	1.917338
Η	0.877713	1.977183	2.671943
С	2.367192	4.129177	-1.389758
С	2.860697	3.642511	1.587905
С	4.143949	1.822839	-0.536017
С	2.992522	-2.123665	0.276013
Η	1.619812	-0.976626	-0.893591
С	3.138005	-1.547179	2.594987
Н	1.893596	0.060799	3.248469

Н	1.476301	4.718511	-1.144162
С	2.264657	3.600646	-2.818430
Н	3.216923	4.818239	-1.306303
С	1.823262	4.700807	1.952759
Н	3.857931	4.098556	1.547548
Н	2.920104	2.878336	2.370816
Н	4.792079	2.536443	-1.060999
Н	3.869118	1.068464	-1.281752
С	4.921673	1.172803	0.603067
С	3.544052	-2.339486	1.533605
Н	3.297796	-2.738225	-0.563938
Н	3.559303	-1.702928	3.582245
Н	1.400500	2.942095	-2.940853
Н	3.151864	3.024885	-3.096363
Н	2.161272	4.410677	-3.546513
Н	1.815498	5.516065	1.224960
Н	2.021054	5.141478	2.934314
Н	0.813227	4.284180	1.980936
Н	4.323776	0.419035	1.116737
Н	5.227930	1.911892	1.348222
Н	5.829632	0.681777	0.239894
Н	4.282778	-3.119183	1.681248
Н	-0.284051	0.201365	0.485229

Calculated energies and coordinates of $B(C_6F_5)_3$ at PBE0-D4(CPCM=benzene)/def2-TZVP level of theory

El To Fi	ectronic energy otal Enthalpy nal Gibbs free	energy	2207.04435998 Eh 2206.85835763 Eh -2206 94390926 Eh
с.	ADTESIAN CO		TES (ANGSTROEM)
U T	AKTESIAN CO	5 501010	1 245145
t T	3.69858/	5.581018	1.345145
ł	3.303145	3.970409	-1.021796
ł	2.191593	1.549/85	-1.063226
ŀ	1.285300	0.431290	1.222512
ŀ	1.510/06	1.754188	3.570224
F	2.658410	4.159766	3.645474
F	5.657996	7.191806	-0.043334
F	5.116893	8.877199	-2.044274
F	2.567081	9.234693	-2.862683
F	0.547786	7.882349	-1.673369
F	1.072886	6.156910	0.297870
F	5.648246	3.816855	2.566912
F	7.350463	4.517801	4.495754
F	7.329049	7.034709	5.472160
F	5.563490	8.851518	4.530614
F	3.865814	8.182259	2.583401
(3.028394	4.174809	1.315184
(2.865801	3.465051	0.127763
(2.297726	2.206801	0.081214
(1.838017	1.628065	1.252310
(1.962361	2.305357	2.454489
(2.562736	3.548824	2.468638
(3.387186	6.601616	0.207206
(4.388573	7.341088	-0.414005
(4.133640	8.215770	-1.452420
(2.827727	8.396295	-1.878373
0	1.796559	7.696303	-1.272832
(2.092507	6.806126	-0.259090
(4.681458	5.969395	2.488143
(5 589748	5.061559	3 028805
Ċ	6 486927	5 402907	4 021534
Ċ	6.478883	6 693451	4.524508
Ċ	5.579739	7.625303	4.031677
Ċ	4.713373	7.256325	3.021367

Calcu	ilated energies	and coordinates of	f MeCN·B($(C_6F_5)_3$ at 1	PBE0-
D4(C	PCM=benzene	e)/def2-TZVP leve	l of theory		

Electronic energy	2339.72502805 Eh
Total Enthalpy	2339.48685703 Eh
Final Gibbs free energy	2339.58041533 Eh

CAR	CIESIAN CO	JORDINAT	ES (ANGSTROEM)
В	3.092101	5.834674	1.723721
N	1.882290	6.39/605	2.558964
F	3.314507	4.210446	-0./98340
F	2./31055	1.64/022	-1.030344
F	1.882808	0.217/96	1.110638
F	1.629577	1.43/419	3.523425
F	2.221437	4.014866	3.791249
F	5.423893	/.0/8/66	0.300452
F	5.290098	8.522426	-1.907097
F	2.914888	8.949322	-3.141208
F	0.649986	7.870640	-2.102996
F	0.754306	6.404690	0.109553
F	5.351083	3.949983	2.3/16/6
F	7.411323	4.501093	3.927466
F	7.675830	6.945923	5.064561
F	5.796179	8.850334	4.605578
F	3.714403	8.329652	3.037772
С	1.010496	6.816180	3.160322
С	-0.089674	7.344249	3.915723
С	2.749907	4.259785	1.503416
С	2.877092	3.587602	0.297464
С	2.590886	2.239797	0.148951
С	2.160721	1.506059	1.237653
С	2.029744	2.131587	2.464177
С	2.329851	3.476083	2.569064
С	3.084156	6.710628	0.351989
С	4.214226	7.264039	-0.230538
С	4.176150	8.013486	-1.395309
С	2.968651	8.230441	-2.030843
С	1.816724	7.682711	-1.496781
С	1.900483	6.937682	-0.336040
С	4.395577	6.100085	2.662379
С	5.390103	5.167559	2.915838
С	6.489871	5.432855	3.716345
С	6.630733	6.678301	4.297219
С	5.669867	7.644818	4.062958
С	4.590989	7.339566	3.255669
Н	-0.369086	6.630090	4.692483
Н	-0.936271	7.512118	3.247261
Н	0.209941	8.288722	4.373934
