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Methods and materials

All manipulations were performed either under an atmosphere of dry argon or in vacuo using
standard Schlenk line or glovebox techniques. Deuterated solvents were dried over molecular
sieves and degassed by three freeze-pump-thaw cycles prior to use. All other solvents were
distilled and degassed from appropriate drying agents. Both deuterated and non-deuterated
solvents were stored under argon over activated 4 A molecular sieves. Liquid-phase NMR
spectra were acquired on a Bruker Avance 500 (‘H: 500.1 MHz, ''B: 160.5 MHz, 3C:
125.8 MHz) spectrometer. Chemical shifts (0) are reported in ppm and internally referenced to
the carbon nuclei (*C {'H}) or residual protons ('H) of the solvent. Heteronuclei NMR spectra
are referenced to external standards (!!B: BF3-OEt:). Resonances are identified as singlet (s),
doublet (d), triplet (t), septet (sept), multiplet (m) or broad (br). Coupling constants are 'H-'H
coupling constants unless specified otherwise. High-resolution mass spectrometry (HRMS)
data were obtained from a Thermo Scientific Exactive Plus spectrometer. Solid-state IR spectra
were recorded on a Bruker FT-IR spectrometer ALPHA II inside a glovebox. UV-vis spectra
were acquired on a METTLER TOLEDO UV-vis-Excellence UV5 spectrophotometer inside a

glovebox.

Solvents and reagents were purchased from Sigma-Aldrich, abcr or Alfa Aesar.
[(CAAC)2(Ci2HsB2)] = II (CAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-
2-ylidene)! and [(MeCN)sM(CO);] M = Cr, Mo, W)?> were synthesised using literature

procedures.

S2



Svnthetic procedures

Synthesis of 1

A solution of II (60.0 mg, 80.6 umol) in benzene (4 mL) was placed under an atmosphere of
dihydrogen (1 atm) via three freeze-pump-thaw cycles. The solution was stirred at room
temperature for 30 min, resulting in a colourless solution. All volatiles were removed in vacuo
and the residue was washed with hexane (3 x 1 mL) and dried, yielding 1 as a colourless solid
(48.0 mg, 64.3 umol, 80%). Single crystals suitable for X-ray diffraction analysis were obtained
