Mixed-valence Cu-based Heterostructure for Efficient Electrochemical Nitrate Reduction to Ammonia

Jingrui Ye, Yilin Yang, Mengjuan Teng, An Wang, Jiawei Xia, Guangyu He*and Haiqun Chen*

Determination of ion concentrations

The ultraviolet-visible (UV-Vis) spectrophotometer was employed to analyze the concentrations of NO₃⁻-N, NO₂⁻-N, and NH₄⁺-N, the corresponding concentration-absorbance curves were shown in Figure S1, S2 and S3.

Determination of NO_3^- -N

The concentration of NO_3^- -N in electrolyte was determined before and after chronoamperometry tests. Specifically, 1 M HCl (0.1 mL) and 0.8 wt.% sulfamic acid solution (0.01 mL) were added to the diluted electrolyte. UV-Vis spectrophotometer was employed to record absorption spectrum and the absorbance intensities at wavelength of 220 and 275 nm were used to determine the concentration of NO_3^- N (A = $A_{220\text{nm}} - 2A_{275\text{nm}}$). The concentration-absorbance standard curve was calibrated by using various KNO₃ aqueous solutions as the standard samples in the same operation.

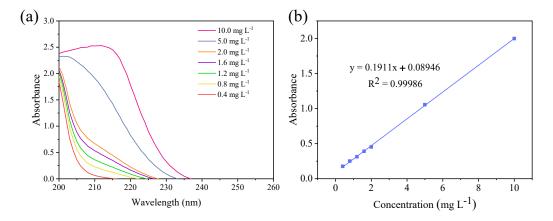
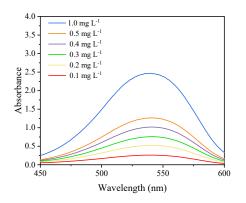



Fig. S1 UV-Vis curves and concentration-absorbance calibration curves of NO₃⁻-N

Determination of NO_2^- -N

The concentration of NO₂⁻-N in electrolyte was determined by Griess test according to the literature. The absorbance intensity at a wavelength of 540 nm in UV-Vis spectrum was recorded to determine the concentration of NO₂⁻-N. The concentration-absorbance standard curve was calibrated by using various NaNO₂ aqueous solutions as the standard samples in the same operation.

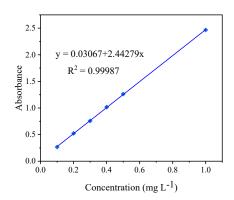


Fig. S2 UV-Vis curves and concentration-absorbance calibration curves of NO₂⁻-N

Determination of NH_4^+

The concentration of generated NH₃ was determined by quantitative detection of NH₄⁺ in electrolyte using the indophenol blue (IB) method. In this method, NH₄⁺ reacts with phenols and hypochlorite (ClO⁻) in a strongly alkaline medium to form IB, with nitroprusside acting as a catalyst. Specifically, 14.1 g of phenol and 163 mg of sodium nitroprusside (Na[Fe(NO)(CN)₅]) were mixed and diluted to 1L with water, which was marked as solution A. 5.2 g of NaOH and 3.07 mL of NaClO were mixed and diluted to 1L with water, which was marked as solution B. To determine the concentration of NH₄⁺, 2.5 mL of solution A and 2.5 mL of solution B were added to 1.0 mL of diluted electrolyte. The absorbance intensity at a wavelength of 623 nm in UV-Vis spectrum was recorded. The concentration-absorbance standard curve was calibrated by using various ammonium chloride solutions as the standard samples in the same operation.

