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Figure S1: UV/Vis absorption spectra at different concentration (black) 0.04 mM, (red) 0.08 

mM, (cyan) 0.12 mM, (magenta) 0.50 mM, and (blue) 8 mM of 1.  

 
Figure S2: UV/Vis absorption changes upon reaction of (A) 3 equivalents and (B) 10 

equivalents of mCPBA with 8 mM [CuI(NCCH3)4](ClO4) in CH3CN at 25 ⁰C. Inset: The 

corresponding changes in the absorption at 700 nm over time in seconds. 

 
Figure S3: (A) Experimental (black) and simulated (red) X-band EPR spectra of 1 (gx = gy = 2.08, 

gz = 2.41; Ax = Ay = 0 G, Az = 130 G), and (blue) [CuI(NCCH3)4](ClO4) (B) Zoomed in experimental 

spectrum of 1 measured at 120 K; modulation amplitude 2.08 G; modulation frequency 100 

kHz, and attenuation 20 dB. Condition to generate 1: 2 mM [CuI(NCCH3)4](ClO4) in CH3CN 

treated with 1 eq. of mCPBA at 25 ⁰C. 



 

 
Figure S4: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p-cresol 

at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. 

Conditions to generate 1: 8 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of mCPBA at 25 ⁰C.  

 
Figure S5: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p-

fluorophenol at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm over 

time in seconds. Conditions to generate 1: 8 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of 

mCPBA at 25 ⁰C. 

  



 
Figure S6: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of phenol 

at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. 

Conditions to generate 1: 8 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of mCPBA at 25 ⁰C.  

 
Figure S7: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p-

hydroxybenzonitrile at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm 

over time in seconds. Conditions to generate 1: 8 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of 

mCPBA at 25 ⁰C.  

 



 
Figure S8: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p-

nitrophenol at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm over time 

in seconds. Conditions to generate 1: 8 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of mCPBA at 

25 ⁰C. 

 
Figure S9: Product analysis of the reaction of 1 with 2 eq. of p-cresol by ESI-MS.  

Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 



 
Figure S10: Product analysis of the reaction of 1 with 2 eq. of p-flurophenol by ESI-MS. 

Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 

 
Figure S11: Product analysis of the reaction of 1 with 2 eq. of phenol by ESI-MS.  

Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 



 
Figure S12: Product analysis of the reaction of 1 with 2 eq. of p-hydroxybenzonitrile by ESI-

MS. Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 

 
Figure S13: Product analysis of the reaction of 1 with 100 eq. of p-nitro phenol by ESI-MS. 

Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 



 
Figure S14: UV/Vis absorption changes depicting the reaction of 0.5 mM 1 with 2 eq. of 2,4,6-

TTBP. Inset: The corresponding changes in the absorption at 400 nm (red) and 700 (black) nm 

over time in seconds. Conditions to generate 1: 0.5 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. 

of mCPBA at 25 ⁰C.  

 
Figure S15: Gas Chromatogram of the reaction of 1 with 5 eq. of 2-PPA at 40 ⁰C. Conditions to 

generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 



 
Figure S16: Product analysis of the reaction of 1 with 5 eq. of 2-PPA at 40 ⁰C by GC followed 

by mass spectrometry. (Left) Experimental mass fragment data with peaks at corresponding 

retention time (in min.) (A) 8.862 min. for 1-phenylethanol (B) 8.959 min. for acetophenone, 

and (C) 9.274 min. for 2-PPA; (Right) simulated from the mass library of GCMS.  

Conditions to generate 1: 20 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C. 

 
Figure S17: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of 

ferrocene. Inset: The corresponding changes in the absorption at 619 nm due to ferrocenium 

(Fc+) over time in seconds. Conditions to generate 1: 2 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 

eq. of mCPBA at 25 ⁰C.  



 
Figure S18: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of 

acetylferrocene. Inset: The corresponding changes in the absorption at 629 nm due to 

acetylferrocenium (AcFc+) over time in seconds. Conditions to generate 1: 2 mM 

[CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C.  

 
Figure S19: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of diacetyl 

ferrocene. Inset: The corresponding changes in the absorption at 645 nm due to 

diacetylferrocenium (Ac2Fc+) over time in seconds. Conditions to generate 1: 2 mM 

[CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. mCPBA at 25 ⁰C.  



 

Figure S20: UV/Vis absorption changes depicting the (A) decay of 1: (black) initial spectra and 

(red) after 6 days. (B) the instantaneous decay of 1 (solution kept for 6 days) upon addition of 

20 eq. of phenol. Inset: The corresponding changes in the absorbance at 700 nm over time in 

seconds. Conditions to generate 1: 2 mM [CuI(NCCH3)4](ClO4) in CH3CN + 1 eq. of mCPBA at 25 

⁰C.  