by slow evaporation of a saturated benzene/pentane (2:1) solution at room temperature. 'H{!'B}
NMR (500.1 MHz, CsDg): 6= 8.20-8.12 (m, 1H, DBA-H), 7.60-7.53 (m, 1H, DBA-H), 7.42—
7.34 (m, 2H, DBA-H), 7.31-7.22 (m, 3H, m-Ar-H + p-Ar-H), 7.18-6.96 (m, 6H, m-Ar-H + p-
Ar-H + DBA-H), 6.83-6.74 (m, 1H, DBA-H), 5.25 (s, 1H, NCH), 4.23 (sept, >J= 6.6 Hz, 1H,
iPr-CH), 4.05 (sept, >J = 6.6 Hz, 1H, iPr-CH), 3.22 (br s, 1H, BH), 3.18 (sept, >J = 6.6 Hz, 1H,
iPr-CH), 3.05 (sept, >J=6.6 Hz, 1H, iPr-CH), 1.84 (d, 2/=12.3 Hz, 1H, CH), 1.78 (d,
2J=12.3 Hz, 1H, CH>), 1.58 (d, 2J=12.9 Hz, 1H, CH.), 1.45 (d, 3J= 6.6 Hz, 3H, iPr-CHs),
1.40 (d, *J = 6.6 Hz, 3H, iPr-CH3), 1.37 (d, 2J=12.9 Hz, 1H, CH>), 1.33 (d, *J = 6.6 Hz, 3H,
iPr-CHs3), 1.32 (s, 6H, NC(CH3),), 1.23 (s, 3H, C(CHs),), 1.22 (d, 3J = 6.6 Hz, 3H, iPr-CH3),
1.18 (d, 3J = 6.6 Hz, 3H, iPr-CHs3), 1.16 (d, 3J = 6.6 Hz, 3H, iPr-CH3), 0.95 (s, 6H, NC(CHs)>
+ C(CHs)2), 0.91 (d, 3J = 6.6 Hz, 3H, iPr-CH3), 0.91 (s, 3H, C(CH3)2), 0.89 (s, 3H, NC(CH:)y),
0.85 (s, 3H, C(CHsz)2), 0.74 (d, 3J= 6.6 Hz, 3H, iPr-CHz) ppm. *C{'H} NMR (125.8 MHz,
CsDs): 0 = 243.5 (Cearbene, identified by HMBC), 153.0 (o-Ar-C), 151.0 (DBA-Cg), 150.5 (o-
Ar-C), 146.8 (DBA-Csg), 146.5 (0-Ar-C), 145.3 (o-Ar-C), 143.9 (i-Ar-C), 135.1 (DBA-QO),
134.3 (DBA-C), 134.1 (DBA-C + i-Ar-C), 133.3 (DBA-C), 129.4 (p-Ar-C), 127.1 (DBA-C),
126.4 (p-Ar-C), 126.1 (DBA-C), 125.3 (m-Ar-C), 125.3 (m-Ar-C), 124.9 (m-Ar-C), 124.9 (m-
Ar-C), 123.5 (DBA-C), 123.3 (DBA-C), 77.7 (NC(CH3)2), 73.7 (NCH), 63.5 (NC(CH3)2), 60.1
(CHz), 54.5 (C(CHa3)2), 52.7 (CH>), 44.2 (C(CHs)2), 33.2 (C(CHs)2), 31.4 (C(CH3)2), 31.2
(C(CHs3)2), 30.5 (C(CH3)2), 30.3 (NC(CHa3)2), 29.6 (iPr-CH), 29.6 (iPr-CH), 29.3 (iPr-CH), 29.1
(NC(CHa3)2), 28.3 (iPr-CH), 28.1 (NC(CH3)2), 27.5 (iPr-CH3), 27.4 (iPr-CH3), 27.0 (iPr-CHs),
26.2 (iPr-CH3), 25.8 (NC(CH3)2), 25.1 (iPr-CH3), 24.8 (iPr-CH3), 23.9 (iPr-CH3), 23.7
(iPr-CH3) ppm. "B NMR (160.5 MHz, C¢Ds): 6=—14.4 (d, 'Js-u = 71.1 Hz) ppm. Note: The
second ' B resonance could not be detected. FT-IR (solid-state): vV (B—H) = 2353 cm™'. HRMS
LIFDI for [Cs:H72BoN2 " = [M]": m/z: caled. 746.5876; found 746.5845.
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Synthesis of 2

