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Experimental section

General methods. All reactions were performed using standard Schlenk techniques under an
argon atmosphere or in a Braun dry-box under a nitrogen atmosphere. All solvents were
appropriately dried and distilled then degassed prior to use. 'H, '3C (referenced to residual
solvent peaks) and '°F (external trifluoroacetic acid reference) NMR spectra were recorded at
298 K on a Bruker Avance 600 (or 400/300) FT-NMR spectrometer (ppm). Peak assignments
were based on combinations of DEPT-135, and 2-D 'H-'H, *C-'H and NOE (plus ['H,"’F]-
COSY for 4-6) correlation NMR experiments. The 'H NMR spectra of precursors, ligands and
complexes are provided below. Elemental analyses were performed on a Vario EL elemental
analyzer (Elementar Analysensysteme GmbH).

For polymer analysis, gel permeation chromatographs were obtained on a PL-GPC 220
instrument (at 1.0 mL/min versus polystyrene standards; 2 x PLgel Olexis (300 x 7.5 mm)
Mixed B columns) at 150 °C in 1,2,4-trichlorobenzene. The polymer melting point was

determined using a PerkinElmer STA6000 simultaneous thermal analyser under a nitrogen
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atmosphere: 1) polymer samples were first equilibrated at 30 °C, then heated to 170 °C at a rate
of 10 °C/min, 2) this temperature was maintained for 5 min, then samples were cooled to 30 °C
at arate of 10 °C/min, 3) this temperature was maintained for 5 min, then samples were reheated
to 170 °C at a rate of 10 °C/min, 4) the melting temperature (7m) was determined from the
second heating scan. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR
spectrometer; polymer samples (4 mg) were pressed under 3.5 MPa into a transparent thin film,
which was clipped using two KBr crystal plates for analysis.! Molecular structures were
optimized using DFT calculations (MO6L level,”> using the Gaussian 16 program package®)
with the LanL2DZ basis set* for transition metals and the 6-311G(d,p) basis set for non-metal

atoms. The synthesis of H2L* and I-1 were described previously.>

Synthesis of 1-2

Toluene (50 mL) was added to a mixture of I-1 (5.00 g, 12.8 mmol), 2,6-dibromopyridine (3.34
g, 14.1 mmol), tetrakis(triphenylphosphine)palladium(0) (0.740 g, 0.640 mmol) and potassium
phosphate tribasic (5.50 g, 25.6 mmol) at 20 °C under a nitrogen atmosphere. The mixture was
stirred at 20 °C for 25 minutes and at 100 °C for 7 days. Upon cooling, the mixture was filtered
through a thin layer of celite. The product was obtained as a white solid after purification by
silica gel flash chromatography using n-hexane: ethyl acetate (40:1) as eluent. Yield: 4.00 g,
74%. '"H NMR (300 MHz, CDCls): 6 7.67 (d, J= 7.6, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.49-7.39
(m, 3H), 4.61 (s, 2H), 3.53 (q, J = 7.1 Hz, 2H), 1.46 (s, 9H, #-Bu), 1.33 (s, 9H, #-Bu), 1.11 (t,J
=7.1 Hz, 3H).

Synthesis of 1-3

O/B\©/B‘O

Bis(pinacolato)diboron (12.9 g, 50.9 mmol), 1,3-dibromobenzene (5.00 g, 21.2 mmol),
potassium acetate (12.5 g, 127.2 mmol), Pd(dppfHCl> (1.55 g, 2.12 mmol) and
dimethylformamide (50 mL) were combined in a 250 mL Schlenk flask and heated at 100 °C

under a nitrogen atmosphere for three days. After extraction with ethyl acetate (40 mL), the
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combined organic layers were dried over anhydrous magnesium sulphate. Evaporation of all
volatiles by vacuum, and purification by silica gel flash chromatography using n-hexane:ethyl
acetate (50:1) as eluent, gave a white solid. Yield: 5.89 g, 84%. 'H NMR (300 MHz, CDCl3):
0 8.28 (s, 1H), 7.90 (d, J= 7.4 Hz, 2H), 7.38 (t,J = 7.4 Hz, 1H), 1.34 (s, 24H).

