Electronic Supplementary Material (ESI) for Dalton Transactions.

Supporting online information for

Amphoteric reactivity of a putative $\mathbf{C u}(I I)-m C P B A$ intermediate \ddagger

Rakesh Kumar, Anweshika Maji, Bhargab Biswas, and Apparao Draksharapu*
Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (India).
appud@iitk.ac.in

Figure S1: UV/Vis absorption spectra at different concentration (black) 0.04 mM , (red) 0.08 mM , (cyan) 0.12 mM , (magenta) 0.50 mM , and (blue) 8 mM of 1 .

Figure S2: UV/Vis absorption changes upon reaction of (A) 3 equivalents and (B) 10 equivalents of $m \mathrm{CPBA}$ with $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in CH 3 CN at $25{ }^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

Figure S3: (A) Experimental (black) and simulated (red) X-band EPR spectra of 1 ($\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{\mathrm{y}}=2.08$, $\mathrm{g}_{2}=2.41 ; \mathrm{A}_{\mathrm{x}}=\mathrm{A}_{y}=0 \mathrm{G}, \mathrm{A}_{z}=130 \mathrm{G}$), and (blue) $\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ (B) Zoomed in experimental spectrum of 1 measured at 120 K ; modulation amplitude 2.08 G ; modulation frequency 100 kHz , and attenuation 20 dB . Condition to generate 1: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ treated with 1 eq. of $m C P B A$ at $25^{\circ} \mathrm{C}$.

Figure S4: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq . of p-cresol at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. Conditions to generate 1: $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of mCPBA at $25^{\circ} \mathrm{C}$.

Figure S5: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p fluorophenol at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. Conditions to generate 1: $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of $m C P B A$ at $25^{\circ} C$.

Figure S6: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of phenol at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. Conditions to generate 1: $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of mCPBA at $25^{\circ} \mathrm{C}$.

Figure S7: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p hydroxybenzonitrile at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. Conditions to generate 1: $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1 \mathrm{eq}$. of $m C P B A$ at $25^{\circ} \mathrm{C}$.

Figure S8: UV/Vis absorption changes depicting the reaction of 8 mM 1 with 20 eq. of p nitrophenol at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. Conditions to generate 1: $8 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of mCPBA at $25^{\circ} \mathrm{C}$.

Figure S9: Product analysis of the reaction of 1 with 2 eq. of p-cresol by ESI-MS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1 \mathrm{eq}$. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S10: Product analysis of the reaction of 1 with 2 eq. of p-flurophenol by ESI-MS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S11: Product analysis of the reaction of 1 with 2 eq. of phenol by ESI-MS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S12: Product analysis of the reaction of 1 with 2 eq. of p-hydroxybenzonitrile by ESIMS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1 \mathrm{eq}$. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S13: Product analysis of the reaction of 1 with 100 eq. of p-nitro phenol by ESI-MS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S14: UV/Vis absorption changes depicting the reaction of 0.5 mM 1 with 2 eq . of 2,4,6TTBP. Inset: The corresponding changes in the absorption at 400 nm (red) and 700 (black) nm over time in seconds. Conditions to generate 1: $0.5 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of $m C P B A$ at $25^{\circ} \mathrm{C}$.

Figure S15: Gas Chromatogram of the reaction of 1 with 5 eq. of $2-$ PPA at $40^{\circ} \mathrm{C}$. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S16: Product analysis of the reaction of 1 with 5 eq. of $2-\mathrm{PPA}$ at $40^{\circ} \mathrm{C}$ by GC followed by mass spectrometry. (Left) Experimental mass fragment data with peaks at corresponding retention time (in min.) (A) 8.862 min . for 1-phenylethanol (B) 8.959 min . for acetophenone, and (C) 9.274 min . for 2-PPA; (Right) simulated from the mass library of GCMS. Conditions to generate 1: $20 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1 \mathrm{eq} . \mathrm{mCPBA}$ at $25^{\circ} \mathrm{C}$.

Figure S17: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of ferrocene. Inset: The corresponding changes in the absorption at 619 nm due to ferrocenium (Fc^{+}) over time in seconds. Conditions to generate 1: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of $m C P B A$ at $25^{\circ} \mathrm{C}$.