To a solution of II (50.0 mg, 67.1 umol) in benzene (2 mL) was added phenyl azide (9.58 mg,
80.5 umol) and the mixture stirred at room temperature for 5 min, resulting in a greenish yellow
solution. All volatiles were removed in vacuo and the residue was washed with hexane
(3 x 2 mL) and dried, yielding anti-2 as a pale yellow solid (42.3 mg, 49.0 umol, 73%). Single
crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated
benzene solution at room temperature. Note: Heating a solution of anti-2 at 60 °C for 4 d led
to quantitative isomerisation to syn-2.

Analytical data for anti-2: "H{!'B} NMR (500.1 MHz, THF-ds): 5= 7.61 (t, >*J = 7.8 Hz, 1H,
p-Ar-H), 7.51 (t, 3J=7.7 Hz, 1H, p-Ar-H), 7.47 (dd, °J =7.8 Hz, *J = 1.5 Hz, 1H, m-Ar-H),
7.46 (dd, 3J=17.7 Hz,*J = 1.7 Hz, 1H, m-Ar-H), 7.45 (dd, >J = 7.8 Hz,*J = 1.5 Hz, 1H, m-Ar-
H),7.28 (dd,3J="7.7 Hz,*J= 1.7 Hz, 1H, m-Ar-H), 7.10-7.02 (m, 4H, 0-Ph-H + m-Ph-H), 6.91
(d, 3J=7.1Hz, 1H, DBA-H), 6.76 (d, 3’J=7.1 Hz, 1H, DBA-H), 6.67 (tt, 3J=6.9 Hz,
4J=1.5 Hz, 1H, p-Ph-H), 6.19 (dt, >J = 7.1 Hz,*J = 1.0 Hz, 1H, DBA-H), 6.17 (dt, *J = 7.1 Hz,
4J=1.0 Hz, 1H, DBA-H), 5.87 (t, >J=17.3 Hz, 2H, DBA-H), 4.69 (d,>J= 7.3 Hz, 1H, DBA-
H), 4.39 (sept, >J=6.5Hz, 1H, iPr-CH), 421 (d, *J=7.3 Hz, 1H, DBA-H), 3.52 (sept,
3J=6.6 Hz, 1H, iPr-CH), 3.42 (sept, >J = 6.6 Hz, 1H, iPr-CH), 3.34 (sept, *J=6.7 Hz, 1H,
iPr-CH),2.27(d,%J=11.7 Hz, 1H, CH>), 2.21 (d,%2/ = 12.6 Hz, 1H, CH>),2.14 (d,%J = 12.6 Hz,
1H, CH>), 1.85 (s, 3H, NC(CHs)2), 1.76 (s, 3H, NC(CHs)2), 1.73 (d, 2J=11.7 Hz, 1H, CH>,
overlapping with THF-ds), 1.57 (s, 3H, C(CH3)2), 1.52 (s, 3H, C(CH3)2), 1.50 (s, 3H, C(CHs)2),
1.48 (s, 3H, C(CHs),), 1.45 (d, 3J = 6.6 Hz, 3H, iPr-CHs), 1.38 (d, *J= 6.7 Hz, 3H, iPr-CHs),
1.36 (d, 3J= 6.6 Hz, 3H, iPr-CH3), 1.31 (d, *J = 6.5 Hz, 3H, iPr-CH3), 1.28 (d, *J = 6.6 Hz, 3H,
iPr-CHs), 1.14 (d, 3J = 6.7 Hz, 3H, iPr-CHs), 1.07 (s, 3H, NC(CHs)2), 0.95 (s, 3H, NC(CHs)),
0.57 (d, 3J=6.6 Hz, 3H, iPr-CH3), 0.47 (d, *J = 6.5 Hz, 3H, iPr-CH3) ppm. BC{'H} NMR
(125.8 MHz, THF-dg): 6 = 235.7 (Ccarbene, identified by HMBC), 230.5 (Ccarbene, identified by
HMBC), 168.4 (DBA-Cs, identified by HMBC), 164.4 (DBA-Cs, identified by HMBC), 161.3
(DBA-Cs, identified by HMBC), 158.7 (DBA-Cs, identified by HMBC), 156.1 (i-Ph-C), 150.5
(0-Ar-C), 148.1 (0-Ar-C), 147.6 (0-Ar-C), 147.4 (0-Ar-C), 136.2 (i-Ar-C), 136.2 (i-Ar-C),
130.8 (p-Ar-0), 130.2 (p-Ar-C), 129.7 (DBA-C), 129.2 (DBA-C), 128.8 (DBA-C), 128.6 (o-
Ph-C), 127.2 (m-Ar-C), 126.8 (DBA-C), 126.5 (m-Ar-C), 126.2 (m-Ar-C), 125.6 (m-Ar-C),
122.0 (DBA-C), 120.9 (DBA-C), 119.9 (m-Ph-C), 119.8 (DBA-C), 119.7 (DBA-C), 119.6 (p-
Ph-C), 80.1 (NC(CHs)2), 78.3 (NC(CH3)2), 56.6 (C(CHz)2), 56.2 (C(CHs)2), 53.3 (CH>), 52.7
(CH2), 36.4 (C(CHs)2), 32.9 (C(CHs)2), 31.7 (NC(CH3)2), 31.5 (C(CH3)2), 30.8 (iPr-CH), 30.7
(NC(CHa3)2), 29.6 (iPr-CH), 29.5 (iPr-CH), 29.2 (iPr-CH), 28.8 (iPr-CH3), 28.5 (iPr-CHz3), 27.5
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(iPr-CHs), 27.3 (NC(CH3)z2), 27.2 (NC(CH3)2), 26.5 (iPr-CH3), 25.3 (C(CH3)2, overlapping with
THF-ds, identified by HSQC), 24.7 (iPr-CH3), 23.9 (iPr-CH3), 23.9 (iPr-CH3), 23.8 (iPr-CH3)
ppm. "B NMR (160.5 MHz, THF-ds): §= —1.3 (br s), —4.4 (br s) ppm. FT-IR (solid-state):
V(N=N=N) = 1423, 1251 cm™!. UV-vis (THF): Amax = 348 nm, A, = 296 nm. HRMS LIFDI for
[CssH75B2Ns]" = [M]*: m/z: calcd. 863.6203; found 863.6186.