o B B~

The procedure for the synthesis of I-3 was adopted using bis(pinacolato)diboron (13.2 g, 51.9

Synthesis of 1-4

o

F

mmol), 1,3-dibromo-5-fluorobenzene (6.00 g, 23.6 mmol), potassium acetate (14.0 g, 142.7
mmol), Pd(dppf)Cl2 (1.73 g, 2.36 mmol) and toluene (100 mL). Yield: 6.41 g, 78%. '"H NMR
(400 MHz, CsDe): 6 8.71 (d, J= 1.0 Hz, 1H), 7.95 (dd, J = 9.0, 1.0 Hz, 2H), 1.05 (s, 24H). '°F
NMR (376 MHz, CsDs): 6 —114.88.

Synthesis of I-5

I-2 (1.00g, 2.38 mmol), I-3 (0.356 g, 1.08 mmol), potassium carbonate (0.896 g, 6.48 mmol),
Pd(dppf)Cl2 (0.0395 g, 0.0540 mmol), dioxane (10 mL) and H20 (2 mL) were combined in a
100 mL Schlenk flask and heated at 100 °C for 4 days under a nitrogen atmosphere. The
resultant mixture was extracted with dichloromethane (50 mL) and the combined organic layers
were dried over anhydrous magnesium sulphate. Evaporation of all volatiles by vacuum, and
purification by silica gel flash chromatography using n-hexane:ethyl acetate (20:1) as eluent,
gave a pale yellow solid. Yield: 0.670 g, 82%. 'H NMR (400 MHz, CDCl3): § 8.37-8.01 (m,
1H), 7.86 (m, 1H), 7.76-7.67 (m, 2H), 7.66 (s, 2H), 7.56 (t,J= 7.7 Hz, 2H), 7.45-7.40 (m, 4H),
7.39 (d, J = 2.5 Hz, 2H), 4.61 (s, 4H), 3.53 (q, J = 7.0 Hz, 4H), 1.46 (s, 18H, #-Bu), 1.33 (s,
18H, #-Bu), 1.12 (t,J = 7.1 Hz, 6H).
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Synthesis of H4L!

I-5 (0.650 g, 0.885 mmol), concentrated hydrochloric acid (4 mL) and methanol (20 mL) were
added into a 100 mL round-bottom flask and stirred at 60 °C for 12 hours. The resultant mixture
was extracted with dichloromethane (50 mL) and washed with brine. The combined organic
layers were dried over anhydrous magnesium sulphate. The product was obtained as a pale
yellow solid after purification by silica gel flash chromatography using n-hexane:ethyl acetate
(20:1) as eluent. Yield: 0.499 g, 88%. 'H NMR (300 MHz, CDCls): § 14.83 (s, 2H), 8.55 (s,
1H), 8.12 (d, /= 1.7 Hz, 1H), 8.10 (d, J= 1.7 Hz, 1H), 8.00-7.89 (m, 4H), 7.80-7.71 (m, 5H),
7.45 (d, J=2.3 Hz, 2H), 1.53 (s, 18H, #-Bu), 1.39 (s, 18H, ¢#-Bu).

Synthesis of 1-6

The procedure for the synthesis of I-5 was adopted using I-2 (1.50 g, 3.57 mmol), I-4 (0.580
g, 1.67 mmol), potassium carbonate (1.38 g, 9.96 mmol), Pd(dppf)Cl2 (0.0611 g, 0.0835 mmol),
dioxane (10 mL) and H20 (2 mL). Yield: 1.03 g, 80%. '"H NMR (400 MHz, CDCl3): § 8.63 (t,
J=1.5Hz, 1H), 7.98 (d, J= 1.5 Hz, 1H), 7.96 (d, J = 1.5 Hz, 1H), 7.86-7.80 (m, 4H), 7.74—
7.766 (m, 2H), 7.61 (d, J= 2.6 Hz, 2H), 7.49 (d, J = 2.6 Hz, 2H), 4.67 (s, 4H), 3.58 (¢, /= 7.1
Hz, 4H), 1.53 (s, 18H, #-Bu), 1.39 (s, 18H, #-Bu), 1.12 (t, J= 7.0 Hz, 6H). ’F NMR (376 MHz,
CDCls): 6 —112.95.