Figure S18: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of acetylferrocene. Inset: The corresponding changes in the absorption at 629 nm due to acetylferrocenium (AcFc^{+}) over time in seconds. Conditions to generate 1: 2 mM $\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S19: UV/Vis absorption changes depicting the reaction of 2 mM 1 with 2 eq. of diacetyl ferrocene. Inset: The corresponding changes in the absorption at 645 nm due to diacetylferrocenium ($\mathrm{Ac}_{2} \mathrm{Fc}^{+}$) over time in seconds. Conditions to generate 1: 2 mM $\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. mCPBA at $25^{\circ} \mathrm{C}$.

Figure S20: UV/Vis absorption changes depicting the (A) decay of 1: (black) initial spectra and (red) after 6 days. (B) the instantaneous decay of $\mathbf{1}$ (solution kept for 6 days) upon addition of 20 eq. of phenol. Inset: The corresponding changes in the absorbance at 700 nm over time in seconds. Conditions to generate 1: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ eq. of mCPBA at 25 ${ }^{\circ} \mathrm{C}$.

Figure S21: UV/Vis absorption changes depicting the reaction of $(\mathrm{A}) 2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ with 0.5 eq. of mCPBA at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of $E t_{3} \mathrm{~N}$ (as a source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

Figure S22: UV/Vis absorption changes depicting the reaction of (A) $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ with 1 eq. of mCPBA at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1 eq. of $m C B A$ and 1 eq. of $E t_{3} \mathrm{~N}$ (as a source of 3 -chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

Figure S23: UV/Vis absorption changes depicting the reaction of (A) $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ with 1 eq. of mCPBA at $25^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of $\mathrm{Et}_{3} \mathrm{~N}$ (as a source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

Figure S24: Negative mode ESI-mass spectrum of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S25: UV/Vis absorption changes depicting the reaction of $2 \mathrm{mM} \mathbf{2}$ (black) with 10 eq. of p-cresol. (red) Spectra recorded after 600 sec . of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $\left(m C B A+E t_{3} \mathrm{~N}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S26: UV/Vis absorption changes depicting the reaction of $2 \mathrm{mM} \mathbf{2}$ (black) with 10 eq. of p-flurophenol. (red) Spectra recorded after 500 sec . of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $(\mathrm{mCBA}+$ $\mathrm{Et}_{3} \mathrm{~N}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S27: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. of phenol. (red) Spectra recorded after 500 sec . of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $\left(m C B A+E t_{3} N\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $25{ }^{\circ} \mathrm{C}$.

Figure S28: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. of p-hydroxybenzonitrile. (red) Spectra recorded after 600 sec . of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $(\mathrm{mCBA}+$ $\mathrm{Et}_{3} \mathrm{~N}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S29: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 10 eq. of p-nitro phenol. (red) Spectra recorded after 600 sec . of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $(\mathrm{mCBA}+$ $E t_{3} \mathrm{~N}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S30: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of 2,4,6TTBP. Inset: The corresponding changes in the absorption at 700 nm and 400 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of ($m \mathrm{mCBA}+E t_{3} \mathrm{~N}$) in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S31: UV/Vis absorption changes depicting the reaction of 2 mM 2 (black) with 40 eq. of 2-PPA at $40^{\circ} \mathrm{C}$. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A$ +1.5 eq. of $\left(\mathrm{mCBA}+E t_{3} \mathrm{~N}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $40^{\circ} \mathrm{C}$.

Figure S32: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of ferrocene in $\mathrm{CH}_{3} \mathrm{CN}$. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of mCPBA + 1.5 eq. of $\left(m C B A+E t_{3} N\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Figure S33: UV/Vis absorption changes depicting the reaction of 2 mM 2 with 2 eq. of acetylferrocene in $\mathrm{CH}_{3} \mathrm{CN}$. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $\left(m C B A+E t_{3} N\right)$ in $\mathrm{CH}_{3} C N$ at $25^{\circ} \mathrm{C}$.

Figure S34: UV/Vis absorption changes depicting the reaction of 2 mM of $\mathbf{2}$ with 2 eq. of diacetyl ferrocene in $\mathrm{CH}_{3} \mathrm{CN}$. Conditions to generate 2: $2 \mathrm{mM}\left[\mathrm{Cu}^{\prime}\left(\mathrm{NCCH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)+0.5$ eq. of $m C P B A+1.5$ eq. of $\left(m C B A+E t_{3} N\right)$ in $\mathrm{CH}_{3} C N$ at $25^{\circ} \mathrm{C}$.