NMR data for syn-2: 'H{!'B} NMR (500.1 MHz, THF-dg3): 6 = 7.50 (t, 3J="7.8 Hz, 1H,
p-Ar-H), 7.43 (dd, >J =7.8 Hz, *J = 1.5 Hz, 1H, m-Ar-H), 7.39 (t, °*J=7.7 Hz, 1H, p-Ar-H),
7.37 (dd, 3*J=7.8 Hz, 4J=2.3 Hz, 1H, m-Ar-H), 7.30 (dd, *J=7.8 Hz, *J=1.5Hz, IH,
m-Ar-H), 7.27 (dd, 3J= 8.5 Hz, *J = 1.0 Hz, 2H, 0-Ph-H), 7.15-7.11 (m, 1H, DBA-H), 7.08—
7.03 (m, 3H, m-Ar-H + m-Ph-H), 7.03-7.01 (m, 1H, DBA-H), 6.67 (tt,*J = 7.2 Hz,*J = 1.0 Hz,
1H, p-Ph-H), 6.47-6.42 (m, 2H, DBA-H), 5.44 (dt, 3*J=7.3 Hz, /= 1.4 Hz, 1H, DBA-H),
5.39 (dt, 3J=73Hz, *J=14Hz, 1H, DBA-H), 439 (dd, 3J=7.3 Hz, *J=0.8 Hz, 1H,
DBA-H), 4.17 (dd, 3J = 7.3 Hz,*J = 0.8 Hz, 1H, DBA-H), 3.61 (sept, >J = 6.6 Hz, 1H, iPr-CH,
overlapping with THF-ds), 3.47 (sept, >J= 6.6 Hz, 1H, iPr-CH), 3.42 (sept, °*J= 6.6 Hz, 1H,
iPr-CH),2.72 (d,%J = 12.1 Hz, 1H, CH>), 2.40 (d, %2/ = 12.7 Hz, 1H, CH>), 2.22 (d,%J = 12.7 Hz,
1H, CH»), 2.11 (d, 2J=12.1 Hz, 1H, CH,), 1.98 (s, 3H, C(CHx),), 1.77 (s, 3H, C(CH3),),
1.63 (s, 3H, C(CH3)»), 1.60 (s, 3H, NC(CHs)2), 1.56 (s, 3H, NC(CHs)2), 1.55 (s, 3H, C(CHs)2),
1,55 (s, 3H, NC(CHs)2), 1.53 (s, 3H, NC(CHs),), 1.46 (d, 3J = 6.6 Hz, 3H, iPr-CH3), 1.45
(d, 3J= 6.6 Hz, 3H, iPr-CH3), 1.32 (d, 3J = 6.6 Hz, 3H, iPr-CH3), 1.18 (d, ’*J = 6.6 Hz, 3H,
iPr-CH3), 0.90 (d, °J = 6.6 Hz, 6H, iPr-CH3), 0.57 (d, 3J = 6.6 Hz, 3H, iPr-CH3), —0.11
(d, 3J = 6.6 Hz, 3H, iPr-CH3) ppm. BC{!H} NMR (125.8 MHz, THF-ds): 6= 233.8 (Ccarbene,
identified by HMBC), 230.6 (Ccarbene, identified by HMBC), 164.2 (DBA-Cs, identified by
HMBC), 163.8 (DBA-Cs, identified by HMBC), 163.6 (DBA-Cs, identified by HMBC), 162.8
(DBA-Cs, identified by HMBC), 155.3 (i-Ph-C), 150.7 (0-Ar-C), 147.9 (o-Ar-C), 146.9
(0-Ar-C), 146.8 (0-Ar-C), 136.6 (i-Ar-C), 136.0 (i-Ar-C), 131.3 (DBA-C), 130.7 (p-Ar-C),
130.2 (p-Ar-C), 128.7 (DBA-C), 128.6 (m-Ph-C), 128.4 (DBA-C), 128.3 (DBA-C), 127.3
(m-Ar-C), 126.9 (m-Ar-C), 126.0 (m-Ar-C), 125.6 (m-Ar-C), 121.2 (DBA-C), 121.0 (DBA-C),
120.3 (p-Ph-C), 120.1 (DBA-C), 119.9 (DBA-C), 119.3 (0-Ph-C), 80.3 (NC(CHz3)2), 78.5
(NC(CHs3)2), 56.7 (C(CHs3)2), 56.7 (C(CHs)2), 54.1 (CH»), 53.2 (CH»), 35.1 (C(CHs)2), 34.2
(C(CHs3)2), 34.1 (C(CH3)2), 31.0 (iPr-CH), 30.8 (NC(CHz3)2), 30.7 (NC(CHa)2), 29.6 (iPr-CH),
29.6 (iPr-CH), 29.5 (iPr-CH3), 29.4 (iPr-CH + iPr-CH3), 28.5 (NC(CH3)2), 27.9 (NC(CH3)»),
27.2 (C(CHs)2), 27.1 (iPr-CH3), 26.1 (iPr-CH3), 24.9 (iPr-CH3), 24.7 (iPr-CH3), 24.2 (iPr-CH3),
24.1 (iPr-CH3) ppm. "B NMR (160.5 MHz, THF-ds): §=—1.2 (br s), —4.1 (br s) ppm.
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Synthesis of 3

