Supplementary information: Alkali Metal Alkoxyborate Ester Salts; a Contemporary Look at Old Compounds

Amanda Berger^a, Ainee Ibrahim^a, Thomas A. Hales^a, Anita M. D'Angelo^b, Craig E. Buckley^a, Mark Paskevicius^a*

^aDepartment of Physics and Astronomy, Institute of Energy Transition, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

^bAustralian Synchrotron (ANSTO), 800 Blackburn Road Clayton VIC 3168

Figure S1: ¹H NMR of ethanolysis of NaBH₄ after 4 hours refluxing. Inset shows an expanded view indicating that BH₄⁻ was still present in the final product with the 1:1:1:1 quartet of BH₄⁻. Solvent DMSO-*d6*.

Figure S2: ¹H NMR of compound after 4.5 hours refluxing NaBH₄ in ethanol. Inset shows an expanded view indicating that no BH_4^- was present in the final product with the 1:1:1:1 quartet of BH_4^- . Solvent D₂O.

Figure S3: ¹H NMR of NaBH₄ (top) in DMSO-*d6* and (bottom) Na[B(OMe)₄] in MeOD. The peak at 3.35 ppm in the NaBH₄ sample was caused by a contamination of water in the deuterated DMSO solvent. In the Na[B(OMe)₄] ¹H NMR, the peak at 4.9 ppm was caused by water.

Figure S4: ¹¹B NMR of (top) NaBH₄ in DMSO-*d6* and (bottom) Na[B(OMe)₄] in MeOD.

Figure S5: FTIR of NaBH₄ (top) and Na[B(OMe)₄] (bottom).

Figure S6: ${}^{13}C{}^{1}H$ NMR of Na[B(OMe)₄] in D₂O.

Figure S7: ¹H NMR of KBH₄ (top) in DMSO-*d6* and (bottom) K[B(OMe)₄] in MeOD.

Figure S8: ¹¹B NMR of (top) KBH₄ in DMSO-*d6* and (bottom) K[B(OMe)₄] in MeOD.

Figure S9: ${}^{13}C{}^{1}H$ NMR of K[B(OMe)₄] in D₂O. There is a small contamination of ethanol due to the synthesis of KBH₄.

Figure S10: FTIR of KBH₄ (top) and K[B(OMe)₄] (bottom).

Figure S11: XRD of KBH₄. CuKα radiation, 1.54056 Å.

Figure S12: XRD of K[B(OMe)₄]. CuK α radiation, 1.54056 Å.

Figure S13: SR-XRD ($\lambda = 0.774863(1)$ Å) and Rietveld refinement of K[B(OMe)₄] at 25.5 °C. Experimental data as black line, calculated diffraction pattern as red line, and difference plot in grey. Blue tick marks represent Bragg positions from space group *l*41/*a*. Preferred orientation was observed along the labelled *hkl* indices due to the layered structure. Beam energy 16 keV ($\lambda = 0.774954(1)$ Å).

Table S1: Structural parameters for K[B(OMe) ₄] at 25.5 °C (<i>a</i> = 22.337(2) Å, <i>c</i> = 7.648(3) Å, <i>V</i> =
3815.6(4) Å ³ , ρ = 1.128(1) g/cm ³) in space group <i>I41/a</i> from TOPAS refinement of SR-XRD data,
R_{wp} = 4.769, All thermal parameters were fixed at B_{iso} = 1.

Name	Atom	Wyckoff	x/a	y/b	z/c
К1	К	16	0.5567(3)	0.8038(3)	-0.2875(8)
01	0	16	-0.2144(2)	0.5800(2)	-0.8093(7)
02	0	16	-0.1613(2)	0.5515(2)	-0.5770(7)
03	0	16	-0.1672(2)	0.6548(2)	-0.6324(7)
04	0	16	-0.1117(2)	0.5862(2)	-0.8132(7)
B1	В	16	-0.1638(2)	0.5913(2)	-0.7080(7)
C1	С	16	-0.2273(2)	0.6075(2)	-0.9658(7)
C2	С	16	-0.1259(2)	0.5556(2)	-0.4204(7)
C3	С	16	-0.2050(2)	0.6666(2)	-0.5111(7)

Figure S14: ¹H NMR of Li[B(OMe)₄] in MeOD.

Figure S15: ¹¹B NMR of Li[B(OMe)₄] in MeOD.

Figure S16: ${}^{13}C{}^{1}H$ NMR of Li[B(OMe)₄] in D₂O.

Figure S17: FTIR of Li[B(OMe)₄].

Figure S18: XRD of Li[B(OMe)₄]. CuKα radiation, 1.54056 Å.

Figure S19: ¹H NMR of Na[B(OEt)₄] (top), Na[B(OBu)₄] (middle) and Na[B(OⁱBu)₄] in D₂O.

Figure S20: ¹¹B NMR of Na[B(OEt)₄] (top), Na[B(OBu)₄] (middle) and Na[B(O'Bu)₄] in D₂O.

Figure S21: ${}^{13}C{}^{1}H$ NMR of Na[B(OEt)₄] (top), Na[B(OBu)₄] (middle) and Na[B(OⁱBu)₄] in D₂O.

Figure S22: FTIR of Na[B(OEt)₄] (top), Na[B(OBu)₄] (middle) and Na[B(OⁱBu)₄] (bottom).

Figure S23: SR-XRD pattern for Na[B(OEt)₄] at room temperature. Indexed in orthorhombic space group I222 (a = 15.7169(4) Å, b = 7.8587(1) Å, c = 5.7196(1) Å, V = 706.47(2) Å³), $\lambda = 0.590888(2)$ Å.