Synthesis of HyL?

The procedure for the synthesis of HsL' was adopted using 1-6 (0.910 g, 1.17 mmol),
concentrated hydrochloric acid (4 mL) and methanol (20 mL). Yield: 0.702 g, 90%. 'H NMR
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(400 MHz, CDCls): § 14.54 (s, 2H), 8.34 (t, J = 1.6 Hz, 1H), 7.99-7.92 (m, 4H), 7.79 (d, J =
1.5 Hz, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H), 7.73 (d, J = 2.4 Hz, 1H), 7.71
(d, J = 2.4 Hz, 2H), 7.45 (d, J = 2.4 Hz, 2H), 1.53 (s, 18H, #-Bu), 1.39 (s, 18H, £-Bu). 1°F NMR
(376 MHz, CDCL3): & —110.70.

Synthesis of I-7

O, 0
/B @ B\
o) o

The procedure for the synthesis of I-3 was adopted using bis(pinacolato)diboron (5.15 g, 20.3
mmol), 1,4-dibromobenzene (2.00 g, 8.48 mmol), potassium acetate (7.03 g, 50.9 mmol),
Pd(dppf)Cl2 (0.620 g, 0.848 mmol) and toluene (70 mL). Yield: 2.10 g, 75%. 'H NMR (400
MHz, CDClIs): 6 7.80 (s, 4H), 1.35 (s, 24H).

Synthesis of 1-8

The procedure for the synthesis of I-5 was adopted using I-2 (1.00g, 2.38 mmol), I-7 (0.356 g,
1.08 mmol), potassium carbonate (0.896 g, 6.48 mmol), Pd(dppf)Cl2 (0.0395 g, 0.0540 mmol),
dioxane (10 mL) and H20 (2 mL). Yield: 0.703 g, 86%. 'H NMR (300 MHz, CDCl3): § 8.26
(s, 4H), 7.84-7.75 (m, 4H), 7.69 (m, 2H), 7.59 (d, J = 2.5 Hz, 2H), 7.45 (d, J = 2.6 Hz, 2H),
4.66 (s, 4H), 3.56 (q, /= 7.1 Hz, 4H), 1.50 (s, 18H), 1.37 (s, 18H), 1.11 (t,J=7.1 Hz, 6H).

Synthesis of H4L?

The procedure for the synthesis of HsL' was adopted using I-8 (0.863 g, 1.14 mmol),
concentrated hydrochloric acid (4 mL) and methanol (20 mL). Yield: 0.621 g, 85%. 'H NMR
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(300 MHz, CDCL3): & 14.69 (s, 2H), 8.14 (s, 4H), 7.98-7.89 (m, 4H), 7.72 (d, J = 2.3 Hz, 3H),
7.70 (d, J = 2.5 Hz, 1H), 7.44 (d, J = 2.4 Hz, 2H), 1.53 (s, 18H), 1.39 (s, 18H).

