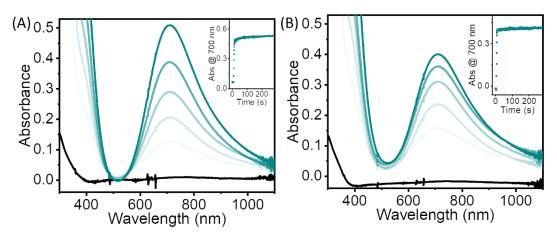
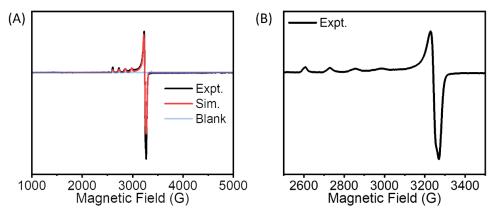
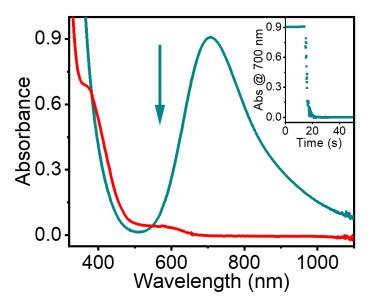
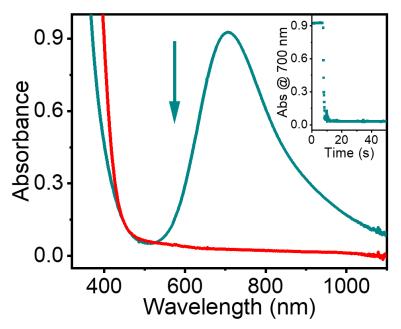

Supporting online information for

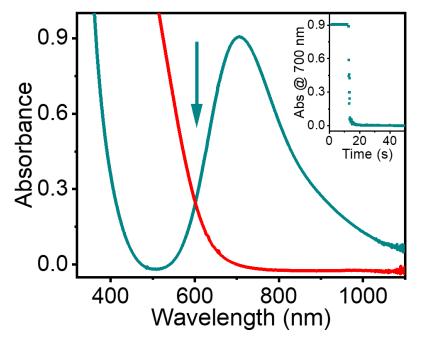

Amphoteric reactivity of a putative Cu(II)-*m*CPBA intermediate[‡]

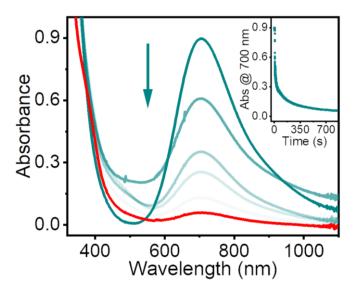
Rakesh Kumar, Anweshika Maji, Bhargab Biswas, and Apparao Draksharapu*

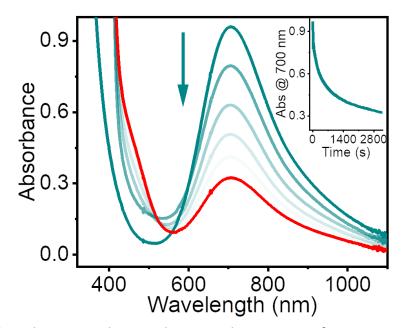

Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (India). appud@iitk.ac.in

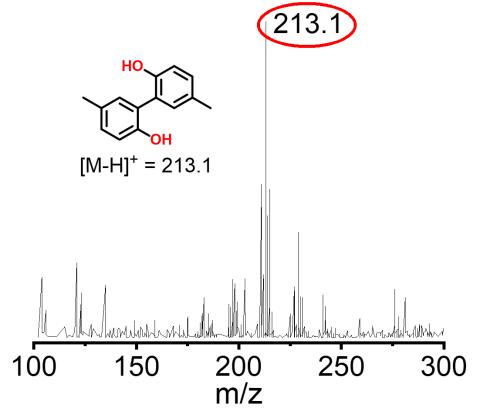

Figure S1: UV/Vis absorption spectra at different concentration (black) 0.04 mM, (red) 0.08 mM, (cyan) 0.12 mM, (magenta) 0.50 mM, and (blue) 8 mM of **1**.

