Supporting information

Zinctungstate Encapsulated into infrequent Zn(II)-Viologen Framework with Photochromic, Electrochromic and Chemochromic

Properties

Li Huang, Xiao-Nan Li, Yuan Shen, Run-Hong Song, Wen-Bo Cui and Hong Zhang*

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.

Corresponding Author

*E-mail: hope20130122@163.com, zhangh@nenu.edu.cn (H. Zhang).

1. Supplementary Tables	S3
2. Supplementary Figures.	S8
3. Reference.	S8

Crystal Structure Determinations

The intensity data of the same single crystal **1** before and after coloration were collected on a Rigaku Pilatus 200 K diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and Cu K α radiation ($\lambda = 1.54056$ Å), respectively. The colored sample (**1a**) was illuminated with Cu K α X-ray for 20 min. Data reduction and absorption corrections were performed using Lorentz and polarization effects. The structures were solved by direct methods refined by full-matrix least-squares methods using a suite of SHELX programs via the Olex2 program^{s1}. The non-hydrogen atoms were refined with anisotropic displacement parameters. Technical details of data collection and refinement are summarized in Table S1. The main bond lengths and angles of **1** and **1a** are shown in Table S2.

Compound	1	1a
Formula	$C_{78}H_{76}N_6O_{64}W_{12}Zn_4$	$C_{78}H_{76}N_6O_{64}W_{12}Zn_4$
Fw	4589.08	4589.08
Crystal system	trigonal	trigonal
Space group	R 3	R 3
a/(Å)	17.9542(4)	18.0082(3)
b/(Å)	17.9542(4)	18.0082(3)
c/(Å)	27.4233(8)	27.5563(5)
α/(°)	90	90
β/(°)	90	90
γ/(°)	120	120
Volume/(Å ³)	7655.7(12)	7739.1(3)
Ζ	3	3
Temperature/(K)	100	293
ρ_{calc} (g/cm ³)	2.934	2.944
F(000)	6174.0	6270.0
μ/(mm ⁻¹)	14.485	25.906
Reflections collected	21341	9168
Independent	4404	3458
reflections		
R1 [I>=2σ (I)]	0.0598	0.0651
wR ₂ [all data]	0.1823	0.1927
GOF on F ²	1.028	1.050

Table S1 Crystallographic data for 1 and 1a.

	1		1a
Bond	Length/Å	Bond	Length/Å
W1-O1	2.492(14)	W1-01	2.471(13) ↓
W1-O2	2.504(14)	W1-O2	2.475(12) ↓
W1-O3	1.687(10)	W1-O3	1.681(10)
W1-O4 ¹	1.924(11)	W1-O4 ⁴	1.928(11)
W1-O4	1.882(11)	W1-O4	1.864(11)↓
W1-O5	1.881(11)	W1-05	1.883(10)
W1-O8 ²	1.892(10)	W1-O8 ⁵	1.892(11)
W2-O2 ³	2.423(13)	W2-O2 ⁶	2.462(11) ↑
W2-O2	2.439(13)	W2-O2	2.437(12)
W2-O5	1.951(12)	W2-O5	1.922(10) ↓
W2-O6	1.712(10)	W2-O6	1.700(9)
W2-O7 ³	1.908(10)	W2-07	1.915(10)
W2-O7	1.905(10)	W2-O7 ⁶	1.910(10)
W2-O8	1.919(11)	W2-O8	1.934(11) ↑
Zn1-O1	1.53(3)	Zn1-O1	1.56(2) ↑
Zn1-O2	1.558(13)	Zn1-O2	1.552(13)
Zn2-O10	2.064(15)	Zn2-O10	2.066(14)
Zn3-09	1.991(17)	Zn3-O9	2.006(16)
Zn3-O1W	2.13(7)	Zn3-O1W	2.12(6)
O9-C13	1.25(2)	O9-C13	1.22(2)
O10-C13	1.24(2)	O10-C13	1.26(2)
N1-C6	1.53(2)	N1-C6	1.57(2) ↑

Table S2. Comparison between selective bond distances (Å) of compounds 1 and 1a.

 $^{1}\text{-}Y, +X\text{-}Y, +Z; \\ ^{2}\text{-}Y+X, +X, 1\text{-}Z; \\ ^{3}\text{+}Y, -X+Y, 1\text{-}Z; \\ ^{4}\text{1}\text{-}Y, 1+X\text{-}Y, +Z; \\ ^{5}\text{-}1/3+Y, 1/3\text{-}X+Y, 1/3\text{-}Z; \\ ^{6}\text{2}/3\text{-}Y+X, 1/3+X, 1/3\text{-}Z; \\ ^{6}\text{2}/3\text{-}Y+X, 1/3+X, 1/3+X, 1/3+Z; \\ ^{6}\text{2}/3\text{-}Y+X, 1/3+X, 1/3$