Synthesis of complex 2

The procedure for the synthesis of complex 1 was adopted using HiL! (0.090 g, 0.140 mmol)
and Zr(CH2Ph)4 (0.132 g, 0.291 mmol). The resultant orange precipitate was collected and
dried under vacuum. Yield: 0.096 g, 58%. '"H NMR (600 MHz, C¢Ds with 3 drops of ds-THF):
§9.72 (s, 1H, H'#), 7.78 (s, 1H, H'%), 7.70 (d, J= 2.0 Hz, 2H, H*), 7.56 (d, J = 1.9 Hz, 2H, H®),
7.43 (d,J=17.8 Hz, 2H, H®), 7.33 (d, J=7.8 Hz, 2H, H!?), 7.19 (t,J = 7.8 Hz, 2H, H%), 7.10 (d,
J=17.6 Hz, 8H, 0-Ph), 6.95 (t, /= 7.5 Hz, 8H, m-Ph), 6.67 (t,J = 7.2 Hz, 4H, p-Ph), 3.28 (d, J
=10.4 Hz, 4H, CH»), 3.14 (d, /= 10.4 Hz, 4H, CH2), 1.75 (s, 18H, 3-#-Bu), 1.39 (s, 18H, 5-¢-
Bu). 3C NMR (151 MHz, CsDs with 3 drops of ds-THF): § 193.42 (C'%), 163.67 (C'!), 158.28
(C7), 155.92 (C?), 145.73 (ipso-Ph), 143.46 (C'?), 141.59 (C%), 141.36 (C'), 138.49 (C?),
137.69 (C?), 128.14 (m-Ph), 127.95 (0-Ph), 126.21 (C"), 125.87 (C*), 124.95 (C®), 121.80 (C?),
120.59 (p-Ph), 117.08 (C'), 115.70 (C'°), 71.52 ("Jcu = 122.0 Hz, CH2), 35.45 (5-CMe3),
34.25 (3-CMes), 31.48 (3-CMes), 30.19 (5-CMes). Anal. Calcd for C72H76N202Zr2 (1183.9): C,
73.05; H, 6.47; N, 2.37. Found: C, 73.35; H, 6.42; N, 2.30.

Synthesis of complex 3

The procedure for the synthesis of complex 1 was adopted using HaL! (0.090 g, 0.140 mmol)
and Hf(CH2Ph)s4 (0.158 g, 0.291 mmol). The resultant pale orange precipitate was collected
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and dried under vacuum. Yield: 0.131 g, 69%. '"H NMR (600 MHz, CsDs): § 9.43 (s, 1H, H'%),
7.73 (d, J=2.3 Hz, 2H, H*), 7.61 (s, 1H, H'), 7.44 (d, J= 2.2 Hz, 2H, H°), 7.28 (d, /= 7.8 Hz,
2H, HY), 7.10 (d, J = 7.8 Hz, 2H, H'%), 7.06 (d, J = 7.5 Hz, 8H, 0-Ph), 6.96 (t, J = 7.8 Hz, 2H,
H°), 6.83 (t, J = 7.6 Hz, 8H, m-Ph), 6.59 (t, J = 7.3 Hz, 4H, p-Ph), 2.96 (s, 8H, CHa), 1.79 (s,
18H, 3-t-Bu), 1.40 (s, 18H, 5-2-Bu). °C NMR (151 MHz, CeDe): & 203.02 (C'?), 164.14 (C'),
158.47 (C7), 155.91 (C2), 144.82 (C'), 144.45 (C'2), 141.27 (C%), 139.11 (C%), 137.77 (ipso-
Ph), 137.67 (C%), 129.60 (0-Ph), 128.65 (m-Ph), 126.61 (C*), 125.81 (C'), 124.61 (C®), 123.03
(p-Ph), 122.44 (C®), 117.17 (C'%), 115.71 (C'%), 77.59 ("Jen = 127.4 Hz, CHz), 35.37 (5-CMe),
34.23 (3-CMes), 31.51 (3-CMes), 30.29 (5-CMes). Anal. Caled for CraHr6HEN202 (1358.4): C,
63.66; H, 5.64; N, 2.06. Found: C, 63.43; H, 5.53; N, 1.88.