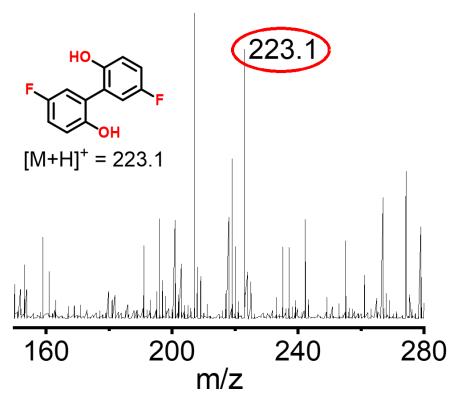

Figure S2: UV/Vis absorption changes upon reaction of (A) 3 equivalents and (B) 10 equivalents of *m*CPBA with 8 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in CH₃CN at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

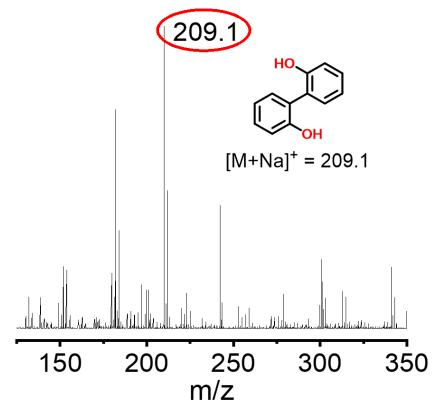

Figure S3: (A) Experimental (black) and simulated (red) X-band EPR spectra of **1** ($g_x = g_y = 2.08$, $g_z = 2.41$; $A_x = A_y = 0$ G, $A_z = 130$ G), and (blue) [Cu¹(NCCH₃)₄](ClO₄) (B) Zoomed in experimental spectrum of **1** measured at 120 K; modulation amplitude 2.08 G; modulation frequency 100 kHz, and attenuation 20 dB. *Condition to generate* **1**: 2 mM [Cu¹(NCCH₃)₄](ClO₄) in CH₃CN treated with 1 eq. of mCPBA at 25 °C.

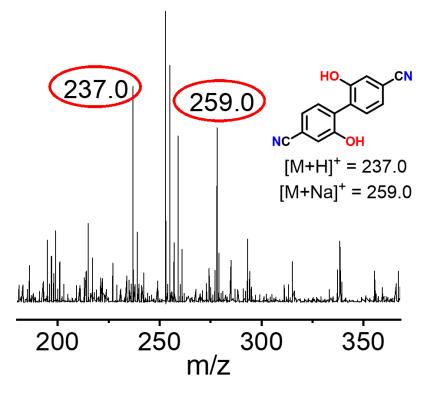

Figure S4: UV/Vis absorption changes depicting the reaction of 8 mM **1** with 20 eq. of *p*-cresol at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. *Conditions to generate* **1**: 8 mM [$Cu^{l}(NCCH_{3})_{4}$](ClO_{4}) in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.

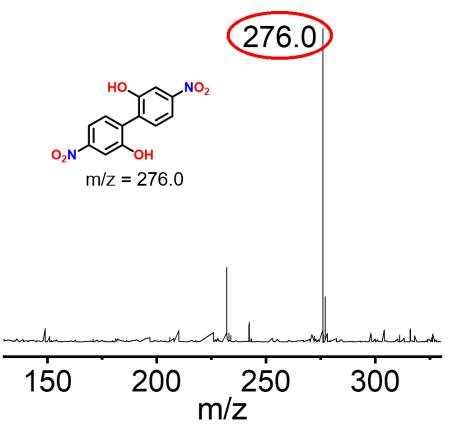

Figure S5: UV/Vis absorption changes depicting the reaction of 8 mM **1** with 20 eq. of *p*-fluorophenol at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. *Conditions to generate* **1**: 8 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.

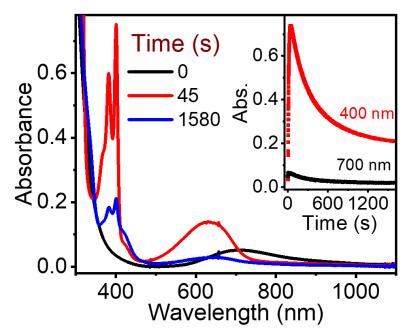

Figure S6: UV/Vis absorption changes depicting the reaction of 8 mM **1** with 20 eq. of phenol at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. *Conditions to generate* **1**: 8 mM [$Cu^{l}(NCCH_{3})_{4}$](CIO_{4}) in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.

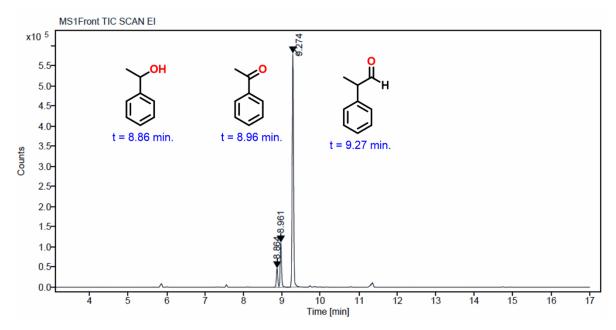

Figure S7: UV/Vis absorption changes depicting the reaction of 8 mM **1** with 20 eq. of *p*-hydroxybenzonitrile at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. *Conditions to generate* **1**: 8 mM [$Cu^{I}(NCCH_{3})_{4}$](CIO_{4}) in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.