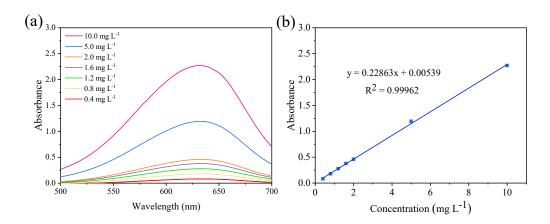


Fig. S3 UV-Vis curves and concentration-absorbance calibration curves of NH₄⁺-N

Calculations

The NO₃⁻ removal efficiency $(R(NO_3^--N))$, NO₂⁻-N selectivity $(S(NO_2^--N))$, NH₄⁺-N selectivity $(S(NH_4^+-N))$, selectivity of other product (S(others)), yield rate and Faraday efficiency of ammonia (FE) were calculated by following equations:

$$R(NO_{3}^{-}) = \frac{C_{0} (NO_{3}^{-} - N) - C_{t} (NO_{3}^{-} - N)}{C_{0} (NO_{3}^{-} - N)} \times 100\%$$

$$S(NO_{2}^{-}) = \frac{C_{t} (NO_{2}^{-} - N)}{C_{0} (NO_{3}^{-} - N) - C_{t} (NO_{3}^{-} - N)} \times 100\%$$

$$S(NH_{4}^{+}) = \frac{C_{t}(NH_{4}^{+} - N)}{C_{0}(NO_{3}^{-} - N) - C_{t}(NO_{3}^{-} - N)} \times 100\%$$

$$S(others) = \frac{C_0 \; (NO_{\; 3}^{\; -} \; -N) - C_t \; (NO_{\; 3}^{\; -} \; -N) - C_t \; (NO_{\; 2}^{\; -} \; -N) - C_t (NH_{\; 4}^{\; +} \; -N)}{C_0 \; (NO_{\; 3}^{\; -} \; -N) - C_t \; (NO_{\; 3}^{\; -} \; -N)} \times 100\%$$

$$Yield = \frac{C_t(NH_4^+ - N) \times V}{t \times A \times M_N} \times 10^{-3}$$

$$FE = \frac{8 \times F \times C_t (NH_4^+ - N) \times V \times 10^{-6}}{M_N \times Q} \times 100\%$$

Where C_0 ($NO_3^- - N$) represents the initial concentration of $NO_3^- - N$. C_t ($NO_3^- - N$), and C_t ($NO_4^- - N$) represent the measured concentration of $NO_3^- - N$, $NO_2^- - N$, and $NH_4^+ - N$ at reaction time t (h), respectively, V is the electrolyte volume in the cathode chamber (35 mL), A is the geometric area of the electrode (1.0 cm²), M_N is the molar mass of N, F is the Faraday constant (96 485 C mol⁻¹), and Q is the total charge during electrolysis.

The electrochemical surface area (ECSA) was calculated by followed equation:

$$C_{dl} = \frac{I_c}{v}$$

$$ECSA = \frac{C_{dl}}{C_s}$$

where C_{dl} is capacitance of double layer of electrode determined by CVs at different scan rates, I_c is current in CV, v is scan rate. Specifically, C_{dl} was estimated by plotting the difference of cathode and anode current density to scanning rate, where the slope is twice that of C_{dl} . C_s is the ideal specific capacitance and use general value in alkaline solutions (40 μ F cm⁻² per cm_{ECSA}).

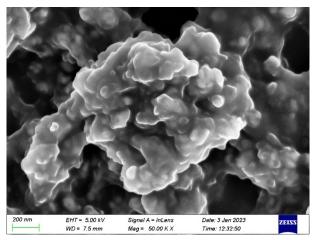


Fig. S4 SEM image of Cu-Cu_xO/C

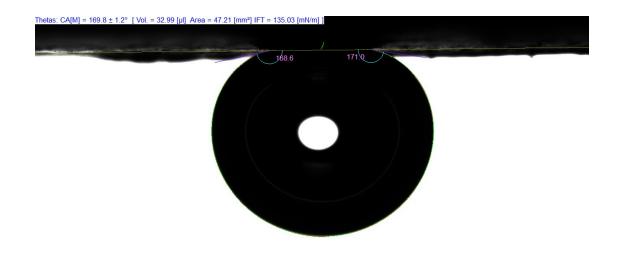


Fig. S5 The contact angle of Cu- Cu_xO/C -0.3

Table S1 The atomic ratios of [(Cu 0 +Cu $^+$)/Cu 2 +] of Cu-Cu $_x$ O/C, Cu-Cu $_x$ O/C-0.1, Cu-Cu $_x$ O/C-0.3 and Cu-Cu $_x$ O/-0.5 catalysts