Figure S35: (A) Crystals of 2 formed by layering of hexane upon $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ and (B) magnified view of a selected crystal.

Table S1: Crystal data and structure refinement of 2.

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{CuN}_{3} \mathrm{O}_{4}$
Formula weight	497.80
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	10.1316(3)
b / A	10.7203(3)
c / A	11.9188(3)
$\alpha /{ }^{\circ}$	68.1470(10)
81°	68.4210(10)
V/ ${ }^{\circ}$	86.3640(10)
Volume/Å	1113.25(5)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.485
μ / mm^{-1}	1.251
F(000)	506.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.22 \times 0.2$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/	5.426 to 56.706
Index ranges	$-13 \leq h \leq 13,-14 \leq k \leq 14,-15 \leq 1 \leq 15$
Reflections collected	18162
Independent reflections	$5560\left[\mathrm{R}_{\text {int }}=0.0283, \mathrm{R}_{\text {sigma }}=0.0287\right]$
Data/restraints/parameters	5560/0/293
Goodness-of-fit on F^{2}	1.080
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0261, w \mathrm{R}_{2}=0.0658$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0287, w \mathrm{R}_{2}=0.0674$
Largest diff. peak/hole / e \AA^{-3}	0.52/-0.46

Table S2: Selected Bond lengths (A) of 2.

	Length/Å			Length/̊̊
$\mathrm{Cu}_{1} \cdots \cdots \mathrm{Cu}_{1}{ }^{1}$	$2.6483(3)$		$\mathrm{Cu}_{1}-\mathrm{O}_{3}$	$1.9583(10)$
$\mathrm{Cu}_{1}-\mathrm{O}_{2}{ }^{1}$	$1.9716(11)$		$\mathrm{Cu}_{1}-\mathrm{O}_{1}$	$1.9657(10)$
$\mathrm{Cu}_{1}-\mathrm{O}_{4}{ }^{1}$	$1.9706(10)$		$\mathrm{Cu}_{1}-\mathrm{N}_{1}$	$2.1675(13)$

Table S3: Selected Bond Angles (\AA) of 2.

	Angle/ $^{\circ}$		Angle/
$\mathrm{O}_{2}{ }^{1}-\mathrm{Cu}_{1}-\mathrm{Cu}_{1}{ }^{1}$	$83.18(3)$	$\mathrm{O}_{3}-\mathrm{Cu}_{1}-\mathrm{O}_{4}{ }^{1}$	$168.19(4)$
$\mathrm{O}_{2}{ }^{1}-\mathrm{Cu}_{1}-\mathrm{N}_{1}$	$93.74(5)$	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{O}_{2}{ }^{1}$	$168.33(4)$
$\mathrm{O}_{4}{ }^{1}-\mathrm{Cu}_{1}-\mathrm{Cu}_{1}{ }^{1}$	$86.62(3)$	$\mathrm{N}_{1}-\mathrm{Cu}_{1}-\mathrm{Cu}_{1}{ }^{1}$	$175.13(4)$
$\mathrm{O}_{4}{ }^{1}-\mathrm{Cu}_{1}-\mathrm{O}_{2}{ }^{1}$	$89.37(5)$	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{O}_{4}{ }^{1}$	$89.23(5)$
$\mathrm{O}_{4}{ }^{1}-\mathrm{Cu}_{1}-\mathrm{N}_{1}$	$97.14(5)$	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{1}$	$97.93(5)$
$\mathrm{O}_{3}-\mathrm{Cu}_{1}-\mathrm{Cu}_{1}{ }^{1}$	$81.66(3)$	$\mathrm{O}_{3}-\mathrm{Cu}_{1}-\mathrm{N}_{1}$	$94.64(5)$
$\mathrm{O}_{3}-\mathrm{Cu}_{1}-\mathrm{O}_{2}{ }^{1}$	$90.66(5)$	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{Cu}_{1}{ }^{1}$	$85.17(3)$
$\mathrm{O}_{3}-\mathrm{Cu}_{1}-\mathrm{O}_{1}$	$88.35(5)$		

${ }^{1} 1-X, 1-Y,-Z$
Table S4: Kinetic data for aldehyde deformylation of 2-phenylpropanaldehyde (2-PPA) with various 3d-metal based high valent intermediates at various temperatures.