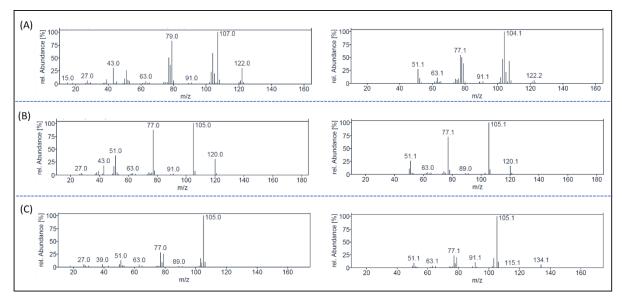

Figure S8: UV/Vis absorption changes depicting the reaction of 8 mM **1** with 20 eq. of *p*-nitrophenol at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. *Conditions to generate* **1**: 8 mM [$Cu^{l}(NCCH_{3})_{4}$](ClO_{4}) in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.

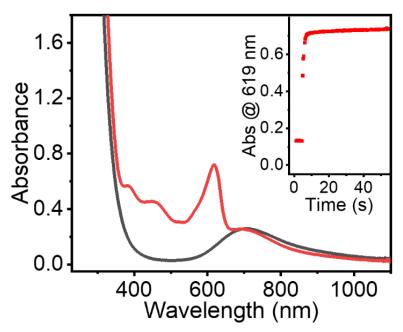

Figure S9: Product analysis of the reaction of **1** with 2 eq. of *p*-cresol by ESI-MS. Conditions to generate **1**: 20 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

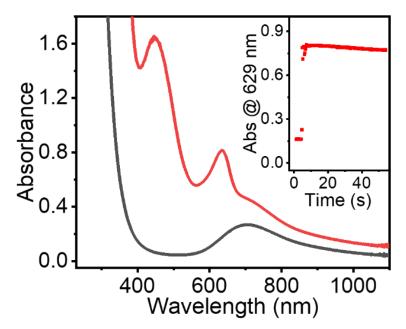

Figure S10: Product analysis of the reaction of **1** with 2 eq. of *p*-flurophenol by ESI-MS. Conditions to generate **1**: 20 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

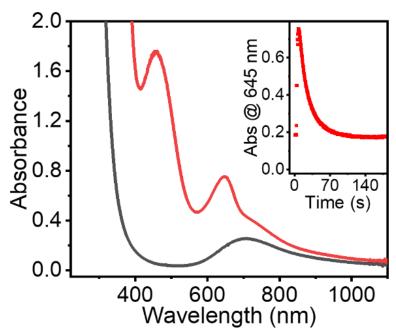

Figure S11: Product analysis of the reaction of **1** with 2 eq. of phenol by ESI-MS. Conditions to generate **1**: 20 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

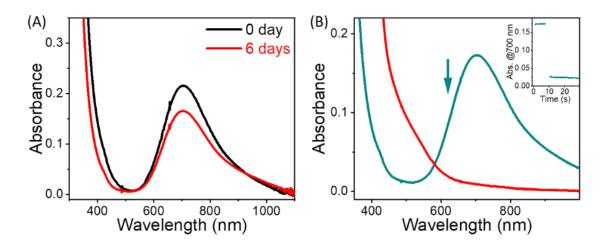

Figure S12: Product analysis of the reaction of **1** with 2 eq. of *p*-hydroxybenzonitrile by ESI-MS. Conditions to generate **1**: 20 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

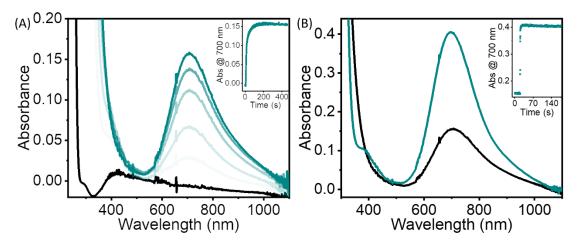

Figure S13: Product analysis of the reaction of **1** with 100 eq. of *p*-nitro phenol by ESI-MS. Conditions to generate **1**: 20 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

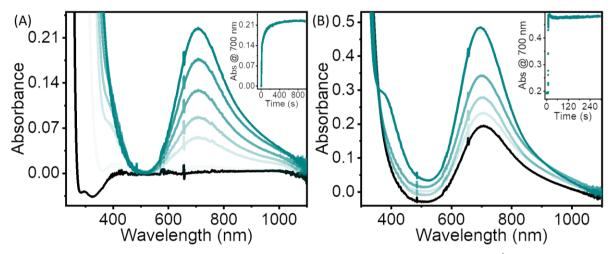

Figure S14: UV/Vis absorption changes depicting the reaction of 0.5 mM **1** with 2 eq. of 2,4,6-TTBP. Inset: The corresponding changes in the absorption at 400 nm (red) and 700 (black) nm over time in seconds. *Conditions to generate* **1**: 0.5 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in CH₃CN + 1 eq. of mCPBA at 25 °C.