Catalyst	(Cu ⁰ +Cu ⁺)/Cu ²⁺
Cu-CuxO/C	0.14
Cu-CuxO/C-0.1	0.36
Cu-CuxO/C-0.3	2.60
Cu-CuxO/C-0.5	0.33

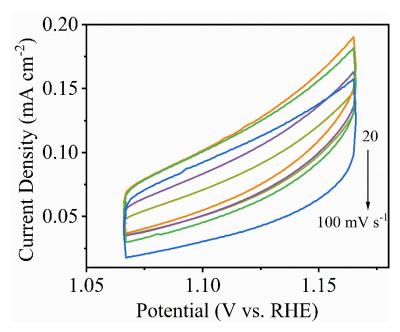


Fig. S6 CV curves of Cu-Cu_xO/C under the scan rates of 20~100 mV s^{-1} at 1 M KOH with 0.1 M NO_3^-

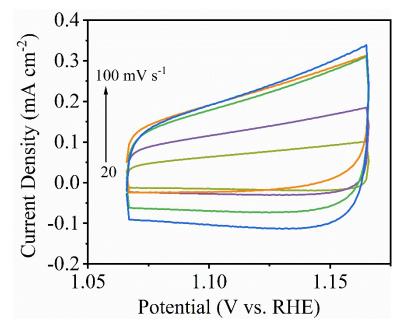


Fig. S7 CV curves of Cu-Cu_xO/C-0.1 under the scan rates of 20~100 mV s $^{-1}$ at 1 M KOH with 0.1 M NO $_3^-$

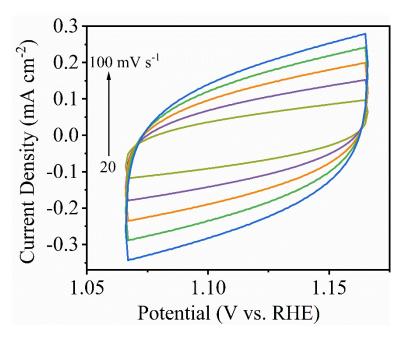


Fig. S8 CV curves of Cu-Cu_xO/C-0.3 under the scan rates of 20~100 mV s⁻¹ at 1 M KOH with 0.1 M NO $_3^-$

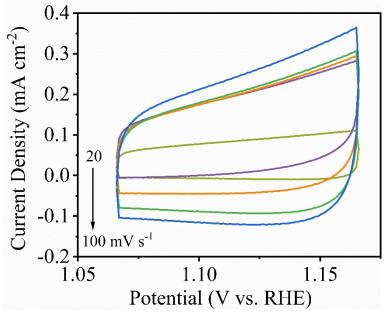


Fig. S9 CV curves of Cu-Cu_xO/C-0.5 under the scan rates of 20~100 mV s $^{-1}$ at 1 M KOH with 0.1 M NO $_3^-$

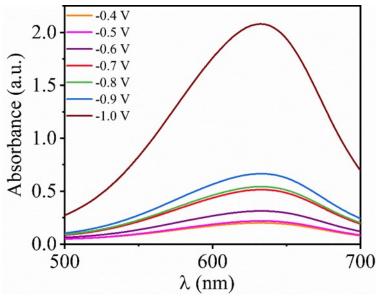


Fig. S10 UV spectra of Cu-Cu_xO/C-0.3

Table S2 The detailed comparison of NO_3RR performance of recently reported Cu-based catalysts and Cu_2S-CuO/NC