Complex	$\mathrm{k}_{2}\left[\mathrm{M}^{-1} \mathrm{~s}^{-1}\right]\left(\mathrm{T}\left[{ }^{0} \mathrm{C}\right]\right)$	Reference
1	0.0515 (40)	This work
$\left[\mathrm{Mn}^{\text {III }}\left(\mathrm{O}_{2}\right)(12-\mathrm{TMC})\right]^{+}$	0.04 (20)	1
$\left[\mathrm{Mn}^{\text {III }}\left(\mathrm{O}_{2}\right)(13-\mathrm{TMC})\right]^{+}$	0.03 (20)	1
$\left[\mathrm{Mn}^{\text {III }}\left(\mathrm{O}_{2}\right)(14-\mathrm{TMC})\right]^{+}$	0.04 (20)	1
$\left[\mathrm{Mn}^{\text {II' }}\left(\mathrm{O}_{2}\right)(\text { Pro3Py })\right]^{+}$	0.003 (0)	2
$\left[\mathrm{Mn}^{\text {II' }}\left(\mathrm{N}_{3} \mathrm{Py}_{2}\right)\left(\mathrm{O}_{2}\right)\right]^{+}$	0.16 (25)	3
(BPMP) $\mathrm{Mn}^{\text {" }} \mathrm{Mn}^{\text {III }}$-peroxide	0.0006 (-90)	4
[$\mathrm{Mn}^{\text {II' }}$ (bispidine) $\left.\left(\mathrm{O}_{2}\right)\right]^{+}$	0.0274 (15)	5
[$\left.\mathrm{Fe}^{\text {III }}\left(\mathrm{n}_{2}-\mathrm{OO}\right)(\mathrm{TMC})\right]^{+}$	0.041 (15)	6
$\left[\mathrm{Fe}^{\text {III }}\left(\mathrm{n}_{1}-\mathrm{OOH}\right)(\mathrm{TMC})\right]^{+}$	0.13 (-40)	7
[Co'I' $\left.\left(\mathrm{n}_{2}-\mathrm{OO}\right)(14-\mathrm{TMC})\right]^{+}$	0.058 (0)	8
[Co'I' $\left.\left(\mathrm{n}_{2}-\mathrm{OO}\right)(13-\mathrm{TMC})\right]^{+}$	0.015 (25)	8
[Co'II $\left.\left(\mathrm{n}_{2}-\mathrm{OO}\right)(\mathrm{TMC})\right]^{+}$	0.058 (0)	9
	0.41 (25)	10
[$\left.\mathrm{Nil}^{\prime \prime \prime}\left(\mathrm{n}_{2}-\mathrm{OO}\right)(\mathrm{TMC})\right]^{+}$	0.04 (25)	11
(L_{2}) $\mathrm{Ni}^{\prime \prime}$ (superoxido)	0.00012 (25)	12
[$\mathrm{Nill}^{\text {II }}$ (TBDAP) $\left.\left(\mathrm{O}_{2}\right)\right]^{+}$	0.0074 (25)	13
[$\mathrm{Ni}^{\text {III }}$ (CHDAP)($\left.\left.\mathrm{O}_{2}\right)\right]^{+}$	0.062 (25)	13
[Cu'(CHDAP)(OOR)] ${ }^{+}$	0.12 (-40)	14
(BPC)Cu'(O-O-*)	0.062 (-80)	15
	0.15 (-50)	16