Figure S15: Gas Chromatogram of the reaction of **1** with 5 eq. of 2-PPA at 40 °C. *Conditions to generate* **1**: 20 mM [$Cu^{I}(NCCH_{3})_{4}$](CIO_{4}) in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.


Figure S16: Product analysis of the reaction of **1** with 5 eq. of 2-PPA at 40 °C by GC followed by mass spectrometry. (Left) Experimental mass fragment data with peaks at corresponding retention time (in min.) (A) 8.862 min. for 1-phenylethanol (B) 8.959 min. for acetophenone, and (C) 9.274 min. for 2-PPA; (Right) simulated from the mass library of GCMS. *Conditions to generate* **1**: 20 mM [$Cu^{l}(NCCH_{3})_{4}$](ClO_{4}) in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.


Figure S17: UV/Vis absorption changes depicting the reaction of 2 mM **1** with 2 eq. of ferrocene. Inset: The corresponding changes in the absorption at 619 nm due to ferrocenium (Fc⁺) over time in seconds. *Conditions to generate* **1**: $2 \text{ mM} [Cu^{l}(NCCH_{3})_{4}](ClO_{4})$ in $CH_{3}CN + 1$ eq. of mCPBA at 25 °C.


Figure S18: UV/Vis absorption changes depicting the reaction of 2 mM **1** with 2 eq. of acetylferrocene. Inset: The corresponding changes in the absorption at 629 nm due to acetylferrocenium (AcFc⁺) over time in seconds. *Conditions to generate* **1**: 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in CH₃CN + 1 eq. mCPBA at 25 °C.


Figure S19: UV/Vis absorption changes depicting the reaction of 2 mM **1** with 2 eq. of diacetyl ferrocene. Inset: The corresponding changes in the absorption at 645 nm due to diacetylferrocenium (Ac₂Fc⁺) over time in seconds. *Conditions to generate* **1**: 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in $CH_{3}CN + 1$ eq. mCPBA at 25 °C.

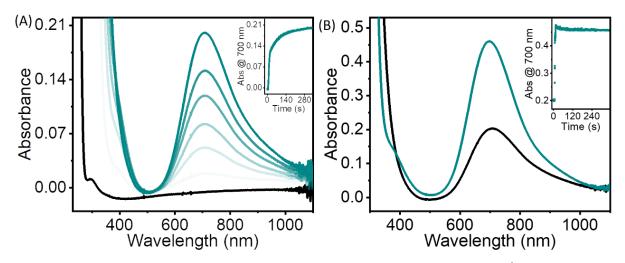
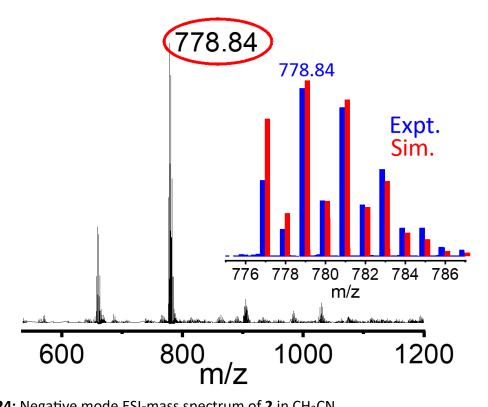
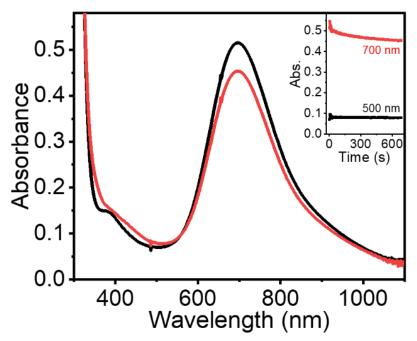
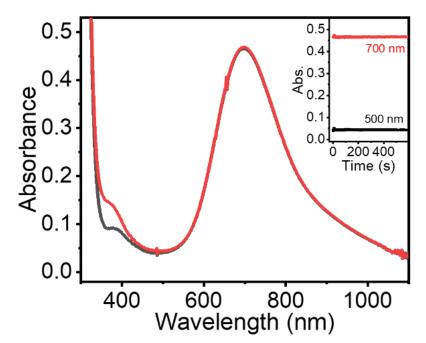
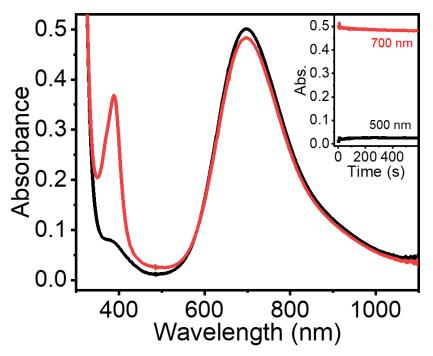

Figure S20: UV/Vis absorption changes depicting the (A) decay of **1**: (black) initial spectra and (red) after 6 days. (B) the instantaneous decay of **1** (solution kept for 6 days) upon addition of 20 eq. of phenol. Inset: The corresponding changes in the absorbance at 700 nm over time in seconds. *Conditions to generate* **1**: $2 \text{ mM} [Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ in $CH_{3}CN + 1 \text{ eq. of mCPBA at 25}$ ${}^{o}C$.