Synthesis of complex 5

A mixture of n-pentane (10 mL) and THF (0.5 mL) was slowly added to H4L? (0.110 g, 0.167
mmol) and Zr(CH2Ph)4 (0.153 g, 0.337 mmol) at —78 °C under an argon atmosphere. The
reaction was stirred at —78 °C for an hour and at 20 °C for 12 hours. The resultant dark orange
precipitate was collected and dried under vacuum. Yield: 0.104 g, 52%. 'H NMR (600 MHz,
CeDs with 10 drops of ds-THF): & 7.70 (d, J = 2.4 Hz, 2H, H*), 7.46 (d, J = 2.4 Hz, 2H, H®),
7.41 (d, J=3.6 Hz, 1H, H"), 7.27 (d, J = 8.1 Hz, 3H, H®), 7.21-7.13 (m, 10H, 0-Ph and H'?),
7.01 (t,J=7.8 Hz, 2H, H?), 6.89 (t, /= 7.7 Hz, 8H, m-Ph), 6.63 (t,J = 7.1 Hz, 4H, p-Ph), 3.32
(d, J=10.0 Hz, 4H, CH2), 3.14 (d, J=10.0 Hz, 4H, CH>), 1.71 (s, 18H, 3-#-Bu), 1.40 (s, 18H,
5-t-Bu). 1*C NMR (151 MHz, CeéDs with 10 drops of ds-THF): § 172.94 (d, Jcr = 77.0 Hz,
C"), 171.73 (d, 'Jcr = 213.4 Hz, C'%), 163.25 (C'), 158.60 (C7), 155.21 (C?), 145.86 (d, *JcF
=20.7 Hz, C'?), 141.62 (C?), 140.27 (ipso-Ph), 138.68 (C%), 137.06 (C?), 129.02 (m-Ph), 128.80
(0-Ph), 126.48 (C"), 126.36 (C*), 124.95 (C®), 122.76 (C®), 122.34 (p-Ph), 116.24 (C'?), 114.64
(CY), 70.47 ("Jcn = 121.8 Hz, CH2), 35.39 (3-CMes), 34.25 (5-CMes), 31.49 (5-CMe3), 30.29
(3-CMe3). F NMR (565 MHz, CsDs with 10 drops of ds-THF): & —63.76. Anal. Calcd for
C72H75FN202Zr2 (1201.9): C, 71.96; H, 6.29; N, 2.33. Found: C, 72.13; H, 6.02; N, 2.18.
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Synthesis of complex 6

The procedure for the synthesis of complex 1 was adopted using H4L? (0.113 g, 0.208 mmol)
and Hf(CH2Ph)4 (0.187 g, 0.344 mmol). The resultant orange precipitate was collected and
dried under vacuum. Yield: 0.166 g, 70%. '"H NMR (600 MHz, CsDs with 3 drops of ds-THF):
§ 7.77-7.75 (m, 3H, H* and H'), 7.53 (d, J = 2.4 Hz, 2H, H%), 7.40 (d, J = 7.9 Hz, 2H, H®),
7.25(d, J=17.3 Hz, 2H, H'?), 7.16-7.12 (m, 10H, H’ and 0-Ph), 6.97 (t, J= 7.5 Hz, 8H, m-Ph),
6.62 (t,J=17.1 Hz, 4H, p-Ph), 3.11 (d, J=11.6 Hz, 4H, CH2), 2.94 (d, /= 11.6 Hz, 4H, CH>),
1.85 (s, 18H, 3--Bu), 1.41 (s, 18H, 5-t-Bu). 1*C NMR (151 MHz, CsDs with 3 drops of ds-
THF): § 180.40 (d, 2Jcr = 75.5 Hz, C'%), 174.04 (d, 'Jcr=217.4 Hz, C'*), 163.16 (C'"), 158.70
(C7), 155.81 (C?), 148.42 (d, *Jcr = 21.1 Hz, C'?), 148.20 (ipso-Ph), 141.85 (C>), 138.88 (C?),
138.39 (C?), 127.35 (m-Ph), 126.82 (0-Ph), 126.54 (C*), 125.51 (C'), 124.79 (C®), 122.07 (C?),
120.05 (p-Ph), 116.57 (C'9), 116.33 (C"), 80.33 ({Jcu = 117.6 Hz, CH2), 35.53 (3-CMe3), 34.
20 (5-CMes), 31.58 (5-CMes), 30.32 (3-CMes3). ’F NMR (565 MHz, CsDs with 3 drops of ds-
THF): 6 —59.01. Anal. Calcd for C72H7sFHf2N20:2 (1376.4): C, 62.83; H, 5.49; N, 2.04. Found:
C, 62.70; H, 5.26; N, 1.98.