Figure S24: XRD Pattern for Na[B(OBu)₄]. CuK α radiation, 1.54056 Å. * indicates the known peaks for Na[B(OBu)₄].

Figure S25: XRD Pattern for Na[B(OⁱBu)₄]. CuK α radiation, 1.54056 Å.

Figure S26: ¹H NMR of Na[B(OMe)_x(O^{*i*}Pr)_{4-x}] in D₂O synthesised using the transesterification method.

Figure S27: ¹³C NMR of Na[B(OMe)_x(OⁱPr)_{4-x}] in D₂O synthesised using the transesterification method.

Figure S28: ¹¹B NMR of Na[B(OMe)_x($O^{i}Pr$)_{4-x}]in D₂O synthesised using the transesterification method.

Figure S29: ¹H NMR of Na[B($O^{i}Pr$)₄] in D₂O.

Figure S30: ${}^{13}C{}^{1}H$ NMR of Na[B(O^{*i*}Pr)₄] in D₂O.

Figure S31: ¹¹B NMR of Na[B(O'Pr)₄] in D₂O.

Figure S32: FTIR of Na[B(OⁱPr)₄].

Figure S33: XRD of Na[B(OⁱPr)₄]. CuK α radiation, 1.54056 Å.

Figure S34: ¹H NMR of Na[B(OMe)₄] in D₂O (top) and DMSO-*d6* (bottom).

Figure S35: ¹¹B NMR of Na[B(OMe)₄] in D₂O (top) and DMSO-*d6* (bottom).

Figure S36: TPPA of Na[B(OMe)₄] indicating the phase change occurring between 170 - 190 °C (the first endotherm indicated by DSC) and the decomposition of Na[B(OMe)₄] (the second endotherm in DSC). Heat ramp was performed at 4 °C/min under argon.

Figure S37: In situ SR-XRD ramp and cool of Na[B(OMe)₄]. (λ = 0.590888(2) Å, heating $\Delta T/\Delta t$ = 5 °C min⁻¹).

Figure S38: Thermal analysis of Na[B(OEt)₄] using (a) DSC-TGA (5.52 mg), (b) TPPA, (c) SR-XRD ($\lambda = 0.590888(2)$ Å, heating $\Delta T/\Delta t = 5$ °C min⁻¹)., and (d) RGA-MS. DSC-TGA was analysed with a 20 °C/min ramp rate and Ar flow of 40 mL/min. TPPA had a ramp rate of 4 °C/min under Ar atmosphere and a pellet thickness of 1.90 mm. RGA-MS was run from 25 °C to 600 °C with a scan range for RGA-MS was 1 - 100 amu under a vacuum pressure of approximately 10⁻³ - 10⁻⁴ mbar.

Figure S39: Thermal analysis of Na[B(OBu)₄] using (a) DSC-TGA (6.47 mg), (b) TPPA, (c) SR-XRD ($\lambda = 0.590888(2)$ Å, heating $\Delta T/\Delta t = 5$ °C min⁻¹), and (d) RGA-MS. DSC-TGA was analysed with a 20 °C/min ramp rate and Ar flow of 40 mL/min. TPPA had a ramp rate of 4 °C/min under Ar atmosphere and a pellet thickness of 2.27 mm. RGA-MS was run from 25 °C to 600 °C with a scan range for RGA-MS was 1 - 100 amu under a vacuum pressure of approximately 10⁻³ - 10⁻⁴ mbar

Figure S40: Room temperature SR-XRD patterns of Na[B(OBu)₄] from before *in situ* analysis (red) and at room temperature after heating to 240 °C (blue). λ = 0.590888(2) Å.

Figure S41: Thermal analysis of Na[B(O^{*i*}Bu)₄] using (a) DSC-TGA (6.47 mg), (b) RGA-MS and (c) TPPA. DSC-TGA was analysed with a 20 °C/min ramp rate and Ar flow of 40 mL/min. RGA-MS was run from 25 °C to 600 °C with a scan range for RGA-MS was 1 - 100 amu under a vacuum pressure of approximately 10^{-3} - 10^{-4} mbar. TPPA had a ramp rate of 4 °C/min under Ar atmosphere and a pellet thickness of 1.59 mm. Small fragment is a contaminant not sample.

Figure S42: Thermal analysis of Na[B(OⁱPr)₄] using (a) DTA-TGA, (b) RGA-MS and (c) TPPA. DTA-TGA was analysed with a 10 °C/min ramp rate and Ar flow of 40 mL/min. RGA-MS was run from 25 °C to 600 °C with a scan range for RGA-MS was 1 - 100 amu under a vacuum pressure of approximately 10^{-3} - 10^{-4} mbar. TPPA had a ramp rate of 4 °C/min under Ar atmosphere and a pellet thickness of 1.05 mm.

Figure S43: Thermal analysis of K[B(OMe)₄] using SR-XRD ($\lambda = 0.774993(1)$ Å, heating $\Delta T/\Delta t = 6$ °C min⁻¹).

Figure S44: Nyquist impedance plot of $K[B(OMe)_4]$ at 135°C showing fit to data using an equivalent circuit to determine the *x*-intercept of the Nyquist semicircle. *Q*, *R*, and *W* refer to constant phase element, resistor, and open circuit Warburg element, respectively.

Figure S45: Nyquist impedance plot of K[B(OMe)₄] at various temperatures showing ionic Warburg low frequency spikes.

Figure S46: Nyquist impedance plot of dried Na[B(OMe)₄] at 233°C.

Figure S47: Nyquist impedance plot of Na[B(OMe)₄] + Na[B(OMe)₄].MeOH at 172°C.

Figure S48: Nyquist impedance plot of Na[B(OMe)₄].MeOH at 135°C.