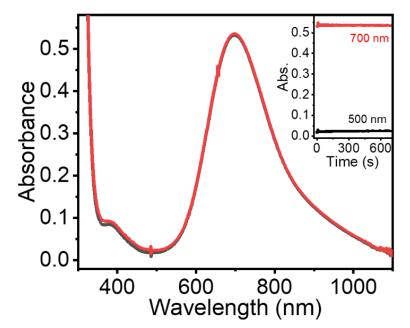
Figure S21: UV/Vis absorption changes depicting the reaction of (A) 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ with 0.5 eq. of mCPBA at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of Et₃N (as a source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

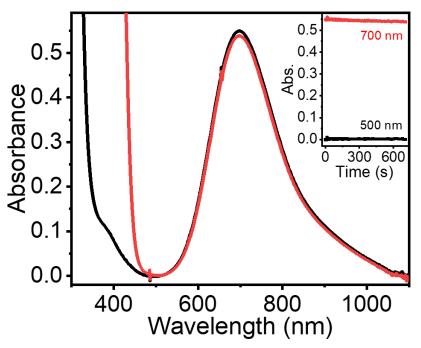
Figure S22: UV/Vis absorption changes depicting the reaction of (A) 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ with 1 eq. of mCPBA at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1 eq. of mCBA and 1 eq. of Et₃N (as a source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

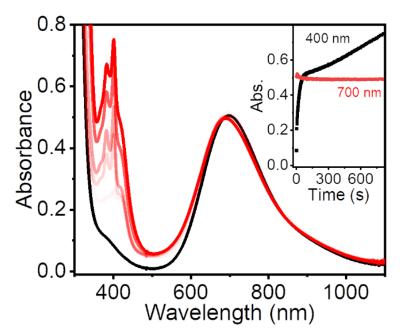
Figure S23: UV/Vis absorption changes depicting the reaction of (A) 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4})$ with 1 eq. of mCPBA at 25 °C. Inset: The corresponding changes in the absorption at 700 nm over time in seconds. (B) In continuation, to this 1.5 eq. of mCBA and 1.5 eq. of Et₃N (as a source of 3-chlorobenzoate) added. Inset: The corresponding changes in the absorption at 700 nm over time in seconds.

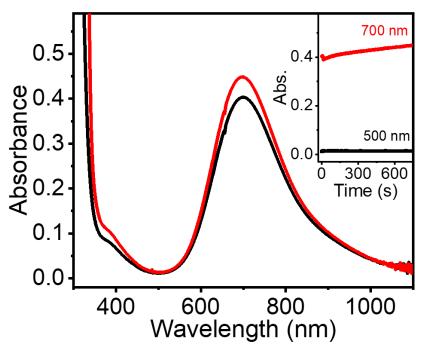




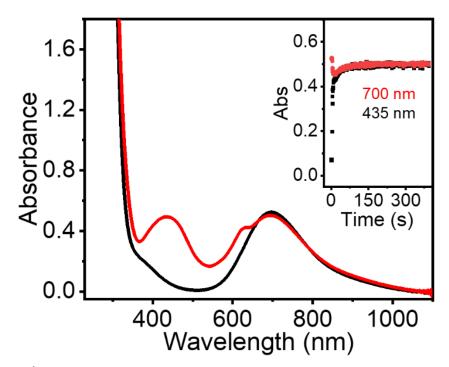

Figure S24: Negative mode ESI-mass spectrum of 2 in CH₃CN.

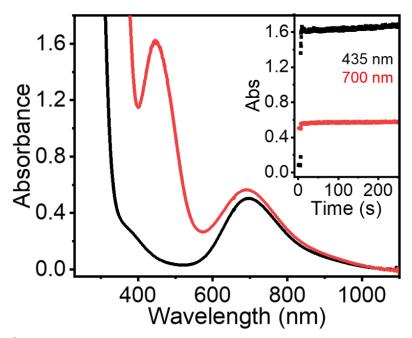

Figure S25: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 10 eq. of *p*-cresol. (red) Spectra recorded after 600 sec. of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{l}(NCCH_{3})_{4}](ClO_{4}) + 0.5 \text{ eq. of mCPBA} + 1.5 \text{ eq. of }(mCBA + Et_{3}N) \text{ in } CH_{3}CN \text{ at } 25 \text{ }^{\circ}C.$