Catalysts	Yield rate	FE	Electrolyte	Potential	Ref.
Co ₃ O ₄ /Cu	$684~\mu g~m g_{cat.}^{-1}~h^{-1}$	94.60%	0.4 M Na ₂ SO ₄ with	-0.4 V	[1]
			$50 \text{ mg L}^{-1} \text{ NO}^{3-}\text{-N}$	vs. RHE	
CuO@PANI/C	$0.213 \; \text{mmol h}^{-1}$	93.88%	$0.5 \text{ M } \text{K}_2\text{SO}_4 \text{ with}$	-0.95 V	[2]
F			200 ppm NO ³⁻ -N	vs. SCE	
CuCo ₂ O4/CFs	394.5 mmol h ⁻¹ g ⁻¹	81.90%	1 M KOH with 0.1	-0.3 V	[3]
			M NO ³⁻	vs. RHE	
$Cu@Cu_{2+1}O$	576.53 $\mu g h^{-1} m g_{cat.}^{-1}$	87.07%	$0.5\mathrm{MK_2SO_4}$ with	-1.2 V	[4]
NWs			$50 \text{ mg L}^{-1} \text{ KNO}_3$	vs. SCE	
TiO ₂ NTs/CuO	$1241.81 \ \mu g \ h^{-1} \ cm^{-2}$	92.23%	0.5 M Na ₂ SO ₄ with	-0.75 V	[5]
			100 ppm KNO ₃ -N	vs. RHE	
Cu nanosheets	$1.41 \text{ mmol h}^{-1} \text{ cm}^{-2}$	>80 %	1 M KOH with 0.2	-0.59 V	[6]
			M KNO ₃ solution	vs. RHE	
Cu/Pd/CuO _x	1510.3 $\mu g h^{-1} m g_{cat.}^{-1}$	84.04%	$0.5\mathrm{MK_2SO_4}$ with	-1.3 V	[7]
heterostructures			$50 \text{ mg L}^{-1} \text{ KNO}_3\text{-N}$	vs. SCE	
Cu/MnO _x	29.3 mg h ⁻¹ mgcat. ⁻¹	86.20%	0.1 M Na ₂ SO ₄ with	-0.6 V	[8]
Hybrids			100 mM KNO ₃	vs. RHE	
Cu/MnO _x	5.53 $\text{mg h}^{-1} \text{mg}_{\text{cat.}}^{-1}$	98.20%	0.1 M Na ₂ SO ₄ with	-0.7 V	[9]
Hybrids			10 mM KNO ₃	vs. RHE	
Cu-N-C SAC	$4.5 \text{ mg cm}^{-2} \text{ h}^{-1}$	84.70%	0.1 M KOH with	-1.00 V	[10]
	$(12.5 \text{ mol}_{\text{NH3}} \text{ g}_{\text{Cu}}^{-1} \text{ h}^{-1})$		0.1 M KNO ₃	vs. RHE	
Cu ₂ O	0.0699 mmol h ⁻¹ mg ⁻¹	85.26%	0.5 M sodium	-1.2 V	[11]
			sulfate with 200	vs. RHE	
			ppm nitrate		
oxide-derived	1.1 mmol h^{-1} cm ⁻²	92%	1 M KOH with 100	-0.15 V	[12]
Cu			mM NO ³⁻	vs. RHE	
$Cu_{50}Ni_{50}$	$583.6 \pm 2.4 \ \mu mol \ cm^{-2}$	88.0 \pm	1 M KOH with 100	-1.2 V	[13]
	h^{-1}	1.6%	mM KNO ₃	vs. RHE	
Ru@C ₃ N ₄ /Cu	0.249 mmol h ⁻¹ cm ⁻²	-	$0.5 M Na_2SO_4$		[14]
			with NO ³⁻	vs. RHE	
$Cu-Cu_xO/C-0.3$	$13.38 \text{ mg}_{\text{NH3-N}} \text{ cm}^{-2}$	81.4%	1 M KOH with 100		This
	h^{-1}		mM KNO ₃	vs. RHE	work
	(ca. 2.39 mol $g_{cat.}^{-1}$ h^{-1})				
Cu-Cu _x O/C-0.3	$17.64 \text{ mg}_{\text{NH3-N}} \text{ cm}^{-2}$	79.9%	1 M KOH with 100	-1.0 V	This
	h^{-1}		mM KNO ₃	vs. RHE	work
	(ca. $3.15 \text{ mol } g_{\text{cat.}}^{-1}$				
	h^{-1})				