 
Figure S21: UV/Vis absorption changes depicting the reaction of (A) 2 mM [CuI(NCCH3)4](ClO4) 

with 0.5 eq. of mCPBA at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm 

over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of Et3N (as a 

source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 

700 nm over time in seconds. 



 
Figure S22: UV/Vis absorption changes depicting the reaction of (A) 2 mM [CuI(NCCH3)4](ClO4) 

with 1 eq. of mCPBA at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm 

over time in seconds. (B) In continuation, to this 1 eq. of mCBA and 1 eq. of Et3N (as a source 

of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm 

over time in seconds. 

 
Figure S23: UV/Vis absorption changes depicting the reaction of (A) 2 mM [CuI(NCCH3)4](ClO4) 

with 1 eq. of mCPBA at 25 ⁰C. Inset: The corresponding changes in the absorption at 700 nm 

over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of Et3N (as a 

source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 

700 nm over time in seconds. 



 
Figure S24: Negative mode ESI-mass spectrum of 2 in CH3CN. 

 
Figure S25: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. 

of p-cresol. (red) Spectra recorded after 600 sec. of reactant added. Inset: The corresponding 

changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 

2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of (mCBA + Et3N) in CH3CN at 25 ⁰C. 



 
Figure S26: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. 

of p-flurophenol. (red) Spectra recorded after 500 sec. of reactant added. Inset: The 

corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. 

Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of (mCBA + 

Et3N) in CH3CN at 25 ⁰C. 

 
Figure S27: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. 

of phenol. (red) Spectra recorded after 500 sec. of reactant added. Inset: The corresponding 

changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 

2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of (mCBA + Et3N) in CH3CN at 25 ⁰C. 



 
Figure S28: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. 

of p-hydroxybenzonitrile. (red) Spectra recorded after 600 sec. of reactant added. Inset: The 

corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. 

Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of (mCBA + 

Et3N) in CH3CN at 25 ⁰C. 

 
Figure S29: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. 

of p-nitro phenol. (red) Spectra recorded after 600 sec. of reactant added. Inset: The 

corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. 

Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of (mCBA + 

Et3N) in CH3CN at 25 ⁰C. 



 
Figure S30: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of 2,4,6-

TTBP. Inset: The corresponding changes in the absorption at 700 nm and 400 nm over time in 

seconds. Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 1.5 eq. of 

(mCBA + Et3N) in CH3CN at 25 ⁰C. 

 
Figure S31: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 40 eq. 

of 2-PPA at 40 ⁰C. Inset: The corresponding changes in the absorption at 700 nm and 500 nm 

over time in seconds. Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA 

+ 1.5 eq. of (mCBA + Et3N) in CH3CN at 40 ⁰C. 



 
Figure S32: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of 

ferrocene in CH3CN. Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of mCPBA + 

1.5 eq. of (mCBA + Et3N) in CH3CN at 25 ⁰C. 

 
Figure S33: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of 

acetylferrocene in CH3CN. Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of 

mCPBA + 1.5 eq. of (mCBA + Et3N) in CH3CN at 25 ⁰C. 



 
Figure S34: UV/Vis absorption changes depicting the reaction of 2 mM of 2 with 2 eq. of 

diacetyl ferrocene in CH3CN. Conditions to generate 2: 2 mM [CuI(NCCH3)4](ClO4) + 0.5 eq. of 

mCPBA + 1.5 eq. of (mCBA + Et3N) in CH3CN at 25 ⁰C. 

 

Figure S35: (A) Crystals of 2 formed by layering of hexane upon 1 in CH3CN and (B) magnified 

view of a selected crystal. 

  



Table S1: Crystal data and structure refinement of 2. 

Empirical formula C20H17Cl2CuN3O4 

Formula weight 497.80 

Temperature/K 100 

Crystal system triclinic 

Space group P-1 

a/Å 10.1316(3) 

b/Å 10.7203(3) 

c/Å 11.9188(3) 

α/° 68.1470(10) 

β/° 68.4210(10) 

γ/° 86.3640(10) 

Volume/Å3 1113.25(5) 

Z 2 

ρcalcg/cm3 1.485 

μ/mm-1 1.251 

F(000) 506.0 

Crystal size/mm3 0.22 × 0.22 × 0.2 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 5.426 to 56.706 

Index ranges -13 ≤ h ≤ 13, -14 ≤ k ≤ 14, -15 ≤ l ≤ 15 

Reflections collected 18162 

Independent reflections 5560 [Rint = 0.0283, Rsigma = 0.0287] 

Data/restraints/parameters 5560/0/293 

Goodness-of-fit on F2 1.080 

Final R indexes [I>=2σ (I)] R1 = 0.0261, wR2 = 0.0658 

Final R indexes [all data] R1 = 0.0287, wR2 = 0.0674 

Largest diff. peak/hole / e Å-3 0.52/-0.46 
 

 

Table S2: Selected Bond lengths (Å) of 2. 