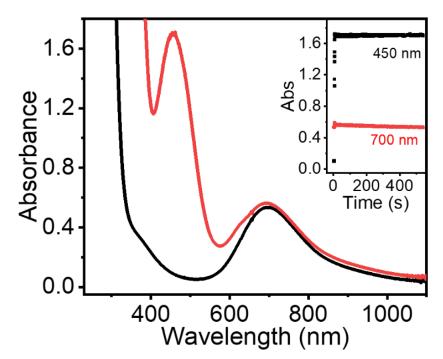

Figure S26: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 10 eq. of *p*-flurophenol. (red) Spectra recorded after 500 sec. of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5 \text{ eq. of mCPBA} + 1.5 \text{ eq. of } (mCBA + Et_{3}N) \text{ in } CH_{3}CN \text{ at } 25 \, {}^{o}C.$


Figure S27: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 10 eq. of phenol. (red) Spectra recorded after 500 sec. of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5 \text{ eq. of mCPBA} + 1.5 \text{ eq. of }(mCBA + Et_{3}N) \text{ in } CH_{3}CN \text{ at } 25 \text{ }^{\circ}C.$


Figure S28: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 10 eq. of *p*-hydroxybenzonitrile. (red) Spectra recorded after 600 sec. of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. *Conditions to generate* **2**: 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5$ eq. of mCPBA + 1.5 eq. of (mCBA + *Et*₃N) in CH₃CN at 25 °C.


Figure S29: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 10 eq. of *p*-nitro phenol. (red) Spectra recorded after 600 sec. of reactant added. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5 \text{ eq. of mCPBA} + 1.5 \text{ eq. of } (mCBA + Et_{3}N) \text{ in } CH_{3}CN \text{ at } 25 \, {}^{o}C.$


Figure S30: UV/Vis absorption changes depicting the reaction of 2 mM **2** with 2 eq. of 2,4,6-TTBP. Inset: The corresponding changes in the absorption at 700 nm and 400 nm over time in seconds. *Conditions to generate* **2**: 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5$ eq. of mCPBA + 1.5 eq. of (mCBA + Et₃N) in CH₃CN at 25 °C.


Figure S31: UV/Vis absorption changes depicting the reaction of 2 mM **2** (black) with 40 eq. of 2-PPA at 40 °C. Inset: The corresponding changes in the absorption at 700 nm and 500 nm over time in seconds. Conditions to generate **2**: 2 mM $[Cu^{l}(NCCH_{3})_{4}](ClO_{4}) + 0.5$ eq. of mCPBA + 1.5 eq. of (mCBA + Et₃N) in CH₃CN at 40 °C.

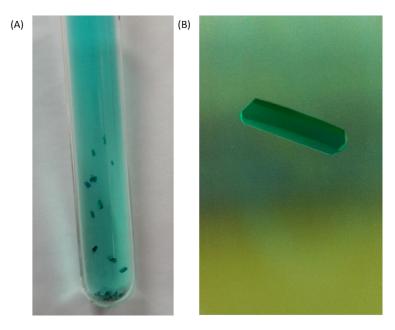

Figure S32: UV/Vis absorption changes depicting the reaction of 2 mM **2** with 2 eq. of ferrocene in CH₃CN. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{l}(NCCH_{3})_{4}](ClO_{4}) + 0.5 \text{ eq. of mCPBA} + 1.5 \text{ eq. of } (mCBA + Et_{3}N) \text{ in CH}_{3}CN \text{ at } 25 \text{ }^{\circ}C.$

Figure S33: UV/Vis absorption changes depicting the reaction of 2 mM **2** with 2 eq. of acetylferrocene in CH₃CN. *Conditions to generate* **2**: 2 mM $[Cu^{I}(NCCH_{3})_{4}](CIO_{4}) + 0.5$ eq. of mCPBA + 1.5 eq. of (mCBA + Et₃N) in CH₃CN at 25 °C.

Figure S34: UV/Vis absorption changes depicting the reaction of 2 mM of **2** with 2 eq. of diacetyl ferrocene in CH₃CN. *Conditions to generate* **2**: $2 \text{ mM} [Cu^{l}(NCCH_{3})_{4}](ClO_{4}) + 0.5 \text{ eq. of } mCPBA + 1.5 \text{ eq. of } (mCBA + Et_{3}N) \text{ in CH}_{3}CN \text{ at } 25 \text{ }^{\circ}C.$

Figure S35: (A) Crystals of **2** formed by layering of hexane upon **1** in CH_3CN and (B) magnified view of a selected crystal.