IT (30.0 mg, 40.3 umol) and TEMPO (18.9 mg, 80.6 umol) were combined in benzene (1 mL)
and the suspension was stirred at room temperature for 30 min, resulting in a colourless reaction
mixture. All volatiles were removed in vacuo and the residue was washed with hexane
(2 x 0.5 mL) and dried, yielding 3 as a colourless solid (16.6 mg, 34.1 umol, 85%). Single
crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated
benzene solution at room temperature. Note: The NMR spectra showed the formation of a 77:23
mixture of anti-3 and syn-3. The NMR resonances of the two atropisomers were assigned on
the basis of COSY, HSQC and HMBC spectra. 'H{!'B} NMR (500.1 MHz, CD>Cl,) for anti-3
(77%): 6 = 9.41-9.36 (m, 2H, DBA-H), 8.26-8.22 (m, 2H, DBA-H), 7.51-7.44 (m, 4H,
DBA-H), 1.85-1.64 (m, 12H, CH>), 1.34 (s, 12H, CH3), 1.09 (s, 12H, CH3) ppm; for syn-3
(23%): 06 = 9.49-9.44 (m, 2H, DBA-H), 8.17-8.13 (m, 2H, DBA-H), 7.51-7.44 (m, 4H,
DBA-H), 1.85-1.64 (m, 6H, CH.), 1.55-1.47 (m, 6H, CH>), 1.33 (s, 12H, CH3), 1.09 (s, 12H,
CH3) ppm. BC{'H} NMR (125.8 MHz, CD,Cl,) for anti-3: 5§ = 138.2 (Ar-C), 132.9 (Ar-C),
130.9 (Ar-C), 129.9 (Ar-C), 60.6 (NC(CH3)z2), 40.0 (CH»), 32.2 (CH3), 20.4 (CH3), 17.7 (CH>)
ppm; for syn-3: 6= 138.1 (Ar-C), 132.3 (Ar-C), 130.6 (Ar-C), 129.9 (Ar-C), 60.6 (NC(CHs)2),
40.0 (CH2), 32.2 (CH3), 20.4 (CH3), 17.7 (CHz) ppm. !B NMR (160.5 MHz, CD2Cly): 5=41.1
(br s) ppm. HRMS LIFDI for [C30H44B2N202]" = [M]": m/z: calcd. 486.3583; found 486.3578.

Synthesis of 4-Cr

To a mixture of II (30.0 mg, 40.3 umol) and [(MeCN);Cr(CO)3] (10.4 mg, 40.3 umol) was
added THF (1 mL) and the reaction mixture was stirred at 60 °C for 5 d, resulting in a colour
change to dark green. The reaction mixture was filtered and layered with hexane, resulting in
crystallisation of the product. The crystals were collected by filtration, washed with benzene
(2 x 1 mL) and hexane (3 x 1 mL) and dried in vacuo, yielding 4-Cr as black crystals (24.1 mg,
27.4 umol, 68%). Single crystals suitable for X-ray diffraction analysis were obtained by slow
evaporation of a saturated THF solution at room temperature. '"H{!'B} NMR (500.1 MHz,
THF-ds): & = 7.25-7.20 (m, 2H, DBA-H), 7.13 (t, *J=7.8 Hz, 2H, p-Ar-H), 6.84
(d,%J =17.8 Hz, 4H, m-Ar-H), 6.29-6.24 (m, 4H, DBA-H), 2.79 (sept, >*J = 6.4 Hz, 4H, iPr-CH),
2.52 (s, 4H, CH»), 2.41 (s, 12H, C(CH3)2), 1.51 (s, 12H, NC(CHs),), 1.14 (d, 3J = 6.4 Hz, 12H,
iPr-CHs), 0.18 (d, °J =64 Hz, 12H, iPr-CH3) ppm. “C{'H} NMR (125.8 MHz, THF-ds):
0=241.5 (CO), 235.2 (Ccarbene, identified by HMBC), 146.8 (0o-Ar-C), 137.8 (DBA-C), 134.0
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(i-Ar-C), 129.5 (p-Ar-C), 126.3 (m-Ar-C), 119.2 (DBA-C), 108.8 (DBA-CB), 82.1 (NC(CHz)z),
58.4 (C(CH3)2), 52.4 (CH>), 31.4 (C(CHs3)2), 30.8 (NC(CHs)2), 29.3 (iPr-CH), 28.0 (iPr-CHs),
26.1 (iPr-CH3) ppm. "B NMR (160.5 MHz, THF-ds): 5= 14.6 (br s) ppm. FT-IR (solid-state):
7(C=0) = 1882, 1777 ecm!. UV-vis (THF): Amax = 340 nm, A = 392 nm (shoulder),
A3 =602 nm (broad). HRMS LIFDI for [CssH70B2CrN2O3]" = [M]": m/z: calcd. 880.4972; found
880.4968.

