Electronic Supplementary Information

Preparation and electrochemical properties of NiMn-LDH with

petal-like lamellar structure derived from Mn MOF-74

Jing Shi, Hongbo Tai, Dongwei Xu, Xiaomin Kang* and Zhiliang Liu*

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.

E-mail: kangxm@imu.edu.cn, E-mail: cezlliu@imu.edu.cn

Fig. S1 The full XPS spectra of NiMn-LDH 3 and O-LDH samples.

Fig. S2 (a) N_2 adsorption/desorption isotherms of Mn MOF-74, NiMn-LDH 3 and O-LDH; (b) corresponding pore size distribution curves of Mn MOF-74, NiMn-LDH 3 and O-LDH.

Binding energy (eV) Relative peak area	530.8 O ^{2–}	531.6 OH ⁻	532.9 Н ₂ О
NiMn-LDH	2196.6	14645.2	10916.8
O-LDH	2728.7	11437.8	10036.9

Table S1 O 1s peak for NiMn-LDH 3 and O-LDH materials.

 Table S2 Mn 2p peak for NiMn-LDH 3 and O-LDH materials.

Binding energy	641.3	642.6	643.9
Relative peak area	Mn ²⁺	Mn ³⁺	Mn ⁴⁺
NiMn-LDH	686.3	527.6	2216.6
O-LDH	1444.2	1105.1	2411.7

	Relative	Relative		Relative	Relative	Relative
	content	content	OH ⁻ /O ²⁻	content	content	content
	of O ^{2–}	of OH⁻		of Mn^{2+}	of Mn ³⁺	of Mn ⁴⁺
NiMn-LDH	7.9%	52.8%	6.7	20.0%	15.4%	64.6%
O-LDH	11.3%	47.3%	4.2	29.1%	22.3%	48.6%

 Table S3 The analysis results of XPS for NiMn-LDH 3 and O-LDH materials.

Table S4 Pore structure parameters of Mn MOF-74, NiMn-LDH 3 and O-LDH materials.

Materials	$S_{BET} (m^2/g)$	V _{total} (cm ³ /g)	Average pore diameter (nm)
Mn MOF-74	20.25	0.04	13.43
NiMn-LDH 3	46.10	0.19	27.16
O-LDH	111.33	0.35	20.40

Fig. S3 Cyclic Voltammetry (CV) curves of Mn MOF-74/NF (a), NiMn-LDH 1/NF(b), NiMn-LDH 2/NF (c), NiMn-LDH 4/NF (d) and NiMn-LDH 5/NF (e) electrodesatvariousscanrates(10-40mV s^{-1}).

Fig. S4 Galvanostatic charge-discharge (GCD) curves of Mn MOF-74/NF (a), NiMn-LDH 1/NF (b), NiMn-LDH 2/NF (c), NiMn-LDH 4/NF (d) and NiMn-LDH 5/NF (e) electrodes at various current densities (1-30 A g^{-1}).

Fig. S5 the equivalent circuit fitting diagram of the EIS data.

Electrode materials	Specific capacitance	Current density	Rate capability	Reference
NiMn-LDH/PC	1634 F g ⁻¹	1 A g ⁻¹	60.5% at 10 A g ⁻¹	1
Ni/Mn LDHs microspheres	1379 F g ⁻¹	1 A g ⁻¹	75.1% at 50 mV s ⁻¹	2
Ni-Mn LDH/Co ₃ O ₄ on carbon paper	1327 F g ⁻¹	1 A g ⁻¹	70.9% at 50 mV s ⁻¹	3
Ni-Mn LDH@Co ₃ O ₄ on nickel foam	607.9 F g ⁻¹	0.5 A g ⁻¹	73% at 5 A g ⁻¹	4
Mn ₃ O ₄ /NiMoO ₄ @NiCo LDH on carbon cloth	815 F g ⁻¹	1 A g ⁻¹	76.92% at 5 A g ⁻¹	5
NiMn-LDH/Mxene	1575 F g ⁻¹	0.5 A g ⁻¹	91.8% at 2 A g ⁻¹	6
ZIF-9@CoAl LDH	702.7 F g ⁻¹	1 A g ⁻¹	75% at 8 A g ⁻¹	7

Table S5 Comparison of supercapacitor electrochemical performance between thepreviously reported materials and the active material O-LDH.

O-LDH	1875 F g ⁻¹	1 A g ⁻¹	71.7% at 3 A $g^{\text{-}1}$	This work
NiMn-LDH/CNTs/rGO	1268 F g ⁻¹	1 A g ⁻¹	69.4% at 10 A g ⁻¹	10
KCu ₇ S ₄ @NiMn LDHs	733.8 F g ⁻¹	1 A g ⁻¹	84.8% at 2.5 A g ⁻¹	9
NiMnMg-LDH	1772 F g ⁻¹	1 A g ⁻¹	74% at 3 A g ⁻¹	8

References

1 M. Yu, R. Liu, J. Liu, S. Li and Y. Ma, Small, 2017, 13, 1702616.

2 T. Li, J. Wang, Y. Xu, Y. Cao, H. Lin and T. Zhang, ACS Appl. Energy Mater., 2018, 1, 2242-2253.

3 L. Ouyang, C. H. Hsiao, Y. C. Chen, C. Y. Lee and N. H. Tai, *Surf. Interfaces*, 2022, **28**, 101574.

4 H. Peng, C. Jing, J. Chen, D. Jiang, X. Liu, B. Dong, F. Dong, S. Li and Y. Zhang, *CrystEngComm*, 2019, **21**, 470-477.

5 R. Liang, S. Liu, J. Lin, J. Dai, J. Peng, P. Huang, J. Chen and P. Xiao, *RSC Adv.*, 2023, **13**. 33463-33470.

6 D. Zhang, J. Cao, X. Zhang, N. Insin, R. Liu and J. Qin, ACS Appl. Energy Mater.,
2020, 3, 5949-5964.

7 G. Wang, Y. Li and Z. Jin, New J. Chem., 2020, 44, 7528-7540.

8 B. Zhang, Y. Yang, J. Cai, X. Hou, C. Yi, X. Liao, Y. Liu, C. Chen, D. Yu and X. Zhou, *Dalton Trans.*, 2023, **52**, 10557-10566.

9 X. L. Guo, J. M. Zhang, W. N. Xu, C. G. Hu, L. Sun and Y. X. Zhang, *J. Mater. Chem. A*, 2017, **5**, 20579-20587.

10 M. Li, F. Liu, X. B. Zhang and J. P. Cheng, *Phys. Chem. Chem. Phys.*, 2016, **18**, 30068-30078.