$C_{20}H_{17}Cl_2CuN_3O_4$
497.80
100
triclinic
Р-1
10.1316(3)
10.7203(3)
11.9188(3)
68.1470(10)
68.4210(10)
86.3640(10)
1113.25(5)
2
1.485
1.251
506.0
0.22 × 0.22 × 0.2
ΜοΚα (λ = 0.71073)
5.426 to 56.706
-13 ≤ <i>h</i> ≤ 13, -14 ≤ <i>k</i> ≤ 14, -15 ≤ <i>l</i> ≤ 15
18162
5560 [R _{int} = 0.0283, R _{sigma} = 0.0287]
5560/0/293
1.080
$R_1 = 0.0261, wR_2 = 0.0658$
R ₁ = 0.0287, wR ₂ = 0.0674
0.52/-0.46

Table S2: Selected Bond lengths (Å) of 2.

	Length/Å		Length/Å
$Cu_1 \bullet \bullet \bullet Cu_1^1$	2.6483(3)	Cu ₁ —O ₃	1.9583(10)
$Cu_1 - O_2^1$	1.9716(11)	Cu ₁ —O ₁	1.9657(10)
$Cu_1 - O_4^1$	1.9706(10)	$Cu_1 - N_1$	2.1675(13)
¹ 1-X,1-Y,-Z		•	•

	Angle/°		Angle/°
$O_2^1 - Cu_1 - Cu_1^1$	83.18(3)	$O_3 - Cu_1 - O_4^1$	168.19(4)
$O_2^1 - Cu_1 - N_1$	93.74(5)	$O_1 - Cu_1 - O_2^1$	168.33(4)
$O_4^1 - Cu_1 - Cu_1^1$	86.62(3)	N_1 — Cu_1 — Cu_1^1	175.13(4)
$O_4^1 - Cu_1 - O_2^1$	89.37(5)	$O_1 - Cu_1 - O_4^1$	89.23(5)
$O_4^1 - Cu_1 - N_1$	97.14(5)	$O_1 - Cu_1 - N_1$	97.93(5)
O_3 - Cu_1 - Cu_1^1	81.66(3)	$O_3 - Cu_1 - N_1$	94.64(5)
$O_3 - Cu_1 - O_2^1$	90.66(5)	O_1 — Cu_1 — Cu_1^1	85.17(3)
$O_3 - Cu_1 - O_1$	88.35(5)		
¹ 1-X,1-Y,-Z			

 Table S3:
 Selected Bond Angles (Å) of 2.

Table S4: Kinetic data for aldehyde deformylation of 2-phenylpropanaldehyde (2-PPA) with various 3d-metal based high valent intermediates at various temperatures.

Complex	k ₂ [M ⁻¹ s ⁻¹] (T [°C])	Reference
1	0.0515 (40)	This work
[Mn ^{III} (O ₂)(12-TMC)] ⁺	0.04 (20)	1
[Mn ^{III} (O ₂)(13-TMC)] ⁺	0.03 (20)	1
[Mn ^{III} (O ₂)(14-TMC)] ⁺	0.04 (20)	1
[Mn ^{III} (O ₂)(Pro3Py)] ⁺	0.003 (0)	2
[Mn ^{III} (N ₃ Py ₂)(O ₂)] ⁺	0.16 (25)	3
(BPMP)Mn ^{II} Mn ^{III} -peroxide	0.0006 (-90)	4
[Mn ^{III} (bispidine)(O ₂)] ⁺	0.0274 (15)	5
[Fe ^{III} (η ₂ -OO)(TMC)] ⁺	0.041 (15)	6
[Fe ^{III} (ŋ₁-OOH)(TMC)]⁺	0.13 (-40)	7
[Co ^{III} (η ₂ -OO)(14-TMC)] ⁺	0.058 (0)	8
[Co ^{III} (η ₂ -OO)(13-TMC)] ⁺	0.015 (25)	8
[Co ^{III} (η ₂ -OO)(TMC)] ⁺	0.058 (0)	9
[Co ^{III} (Me ₃ -TPADP)(OO ^t Bu) ₂] ⁺	0.41 (25)	10
[Ni ^{III} (η ₂ -OO)(TMC)] ⁺	0.04 (25)	11
(L ₂)Ni ^{II} (superoxido)	0.00012 (25)	12
[Ni ^{III} (TBDAP)(O ₂)] ⁺	0.0074 (25)	13
[Ni ^{III} (CHDAP)(O ₂)] ⁺	0.062 (25)	13
[Cu ^{II} (CHDAP)(OOR)] ⁺	0.12 (-40)	14
(BPC)Cu ^{II} (O-O ⁻)	0.062 (-80)	15
[Cu ^{II} (ⁱ Pr ₃ -tren)(OOH)] ⁺	0.15 (-50)	16