Compound	Photoresponsiv	Ref.
	e rate (s ⁻¹)	
[(AV ²⁺)(p-AV)(EuW ₁₀ O ₃₆)] _n ·2nH ₂ O	1.27×10 ⁻²	[82]
ZnW ₁₂ @MV	1.39×10 ⁻²	This work
$\{Cu(1,1\text{-}pmbby)_2(H_2O)[H_2(\beta\text{-}Mo_8O_{26})_2]\}\cdot 5H_2O\cdot C_2H_7N$	2.38×10 ⁻²	[\$3]
$\{Co(1,4\text{-}bcbpy)_2(H_2O)_2[H_2(\beta\text{-}Mo_8O_{26})]\}\cdot 2H_2O\cdot 2CH_2O$	2.601×10 ⁻²	[83]
$[Zn(CPBPY)_2(H_2O)_3]PF_6 \cdot NO_3 \cdot 4H_2O$	4.60×10 ⁻²	[S4]
[Zn ₇ (bpybc) ₃ (o-BDC) ₆]·2NO ₃ ·6H ₂ O	6×10 ⁻³	[85]
{[Zn(Mebpy)(Hbtc)Cl]·2H ₂ O} _n	5.33×10 ⁻³	[S6]
$\{[Zn_3(Cebpy)_2(Hbtc)(H_2btc)_2(OH)_2] \cdot 4H_2O\}_n$	4.29×10 ⁻³	[S6]
[Zn(CPBPY)(HBTC)]·H ₂ O	5.4×10 ⁻⁴	[\$7]

Table S3	Photores	noncive rat	e of some	viologen_h	ased phot	ochromic	hybride
Table 55.	FIIOLOICS	polisive rau		viologen-o	aseu phou	Julionne	nyonus.

Figure S1 (a) Coordination mode of the Bcbpy in **1**. (b) The dihedral angle between the pyridine ring and the benzene ring.

Figure S2 (a) The trinuclear $Zn_3O_{14}C_6$ cluster (Zn₃SBU) of 1. (b) The trinuclear $Zn_3O_{13}C_6$ cluster of PNMOF-1.

Figure S3 (a) The 3D zinc-viologen cationic $Zn_3(Bcbpy)_6(H_2O)_{2n}^{6n+}$ network. (b) The 2D network of $Zn_3(BDC)_3(DEF)_2$.

Figure S4 PXRD patterns of **1** immersed in H_2SO_4 solutions (pH =1) and NaOH solutions (pH =12).

Figure S5 The UV–vis spectra of 1, 1P, $H_2BcbpyCl_2$ and ZnW_{12} at room temperature.

Figure S7 The EDS elemental mapping images and spectrum of 1.

Figure S8 (a) Simulated, experimental, photochromic, and decolored PXRD patterns of **1**. (b) IR spectra of **1** before and after coloration.

Figure S9 Solid state photoresponsive rate plots of 1 upon photo-irradiation based on UV absorption at 620 nm.

Figure S10 (a) The photochromic of the color change in 6 cycles. (b) The absorbance at λ =620 nm in the photochromism-decoloration cycles of 1.

Figure S11 The PXRD patterns of colored sample 1 in the 6 cycles.

Figure S12 (a) The color transitions process of 1T. (b) The in-situ solid-state UV-vis spectra of 1T. (c) Solid state photoresponsive rate plots of 1T upon photo-irradiation based on UV absorption at 620 nm.

Figure S13 The XPS spectrum of 1 before and after UV photoirradiation: (a) N 1s, (b)

C 1s.

Figure S14 The XPS spectrum of 1 before and after X-ray photoirradiation: (a) O 1s, (b) N 1s.

Figure S15 The selected distances between the O atoms (from ZnW_{12} , Bcbpy and H_2O molecules) to the N atoms from bipyridinium.

Figure S16 The PXRD patterns (a) and IR spectra (b) of 1 after exposure to different amines.

References

- [S1] Sheldrick, G.M. A short history of SHELXL, Acta Crystallogr Sect. A Found. Crystallogr. 2008, 64, 112–122.
- [S2] D.-F. Shen, S. Li, H. Liu, W. Jiang, Q. Zhang and G.-G. Gao, Journal of Materials Chemistry C 2015, 3, 12090-12097.
- [S3] S. Yu, T. Liu, J. Ying, A.-X. Tian, M.-L. Yang and X.-L. Wang, *Dalton Trans.* 2023.
- [S4] Y.-Y. Zhang, H.-C. Wang, P. Li, X.-X. Jin, B.-W. Wang, L. Wang, R.-J. Li and Q. Sui, Chem. Eur. J. 2023, e202302397.
- [S5] S.-L. Li, M. Han, Y. Zhang, G.-P. Li, M. Li, G. He and X.-M. Zhang, J. Am. Chem. Soc. 2019, 141, 12663-12672.
- [S6] Q. Shi, S.-Y. Wu, X.-T. Qiu, Y.-Q. Sun and S.-T. Zheng, Dalton Transactions

2019, *48*, 954-963.

[7] J. Zhang, Y. Zeng, H.-C. Lu, X.-H. Chen, X.-Z. Yuan and Z.-Y. Fu, Cryst. Growth Des. 2020, 20, 2617-2622.