Synthesis of complex M1

A solution of HzL* (0.100 g, 0.278 mmol) in n-pentane (8 mL) was added dropwise to
Ti(CH2Ph)4 (0.119 g, 0.289 mmol) in n-pentane (5 mL) at =20 °C under an argon atmosphere.
The reaction was stirred at —20 °C for one hour and at 20 °C for 12 hours, after which half of

the volume of solvent was removed by vacuum. The product was obtained as a dark red solid,
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from the filtrate of the mixture, after storage at —20 °C for 12 hours. Yield: 0.110 g, 67%. 'H
NMR (400 MHz, CsDs): & 8.53 (d, J = 6.8 Hz, 1H, H'%), 7.70 (d, J= 2.4 Hz, 1H, H*), 7.42 (d,
J=2.4Hz, 1H, H% 7.31 (td, J = 6.8 Hz, 1.2 Hz, 1H, H'%), 7.21-7.10 (m, 3H, H?, H'6 and H'7),
6.78 (d, J= 7.2 Hz, 4H, 0-Ph), 6.75-6.69 (m, 2H, H? and H'), 6.59 (t, J= 7.8 Hz, 4H, m-Ph),
6.42 (t, J = 7.4 Hz, 2H, p-Ph), 4.20 (d, J = 8.3 Hz, 2H, CHz2), 3.96 (d, J = 8.3 Hz, 2H, CH>),
1.84 (s, 9H, 3--Bu), 1.36 (s, 9H, 5-#-Bu). 3C NMR (101 MHz, C¢Ds): & 200.82 (C'%), 139.17
(C%), 135.25 (C'¥), 131.22 (0-Ph), 129.13 (C'), 128.31 (C'%), 127.80 (m-Ph), 126.70 (C*),
124.29 (CS), 123.50 (p-Ph), 122.27 (C'7), 121.92 (C?), 114.93 (C'?), 93.20 ("Jc,u = 134.3 Hz,
CH2), 35.73 (3-CMes), 34.58 (5-CMes), 31.74 (5-CMes), 30.87 (3-CMes); 4° carbons: 164.07,
157.44,157.10, 142.02, 141.73, 137.41, 136.85, 127.04. Anal. Calcd for C39oH41NOTi (587.6):
C,79.71; H, 7.03; N, 2.38. Found: C, 79.32; H, 7.13; N, 2.22.

Polymerisation procedures. Schlenk-line ethylene polymerisation tests were carried out under
atmospheric pressure in toluene in a 100 mL glass reactor containing a magnetic stir bar, which
was equilibrated at the required temperature. The reactor was maintained under 1 atmosphere
of continuous ethylene supply for the duration of the experiment. Polymerisation was initiated
by adding a toluene solution of the cocatalyst ([Ph3C][B(CsFs)4]/'BusAl) with stirring. After
the prescribed reaction time, 10% HCI in methanol (40 mL) was added to terminate the
polymerisation, the ethylene gas feed was stopped, and the resultant mixture was allowed to
stir at 80 °C for 1 hour. The polymer was collected by filtration, washed with methanol (20
mL), and dried under vacuum at 80 °C for 12 hours to a constant weight. The same procedure
was adopted for ethylene/1-octene copolymerisation tests, except the 1-octene substrate was
combined with the toluene solution of the cocatalyst before polymerisation. Errors for catalytic
activities are estimated to be +10 %, based on previous polymerisation tests using the same

experimental procedure.
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Table S1. Selected NMR parameters (600 MHz, 298 K) for complexes 1-7 and M1

Complex, M CH:(ppm)  Cmethylene (ppm) 2Jun (Hz) 'Jeu(Hz)  CP(ppm)  HY (ppm)

