Antiproliferative activity of Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of dithiocarbamate: Synthesis, structural characterization, and thermal studies

Anupam Singh^a, Kunal Shiv^a, Ranjeet Singh^b, M. K. Bharty^a, Partha Pratim Manna^{b*} and Lal Bahadur Prasad^{a*}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India

^bImmunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi- 221005 *Corresponding authors' Email: <u>lbprasad@bhu.ac.in</u> (L. B. Prasad), <u>pp_manna@yahoo.com</u> (P. P. Manna)

1. FTIR Spectra:

Fig. S1: FTIR spectra of ligand and complexes 1-5.

2. NMR Spectra:

Fig. S2: ¹H NMR spectrum of ligand.

Fig. S3: ¹H NMR spectrum of complex **3**.

Fig. S6: ¹³C NMR spectrum of complex **3**.

Fig. S7: ¹³C NMR spectrum of complex **5**.

3. HRMS Spectra:

Fig. S8: HRMS spectrum of ligand.

Fig. S9: HRMS spectrum of complex 1.

Fig. S10: HRMS spectrum of complex 2.

Fig. S11: HRMS spectrum of complex **3**.

Fig. S12: HRMS spectrum of complex 4.

Fig. S13: HRMS spectrum of complex 5.

4. X-ray crystallography

X-Ray diffraction measurements of complexes **4** and **5** were performed using Oxford Gemini and Bruker three-circle diffractometer equipped with a CrysAlisPro/CrysAlis CCD software using a graphite mono-chromated Mo K α (λ = 0.71073 Å) radiation source at 296 K. The details of the temperature and monochromator of diffractometers are mentioned in the crystallographic data tables. Multi-scan absorption correction was applied to the X-ray data collection for all the compounds. The structures were solved by direct methods (SHELXS-08) and refined against all data by full matrix least-square on F2 using anisotropic displacement parameters for all nonhydrogen atoms. All hydrogen atoms were included in the refinement at geometrically ideal position and refined with a riding model¹. The MERCURY package and ORTEP-3 for Windows program were used for generating structures^{2,3}. Single crystals of complex **5** was kept at 100.00 K during data collection. The material was recrystallized from methanol by slow evaporation.

Fig. S14: Showing the intermolecular C-H···O hydrogen bonding interactions leading to wave like structures.

Fig. S15: Showing the intermolecular C-H····S hydrogen bonding interactions leading to ladderlike structures.

Fig. S16: Showing the intermolecular C-H···O hydrogen bonding interactions leading to a 2D supramolecular architecture.

 Table S1. Hydrogen bond parameters for complex 4.

D-H····A	d(D-H)	d(H···A)	d(D····A)	<(DHA)
C(9)-H(9)S(1)	0.98	2.54	3.0345(16)	111.0
C(2)-H(2B)S(2)	0.97	2.49	3.0276(18)	114.6

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table S2. Hydrogen bond parameters for complex 5.

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
C(27)-H(27)S(3)	0.98	2.50	3.041(3)	114.6
C(9)-H(9)S(2)	0.98	2.52	3.006(2)	110.6
C(2)-H(2B)S(1)	0.97	2.52	3.009(3)	111.0

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

5. Biological application

Fig. S17: Biocompatibility and hemocompatibility study of complexes 1, 4 & 5. Biocompatibility analysis in human monocytes and lymphocytes in the presence of indicated formulations as judged by viability (A & C) and cytotoxicity (B & D) of the lymphocytes and monocytes. Percent hemolysis of RBC following treatment for 4 hours in the presence of varying concentrations of the indicated formulations (E).

6. References:

- [1] G.M. Sheldrick, ActaCrystallogr. Section A, 2008, 64, 112-122.
- [2] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J.Van de Streek, P.A., Wood, Appl. Cryst., 2008, 41, 466-470.
- [3] L.J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.