Synthesis of 4-Mo

To a mixture of II (30.0 mg, 40.3 pumol) and [(MeCN);:Mo(CO)3] (12.2 mg, 40.3 umol) was
added THF (1 mL) and the reaction mixture was stirred at 60 °C for 5 d, resulting in a colour
change to dark green. The reaction mixture was filtered and layered with hexane, resulting in
crystallisation of the product. The crystals were collected by filtration, washed with benzene
(2 x 1 mL) and hexane (3 x 1 mL) and dried in vacuo, yielding 4-Mo as black crystals.
(21.3 mg, 23.0 umol, 57%). Single crystals suitable for X-ray diffraction analysis were obtained
by slow evaporation of a saturated THF solution at room temperature. 'H{!'B} NMR (500.1
MHz, THF-dg): & = 7.31-7.26 (m, 2H, DBA-H), 7.15 (t, 3*J=7.8 Hz, 2H, p-Ar-H), 6.86
(d,%J =17.8 Hz, 4H, m-Ar-H), 6.29-6.24 (m, 4H, DBA-H), 2.80 (sept, >J = 6.4 Hz, 4H, iPr-CH),
2.50 (s, 4H, CH»), 2.36 (s, 12H, C(CH3)2), 1.52 (s, 12H, NC(CHs),), 1.14 (d, 3J = 6.4 Hz, 12H,
iPr-CH3), 0.18 (d, 3J =64 Hz, 12H, iPr-CH3) ppm. *C{'H} NMR (125.8 MHz, THF-ds):
0= 234.5 (Ccarbene, identified by HMBC), 232.8 (CO), 146.8 (0-Ar-C), 137.1 (DBA-C), 134.1
(i-Ar-C), 129.5 (p-Ar-C), 126.3 (m-Ar-C), 118.9 (DBA-C), 112.6 (DBA-CB), 82.2 (NC(CHz)),
58.2 (C(CH3)2), 51.8 (CH>), 31.9 (C(CHs)2), 30.7 (NC(CHs)2), 29.3 (iPr-CH), 27.8 (iPr-CH3),
26.1 (iPr-CH3) ppm. "B NMR (160.5 MHz, THF-ds): 5= 14.8 (br s) ppm. FT-IR (solid-state):
7(C=0) = 1892, 1784 cm™!. UV-vis (THF): Amax = 347 nm, A = 393 nm (shoulder),
A3 =490 nm (shoulder), A4+ = 593 nm (broad). HRMS LIFDI for [CssH70B2MoN»O3]" = [M]":
m/z: calcd. 924.4651; found 924.4639.

Synthesis of 4-W

To a mixture of II (30.0 mg, 40.3 umol) and [(MeCN);W(CO)3] (15.8 mg, 40.3 umol) was
added THF (1 mL) and the reaction mixture was stirred at 60 °C for 5 d, resulting in a colour