12-TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane, 13-TMC = 1,4,7,10-tetramethyl-TMC) = 1,4,7,10-tetraazacyclotridecane, 14-TMC 1,4,8,11-tetramethyl-1,4,8,11-(or tetraazacyclotetradecane, Pro3Py = 1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(pyridin-2ylmethyl)pyrrolidin-2-yl)methyl)methanamine, $N_3Py_2 = N_1N'$ -dimethyl-N-(2-(methyl)pyridin-2ylmethyl)amino)ethyl)-N'-(pyridin-2-ylmethyl)ethane-1,2-diamine, HBPMP = 2,6-bis{[(bis(2pyridylmethyl)amino]methyl}-4-methylphenol), bispidine = dimethyl 2,4-di(2-pyridyl)-3-benzyl-7-(pyridin-2-ylmethyl)-3,7-diazabicyclo[3.3.1] nonan-9-one-1,5-dicarboxylate, Me₃-TPADP = 3,6,9trimethyl-3,6,9-triaza-1 (2,6)-pyridinacyclodecaphane, $L_2 = MeN-(C(=O)NAr)_2$; $Ar=2,6-Pr_2C_6H_3$), TBDAP = N,N'-di-*tert*-butyl-2,11-diaza[3.3](2,6)pyridinophane, CHDAP = N,N'-dicyclohexyl-2,11-diaza[3.3](2,6)pyridinophane, H₂BPC = N,N'-bis(2,6-diisoproylphenyl)-2,6-pyridinedicarboxamide, ⁱPr₃-tren = tris[2-(isopropylamino)ethyl]amine.

References:

- 1 H. Kang, J. Cho, K. Bin Cho, T. Nomura, T. Ogura and W. Nam, *Chem. A Eur. J.*, 2013, **19**, 14119– 14125.
- 2 J. Du, D. Xu, C. Zhang, C. Xia, Y. Wang and W. Sun, *Dalt. Trans.*, 2016, **45**, 10131–10135.
- 3 D. D. Narulkar, A. Ansari, A. K. Vardhaman, S. S. Harmalkar, G. Lingamallu, V. M. Dhavale, M. Sankaralingam, S. Das, P. Kumar and S. N. Dhuri, *Dalt. Trans.*, 2021, **50**, 2824–2831.
- 4 A. M. Magherusan, S. Kal, D. N. Nelis, L. M. Doyle, E. R. Farquhar, L. Que and A. R. Mcdonald, *Angew. Chemie - Int. Ed.*, 2019, **58**, 5718–5722.
- 5 P. Barman, P. Upadhyay, A. S. Faponle, J. Kumar, S. S. Nag, D. Kumar, C. V. Sastri and S. P. de Visser, *Angew. Chemie Int. Ed.*, 2016, **55**, 11091–11095.
- 6 J. Annaraj, Y. Suh, M. S. Seo, S. O. Kim and W. Nam, *Chem. Commun.*, 2005, 4529–4531.
- 7 J. Cho, S. Jeon, S. A. Wilson, L. V. Liu, E. A. Kang, J. J. Braymer, M. H. Lim, B. Hedman, K. O. Hodgson, J. S. Valentine, E. I. Solomon and W. Nam, *Nature*, 2011, **478**, 502–505.
- Y. Jo, J. Annaraj, M. S. Seo, Y. M. Lee, S. Y. Kim, J. Cho and W. Nam, *J. Inorg. Biochem.*, 2008, 102, 2155–2159.
- Y. Jo, J. Annaraj, M. S. Seo, Y. M. Lee, S. Y. Kim, J. Cho and W. Nam, *J. Inorg. Biochem.*, 2008, 102, 2155–2159.
- 10 B. Shin, Y. Park, D. Jeong and J. Cho, *Chem. Commun.*, 2020, **56**, 9449–9452.
- 11 J. Cho, R. Sarangi, J. Annaraj, S. Y. Kim, M. Kubo, T. Ogura, E. I. Solomon and W. Nam, *Nat. Chem.*, 2009, **1**, 568–572.
- 12 C. Panda, A. Chandra, T. Corona, E. Andris, B. Pandey, S. Garai, N. Lindenmaier, K. Silvio, E. R. Farquhar, J. Roithov, G. Rajaraman, M. Driess and K. Ray, *Angew. Chemie Int. Ed.*, 2018, **57**, 14883–14887.
- 13 J. Kim, B. Shin, H. Kim, J. Lee, J. Kang, S. Yanagisawa, T. Ogura, H. Masuda, T. Ozawa and J. Cho, Inorg. Chem., 2015, **54**, 6176–6183.
- 14 B. Kim, D. Jeong and J. Cho, *ChemComm*, 2017, **53**, 9328–9331.
- 15 P. Pirovano, A. M. Magherusan, C. Mcglynn, A. Ure, A. Lynes and A. R. Mcdonald, *Angew. Chemie Int. Ed.*, 2014, **53**, 5946–5950.
- 16 B. Kim, D. Jeong, T. Ohta and J. Cho, *Commun. Chem.*, 2019, **2**, 1–6.