 Length/Å   Length/Å 

Cu1●●●●Cu1
1 2.6483(3)  Cu1—O3 1.9583(10) 

Cu1—O2
1 1.9716(11)  Cu1—O1 1.9657(10) 

Cu1—O4
1 1.9706(10)  Cu1—N1 2.1675(13) 

                                                       11-X,1-Y,-Z 

 

 



Table S3: Selected Bond Angles (Å) of 2. 

 Angle/˚   Angle/˚ 

O2
1— Cu1— Cu1

1 83.18(3)  O3— Cu1 — O4
1 168.19(4) 

O2
1— Cu1— N1 93.74(5)  O1— Cu1— O2

1 168.33(4) 

O4
1— Cu1— Cu1

1 86.62(3)  N1— Cu1— Cu1
1 175.13(4) 

O4
1— Cu1 — O2

1 89.37(5)  O1— Cu1— O4
1 89.23(5) 

O4
1— Cu1 — N1 97.14(5)  O1— Cu1— N1 97.93(5) 

O3— Cu1— Cu1
1 81.66(3)  O3— Cu1— N1 94.64(5) 

O3— Cu1— O2
1 90.66(5)  O1— Cu1— Cu1

1 85.17(3) 

O3— Cu1— O1 88.35(5)    
                                                     11-X,1-Y,-Z 

Table S4: Kinetic data for aldehyde deformylation of 2-phenylpropanaldehyde (2-PPA) with 

various 3d-metal based high valent intermediates at various temperatures. 

Complex k2 [M-1s-1] (T [⁰C]) Reference 

1 0.0515 (40) This work 

[MnIII(O2)(12-TMC)]+ 0.04 (20) 1 

[MnIII(O2)(13-TMC)]+ 0.03 (20) 1 

[MnIII(O2)(14-TMC)]+ 0.04 (20) 1 

[MnIII(O2)(Pro3Py)]+ 0.003 (0) 2 

[MnIII(N3Py2)(O2)]+ 0.16 (25) 3 

(BPMP)MnII MnIII -peroxide 0.0006 (-90) 4 

[MnIII(bispidine)(O2)]+ 0.0274 (15) 5 

[FeIII(η2-OO)(TMC)]+ 0.041 (15) 6 

[FeIII(η1-OOH)(TMC)]+ 0.13 (-40) 7 

[CoIII(η2-OO)(14-TMC)]+ 0.058 (0) 8 

[CoIII(η2-OO)(13-TMC)]+ 0.015 (25) 8 

[CoIII(η2-OO)(TMC)]+ 0.058 (0) 9 

[CoIII(Me3-TPADP)(OOtBu)2]+ 0.41 (25) 10 

[NiIII(η2-OO)(TMC)]+ 0.04 (25) 11 

(L2)NiII(superoxido) 0.00012 (25) 12 

[NiIII(TBDAP)(O2)]+ 0.0074 (25) 13 

[NiIII(CHDAP)(O2)]+ 0.062 (25) 13 

[CuII(CHDAP)(OOR)]+ 0.12 (-40) 14 

(BPC)CuII(O-O-●) 0.062 (-80) 15 

[CuII(iPr3-tren)(OOH)]+ 0.15 (-50) 16 
12-TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane, 13-TMC = 1,4,7,10-tetramethyl-

1,4,7,10-tetraazacyclotridecane, 14-TMC (or TMC) = 1,4,8,11-tetramethyl-1,4,8,11-

tetraazacyclotetradecane, Pro3Py = 1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(pyridin-2-

ylmethyl)pyrrolidin-2-yl)methyl)methanamine, N3Py2 = N,N’-dimethyl-N-(2-(methyl(pyridin-2-

ylmethyl)amino)ethyl)-N’-(pyridin-2-ylmethyl)ethane-1,2-diamine, HBPMP = 2,6-bis{[(bis(2-

pyridylmethyl)amino]methyl}-4-methylphenol), bispidine = dimethyl 2,4-di(2-pyridyl)-3-benzyl-7-

(pyridin-2-ylmethyl)-3,7-diazabicyclo[3.3.1] nonan-9-one-1,5-dicarboxylate, Me3-TPADP = 3,6,9-

trimethyl-3,6,9-triaza-1 (2,6)-pyridinacyclodecaphane, L2 = MeN-(C(=O)NAr)2; Ar=2,6-iPr2C6H3), TBDAP 



= N,N′-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane, CHDAP = N,N′-dicyclohexyl-2,11- 

diaza[3.3](2,6)pyridinophane, H2BPC = N,N’-bis(2,6-diisoproylphenyl)-2,6-pyridinedicarboxamide, iPr3-

tren = tris[2-(isopropylamino)ethyl]amine. 
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