References

[1] W. Fu, Z. Hu, Y. Du, P. Su, Y. Su, Q. Zhang, M. Zhou, Building dual active sites Co₃O₄/Cu electrode

- to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia, J. Hazard. Mater. 434 (2022) 128887, https://doi.org/10.1016/j.jhazmat.2022.128887.
- [2] Y. Xu, Y. Wen, T. Ren, H. Yu, K. Deng, Z. Wang, X. Li, L. Wang, H. Wang, Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate, Appl. Catal. B: Environ. 320 (2023) 121981, https://doi.org/10.1016/j.apcatb.2022.121981.
- [3] Z. Niu, S. Fan, X. Li, P. Wang, Z. Liu, J. Wang, C. Bai, D. Zhang, Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia, Chem. Eng. J. 450 (2022) 138343, https://doi.org/10.1016/j.cej.2022.138343.
- [4] T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang, Y. Xu, Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion, Chem. Eng. J. 426 (2021) 130759, https://doi.org/10.1016/j.cej.2021.130759.
- [5] W. Qiu, X. Chen, Y. Liu, D. Xiao, P. Wang, R. Li, K. Liu, Z. Jin, P. Li, Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis, Appl. Catal. B: Environ. 315 (2022) 121548, https://doi.org/10.1016/j.apcatb.2022.121548.
- [6] Y. Fu, S. Wang, Y. Wang, P. Wei, J. Shao, T. Liu, G. Wang, X. Bao, Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis, Angew. Chem. Int. Ed. 62 (26) (2023) e202303327, https://doi.org/10.1002/anie.202303327.
- [7] T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang, X. Li, H. Wang, L. Wang, Y. Xu, Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuO_x multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia, Appl. Catal. B: Environ. 318 (2022) 121805, https://doi.org/10.1016/j.apcatb.2022.121805.
- [8] Y. Cui, A. Dong, Y. Zhou, Y. Qu, M. Zhao, Z. Wang, Q. Jiang, Interfacially engineered nanoporous Cu/MnO_x hybrids for highly efficient electrochemical ammonia synthesis via nitrate reduction, Small 19 (17) (2023) 2207661, https://doi.org/10.1002/smll.202207661.
- [9] J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J. Li, Z. Tian, W. Liu, A. Wang, T. Zhang, Potential-Driven restructuring of cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia, J. Am. Chem. Soc. 144 (27) (2022) 12062-12071, https://doi.org/10.1021/jacs.2c02262.
- [10] Z. Gong, W. Zhong, Z. He, Q. Liu, H. Chen, D. Zhou, N. Zhang, X. Kang, Y. Chen, Regulating

- surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia, Appl. Catal. B: Environ. 305 (2022) 121021, https://doi.org/10.1016/j.apcatb.2021.121021.
- [11] J. Yuan, Z. Xing, Y. Tang, C. Liu, Tuning the oxidation state of cu electrodes for selective electrosynthesis of ammonia from nitrate, ACS Appl. Mater. Inter. 13 (44) (2021) 52469-52478, https://doi.org/10.1021/acsami.1c10946.
- [12] Y. Bu, C. Wang, W. Zhang, X. Yang, J. Ding, G. Gao, Electrical Pulse-Driven periodic Self-Repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate, Angew. Chem. Int. Ed. 62 (24) (2023) e202217337, https://doi.org/10.1002/anie.202217337.
- [13] Y. Zheng, M. Qin, X. Yu, H. Yao, W. Zhang, G. Xie, X. Guo, Constructing ru@C₃N₄/Cu tandem electrocatalyst with Dual-Active sites for enhanced nitrate electroreduction to ammonia, Small 19 (30) (2023) 2302266, https://doi.org/10.1002/smll.202302266.