1, Tiz ¢ 4.15,4.58 93.64 8.8 134.5 203.8 10.14
2, Zn? 3.14,3.28 71.52 10.4 122.0 193.4 9.72
3, Hf>¢ 2.96 77.59 — 127.4 203.0 9.43
4, Tix? 4.36,4.90 96.72 8.7 131.9 183.5 —
5,Zn?t 3.14,3.32 70.47 10.0 121.8 172.9 -
6, HD? 2.93,3.10 80.33 11.6 117.6 180.4 -
7, Tiz? 3.65, 4.06 94.05 9.1 128.5 205.4 8.82
M1, Ti? 3.96, 4.20 93.20 8.3 134.3 200.8 8.53

@ C¢Des. ? CeDs with ds-THF.
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Figure S1. Full (bottom) and expanded (top) '"H NMR spectra of complex 1 (600 MHz, CsDs, 298 K).
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Figure S2. Expanded ['H,'H]-ROESY spectrum of complex 1 (600 MHz, CsDs, 298 K).
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Figure S3. Expanded ['H,'H]-ROESY spectrum of complex 2 (600 MHz, CsDs with ds-THF, 298 K).
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Figure S4. Expanded ['H,'H]-ROESY spectrum of complex 3 (600 MHz, CsDs, 298 K).
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Figure S5. Expanded ['H,'H]-ROESY spectra of complex 7 (600 MHz, CsDs with ds-THF, 298 K).
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Figure S6. '"H NMR spectra of complexes 1-3 (600 MHz, 298 K).
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Figure S7. '"H NMR spectrum (600 MHz, CD>Cl> with 3 drops of ds-THF, 298 K) for
dication derived from reaction of complex 6 with 2 equiv. of trityl borate.
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Figure S9. Energy-minimised calculated (Gaussian) structures for m(octene)-complex of 12

(generated by abstraction of one benzyl group from each Ti).

Agostic structure: Ti---Ti = 6.200 A; Ti—-C(r) = 2.510 A;
Ti---H(agostic) = 2.241 A [effective charge for “agostic” Ti = +1.19].

Non-agostic structure (less stable by 7.20 kcal/mol): Ti---Ti = 6.230 A; Ti-C(n) = 2.527 A;
[effective charge for “non-agostic” Ti = +1.26].
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Figure S11. 'H NMR spectrum (CDCl3, 300 MHz, 298 K) of I-3.
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Figure S12. 'H NMR spectrum (C¢Ds, 400 MHz, 298 K) of 1-4.
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80T
:H.HW
at
LET
nn.Hv.
05T
85T

1333
mm.nv
LEE
Qm.m\

S0 —

|J 16§

6081
)

— 0081

Q
=)

===& |- o7t

T F L0

— F S0T

=

Figure S15. 'H NMR spectrum (CDCls;, 400 MHz, 298 K) of I-6.

S22



L=
=]
wi— —SHSL | o,
il =~ qo'51 [ -
o
o \ B
]
a
S
@
"
e
-
[ =
[
R
o [\
$TL L
L % jan) b4
W b O
L = ]
L
SUL
oL v Lo
Lk 5
Lk 5
6L g Le
Ll - PLOTE
8L wel, -
WL ¥ —7 afe :A_:‘W
6L 2 _ otz fo &
F o &
86°L A gep [
98 )
E.mw. T T Ee
1£°8 =
L=
S
4
& Fo
B
8
B s
& Fs
b "
ey Fs
= =)
Fo
3 A
= wy
Fo
< =]
o
Fei
el
"
5 P
[
d =
",
g F=
4 FS
60T -
s "
9SPI— s —— = [
]
o

S§23

ppm

Figure S16. 'H (top; 400 MHz) and '°F (bottom; 376 MHz) NMR spectra (CDCls, 298 K) of H4L2.



7.802
—1.348

H,

385 =

-
a0

ppm

Figure S17. 'H NMR spectrum (CDCls, 400 MHz, 298 K) of I-7.
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Figure S23. 'H NMR spectrum (CsDs with ds-THF, 600 MHz, 298 K) of complex 7.
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