change to dark green. The reaction mixture was filtered and layered with hexane, resulting in
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crystallisation of the product. The crystals were collected by filtration, washed with benzene
(2 x 1 mL) and hexane (3 x 1 mL) and dried in vacuo, yielding 4-W as black crystals (28.6 mg,
28.2 umol, 70%). Single crystals suitable for X-ray diffraction analysis were obtained by slow
evaporation of a saturated THF solution at room temperature. '"H{!'B} NMR (500.1 MHz,
THF-ds): §=7.20-7.15 (m, 6H, DBA-H + p-Ar-H), 6.89 (d, °J = 7.8 Hz, 4H, m-Ar-H), 6.21—
6.16 (m, 4H, DBA-H), 2.79 (sept, J= 6.4 Hz, 4H, iPr-CH), 2.49 (s, 4H, CH>), 2.30 (s, 12H,
C(CH3)), 1.52 (s, 12H, NC(CHs)2), 1.15 (d, °J = 6.4 Hz, 12H, iPr-CH3), 0.23 (d, °J = 6.4 Hz,
12H, iPr-CH3) ppm. C{'H} NMR (125.8 MHz, THF-ds): & = 233.8 (Ccarbene, identified by
HMBC), 222.3 (s + satellites, 'Jw-_c = 191.2 Hz, CO), 146.8 (0-Ar-C), 137.1 (DBA-C), 134.1
(i-Ar-C), 129.6 (p-Ar-C), 126.4 (m-Ar-C), 119.2 (DBA-C), 108.8 (DBA-CB), 82.4 (NC(CHz)z),
58.4 (C(CH3)2), 51.8 (CH2), 32.0 (C(CHs3)2), 30.7 (NC(CHs)2), 29.3 (iPr-CH), 27.9 (iPr-CHs),
26.1 (iPr-CH3) ppm. "B NMR (160.5 MHz, THF-ds): 5= 13.5 (br s) ppm. FT-IR (solid-state):
7(C=0) = 1886, 1771 cm™'. UV-vis (THF): Amax = 342 nm, A, = 387 nm (shoulder),
A3 = 595 nm (broad). HRMS LIFDI for [CssH70B2N2OsW]" = [M]*; m/z: caled. 1012.5102;
found 1012.5090.
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NMR spectra of isolated compounds
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Figure S1. '"H{!'B} NMR spectrum of 1 in C¢Ds.
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Figure S6. !'B NMR spectrum of anti-2 in THF-ds.
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Figure S20. !'B NMR spectrum of 4-Mo in THF-ds.
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IR spectra
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Figure S24. Solid-state IR spectrum of 1.
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Figure S25. Solid-state IR spectrum of anti-2.
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Figure S26. Solid-state IR spectrum of 4-Cr.
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Figure S27. Solid-state IR spectrum of 4-Mo.
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UV-vis spectra
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Figure S29. UV-vis absorption spectrum of anti-2 in THF at 23 °C. Amax =348 nm,
A2 =296 nm.
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Figure S30. Overlay of UV-vis absorption spectra of 4-Cr (normal), 4-Mo (dashed) and 4-W
(dotted) in THF at 23 °C. 4-Cr: Amax = 340 nm, A = 392 nm (shoulder), 43 = 602 nm (broad);
4-Mo: Amax = 347 nm, A2 = 393 nm (shoulder), A3 = 490 nm (shoulder), A4 = 593 nm (broad);

4-W: Amax = 342 nm, A> = 387 nm (shoulder), A3 = 595 nm (broad).
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X-ray crystallographic data

The crystal data of 1, anti-2 and 4-Cr were collected on a XtaLAB Synergy Dualflex HyPix
diffractometer with a Hybrid Pixel array detector and multi-layer mirror monochromated Cuxke
radiation. The crystal data of anti-3, 4-Mo and 4-W were collected on a Bruker DS Quest
diffractometer with a CMOS area detector and multi-layer mirror monochromated Mok
radiation. The structures were solved using the intrinsic phasing method,® refined with the
ShelXL program* and expanded using Fourier techniques. All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included in structure factor calculations. All

hydrogen atoms were assigned to idealised geometric positions.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication numbers CCDC-2306744 (1), 2306745 (anti-2), 2306746 (anti-3),
2306747 (4-Cr), 2306748 (4-Mo), 2306749 (4-W). These data can be obtained free of charge

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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Crystal data for 1: Cs;H72B2Na, M; = 746.73, clear colourless block, 0.120x0.100x0.030 mm?,
orthorhombic space group Phca, a = 13.89720(10) A, b =15.60870(10) A, c =41.3288(3) A,
a=90° f=90° y=90°, V=28964.93(11) A% Z=38, peca=1.107 g-cm>, p=0.460 mm,
F(000)=3264, T=1002) K, R;=0.0595, wR>=0.1287, 8508 independent reflections
[26<140.15°] and 524 parameters.