$12-$ TMC $=1,4,7,10$-tetramethyl-1,4,7,10-tetraazacyclododecane, 13 -TMC $=1,4,7,10$-tetramethyl-1,4,7,10-tetraazacyclotridecane, 14 -TMC (or TMC) $=1,4,8,11$-tetramethyl-1,4,8,11tetraazacyclotetradecane, Pro3Py $=1$-(pyridin-2-yl)- N-(pyridin- 2 -ylmethyl)- N-((1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)methyl)methanamine, $\quad \mathrm{N}_{3} \mathrm{Py}_{2}=N, N^{\prime}$-dimethyl- N-(2-(methyl(pyridin-2-ylmethyl)amino)ethyl)- N^{\prime}-(pyridin-2-ylmethyl)ethane-1,2-diamine, HBPMP $=2,6$-bis $\{[($ bis $(2-$ pyridylmethyl)amino]methyl\}-4-methylphenol), bispidine = dimethyl 2,4-di(2-pyridyl)-3-benzyl-7-(pyridin-2-ylmethyl)-3,7-diazabicyclo[3.3.1] nonan-9-one-1,5-dicarboxylate, Me_{3}-TPADP $=3,6,9-$ trimethyl-3,6,9-triaza-1 (2,6)-pyridinacyclodecaphane, $\left.\mathrm{L}_{2}=\mathrm{MeN}-(\mathrm{C}(=\mathrm{O}) \mathrm{NAr})_{2} ; \mathrm{Ar}=2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, TBDAP
$=\quad N, N^{\prime}$-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane, \quad CHDAP $=N, N^{\prime}$-dicyclohexyl-2,11diaza[3.3](2,6)pyridinophane, $\mathrm{H}_{2} \mathrm{BPC}=N, N^{\prime}$-bis(2,6-diisoproylphenyl)-2,6-pyridinedicarboxamide, ${ }^{\prime} \mathrm{Pr}_{3}{ }^{-}$ tren $=$ tris[2-(isopropylamino)ethyl]amine.

References:

H. Kang, J. Cho, K. Bin Cho, T. Nomura, T. Ogura and W. Nam, Chem. - A Eur. J., 2013, 19, 1411914125.
D. D. Narulkar, A. Ansari, A. K. Vardhaman, S. S. Harmalkar, G. Lingamallu, V. M. Dhavale, M. Sankaralingam, S. Das, P. Kumar and S. N. Dhuri, Dalt. Trans., 2021, 50, 2824-2831.
A. M. Magherusan, S. Kal, D. N. Nelis, L. M. Doyle, E. R. Farquhar, L. Que and A. R. Mcdonald, Angew. Chemie - Int. Ed., 2019, 58, 5718-5722.
P. Barman, P. Upadhyay, A. S. Faponle, J. Kumar, S. S. Nag, D. Kumar, C. V. Sastri and S. P. de Visser, Angew. Chemie - Int. Ed., 2016, 55, 11091-11095.
J. Annaraj, Y. Suh, M. S. Seo, S. O. Kim and W. Nam, Chem. Commun., 2005, 4529-4531.
J. Cho, S. Jeon, S. A. Wilson, L. V. Liu, E. A. Kang, J. J. Braymer, M. H. Lim, B. Hedman, K. O. Hodgson, J. S. Valentine, E. I. Solomon and W. Nam, Nature, 2011, 478, 502-505.
Y. Jo, J. Annaraj, M. S. Seo, Y. M. Lee, S. Y. Kim, J. Cho and W. Nam, J. Inorg. Biochem., 2008, 102, 2155-2159.
Y. Jo, J. Annaraj, M. S. Seo, Y. M. Lee, S. Y. Kim, J. Cho and W. Nam, J. Inorg. Biochem., 2008, 102, 2155-2159.
B. Shin, Y. Park, D. Jeong and J. Cho, Chem. Commun., 2020, 56, 9449-9452.
J. Cho, R. Sarangi, J. Annaraj, S. Y. Kim, M. Kubo, T. Ogura, E. I. Solomon and W. Nam, Nat. Chem., 2009, 1, 568-572.
C. Panda, A. Chandra, T. Corona, E. Andris, B. Pandey, S. Garai, N. Lindenmaier, K. Silvio, E. R. Farquhar, J. Roithov, G. Rajaraman, M. Driess and K. Ray, Angew. Chemie Int. Ed., 2018, 57, 14883-14887.
J. Kim, B. Shin, H. Kim, J. Lee, J. Kang, S. Yanagisawa, T. Ogura, H. Masuda, T. Ozawa and J. Cho, Inorg. Chem., 2015, 54, 6176-6183.
B. Kim, D. Jeong and J. Cho, ChemComm, 2017, 53, 9328-9331.
P. Pirovano, A. M. Magherusan, C. Mcglynn, A. Ure, A. Lynes and A. R. Mcdonald, Angew. Chemie Int. Ed., 2014, 53, 5946-5950.
B. Kim, D. Jeong, T. Ohta and J. Cho, Commun. Chem., 2019, 2, 1-6.