Figure S31. Solid-state structure of 1. Atomic displacement ellipsoids represented at 50%.
Ellipsoids of ligand periphery and hydrogen atoms except B-H and CAAC-H omitted for
clarity.
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Crystal data for anti-2: C79HosB2Ns, M; = 1137.22, yellow block, 0.220x0.200x0.080 mm?,
triclinic space group Pl, a=11.47910(10) A, b=13.02450(10) A, c=22.38830(10) A,
a=79.3390(10)°, B=286.6270(10)°,  y=86.6760(10)°, V=23280.00(4) A3, Z=2,
Pealea=1.151 grem™,  p=0.495mm™!,  F(000)=1230, 7=1002)K, R;=0.0383,
wR>=10.0962, 12419 independent reflections [26<140.142°] and 791 parameters.

Figure S32. Solid-state structure of anti-2. Atomic displacement ellipsoids represented at 50%.

Ellipsoids of ligand periphery and hydrogen atoms except DBA—H---Dipp omitted for clarity.

S38



Crystal data for anti-3: C36Hs0B2N20Oo, M; = 564.40, colourless block,
0.513%x0.226x0.215 mm?, triclinic space group P 1, a=7.7792(17) A, b=10.300(3) A,
c=10.4076(19) A, a=78.833(8)°, f=82.411(11)°, y=78.433(9)°, V=797.83) A3, Z=1,
Pealea=1.175 grem™,  ©=0.071 mm™!,  F(000)=306, T=1002)K, R;=0.0477,
wR> = 0.0986, 3138 independent reflections [26<52.042°] and 194 parameters.
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Figure S33. Solid-state structure of anti-3. Atomic displacement ellipsoids represented at 50%.

Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.
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Crystal data for 4-Cr: CsoH7sBoCrN2Os, M, =952.85, clear brown block,
0.350x0.130x0.090 mm?,  monoclinic ~ space  group  P2i/n, a=11.25260(10) A,
b=22.8684(2) A, ¢=19.7806(2) A, S=93.8830(10)°, V=5078.44(8) A%, Z=4,
Pealed = 1246 grem™>,  u=2229mm!,  F(000)=2048, T=1002)K, R;=0.0375,
wR>=10.0981, 9635 independent reflections [26<140.148°] and 629 parameters.

A \\L
I 4

Figure S34. Solid-state structure of 4-Cr. Atomic displacement ellipsoids represented at 50%.

Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.
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Refinement details for 4-Mo: Refined as a two-component twin. The BASF parameter was
refined to 11.8%. Two outlying reflections affected by the beamstop were omitted: 1 1 0 and -
8 0 12. The ADPs of the boron atoms, distorted by their coordination to the heavy Mo atom,

were restricted to similarity with the neighbouring carbon atoms using SIMU.

Crystal data for 4-Mo: CsoH7sBoMoN2O4,  M;=996.79,  black  block,
0.350x0.130x0.090 mm?, monoclinic space group Pc, a=19.1301(8) A, b =10.9095(4) A,
c=24.8499(11) A, B=93.027(2)°, V=517894) A3, Z=4, peaca=1278 g'em,
4=0.302 mm™!, F£(000)=2120, 7=100(2) K, R; = 0.0804, wR> = 0.1433, Flack parameter =
0.05(4), 13327 independent reflections [26<54.264°] and 1258 parameters.

Figure S35. Solid-state structure of 4-Mo. Atomic displacement ellipsoids represented at 50%.

Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.
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Refinement details for 4-W: Refined as a two-component inversion twin. The BASF
parameter was refined to 43.2%. Ten low-resolution reflections that were affected by the
beamstop were removed from refinement. The ADPs of the boron atoms, distorted by their
coordination to the heavy W atom, were restrained to similarity with the neighbouring carbon
atoms using SIMU. An ISOR restraint was additionally applied to B8 10. In each of the two
complexes the ADP of the carbonyl carbon atom C4, distorted by its coordination to the heavy

W atom, was restrained to similarity with the neighbouring tungsten atom using SIMU.

Crystal data for 4-W: CsoH7sB2N>OsW, M; = 1084.70, black block, 0.462x0.304x0.210 mm?,
monoclinic space group Pc, a=19.1470(6) A, b=10.9198(4) A, c=24.8088(10) A,
B=93.0270(10)°, V=5179.83) A%, Z=4, paeca=1391gem3, p=2279 mm',
F(000) = 2248, T=100(2) K, R; =0.0234, wR> = 0.0482, Flack parameter = 0.432(5), 20179
independent reflections [26<52.044°] and 1258 parameters.

Figure S36. Solid-state structure of 4-W. Atomic displacement ellipsoids represented at 50%.
Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.
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