ELECTRONIC SUPPLEMENTARY INFORMATION

Ferrocenyl-substituted nitronyl nitroxide in the design of one-dimensional magnets

Kseniya Maryunina,,$^{a, b}$ Daria Nigomedyanova, ${ }^{a, b}$ Vitaly Morozov, ${ }^{a}$ Kristina Smirnova, ${ }^{a, b}$ Gleb Letyagin, ${ }^{a, b}$ Galina Romanenko, ${ }^{a}$ Nikolay Efimov, ${ }^{c}$ Artem Bogomyakov, ${ }^{a, b}$ and Victor Ovcharenko ${ }^{a}$
E-mail: mks@tomo.nsc.ru (K.M.), bus@tomo.nsc.ru (A.B.)
${ }^{a}$ International Tomography Center, SB RAS, Novosibirsk, Russia
${ }^{b}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{c}$ N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Content

1. Crystal data and experimental details for complexes .. 2
2. Selected bond lengths and angles ... 3
3. Ferrocenyl-substituted nitronyl nitroxide L, their reduced derivatives $L^{*}, \mathrm{H}_{2} \mathrm{~L}^{+}$and nitronyl
ketone L^{d}.. 4
4. Fragments of crystal structures.. 4
5. Crystal structure of binuclear $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ and complex salt $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right] \ldots6$
6. Comparison of trans- and cis-chains .. 7
7. Powder X-ray Diffraction patterns.. 8
8. Magnetic susceptibility measurements ... 9
9. Quantum chemical calculations.. 13
10. References ... 13

1. Crystal data and experimental details for complexes

Table S1. Crystal data and experimental details for complexes, where $\mathrm{L}=(\mathrm{Cp}) \mathrm{Fe}(\mathrm{CpNN})$, $\mathrm{L}^{*}=(\mathrm{Cp}) \mathrm{Fe}(\mathrm{CpIN})_{0.5}(\mathrm{CpNN})_{0.5}, \mathrm{H}_{2} \mathrm{~L}^{{ }^{+}}=$ $\mathrm{CpFe}(\mathrm{CpImOH})^{+}$

Compound	$\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$	$\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$	$\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$	$\left(\mathrm{H}_{2} \mathrm{~L}^{\prime}\right)\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$	$\left\{\left[\mathrm{Cu}(\mathrm{hfac})_{2}\right]_{3} \mathrm{~L}_{2}\right\}$	[$\left.\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right]$	$\left[\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right] \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{14}$
Formula	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{12} \mathrm{FeMnN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{12} \mathrm{FeCoN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{Co}_{2} \mathrm{~F}_{24} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{11}$	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{CoF}_{18} \mathrm{FeN}_{2} \mathrm{O}_{7}$	$\mathrm{C}_{64} \mathrm{H}_{48} \mathrm{Cu}_{3} \mathrm{~F}_{36} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{16}$	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{12} \mathrm{FeZnN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{28.5} \mathrm{H}_{26.5} \mathrm{~F}_{12} \mathrm{FeN}_{2} \mathrm{O}_{6} \mathrm{Zn}$
FW	810.26	814.25	1612.51	1007.33	2115.38	820.69	842.24
T, K	296	296	296	296	296	296	296
Space group, Z	$P 2_{1} / n, 4$	$P 2_{1} / n, 4$	Pbcn, 4	$P 2_{1} / c, 4$	$P-1,1$	$P-1,4$	$P-1,4$
$\begin{aligned} & a, \\ & b, \\ & c, \AA \end{aligned}$	$\begin{aligned} & 14.3528(3) \\ & 15.6852(4) \\ & 14.5169(3) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.2966(11) \\ & 15.5154(13) \\ & 14.4767(12) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 13.6953(13) \\ 21.185(2) \\ 21.563(2) \\ \hline \end{gathered}$	$\begin{gathered} 15.3968(19) \\ 11.6830(10) \\ 22.175(3) \\ \hline \end{gathered}$	$\begin{aligned} & 12.2065(12) \\ & 12.3811(12) \\ & 14.0205(13) \\ & \hline \end{aligned}$	$\begin{gathered} 12.3105(6) \\ 15.4830(8) \\ 19.1434(10) \\ \hline \end{gathered}$	$\begin{gathered} 12.2352(11) \\ 15.0010(14) \\ 21.498(2) \\ \hline \end{gathered}$
$\begin{aligned} & \alpha, \\ & \beta, \\ & \gamma,{ }^{\circ} \\ & \hline \end{aligned}$	97.424(2)	96.601(5)	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 90 \\ 97.779(9) \\ 90 \end{gathered}$	$\begin{aligned} & 86.613(5) \\ & 71.390(5) \\ & 83.519(6) \end{aligned}$	$\begin{aligned} & 75.379(3) \\ & 87.408(3) \\ & 69.457(3) \end{aligned}$	$\begin{aligned} & 72.553(4) \\ & 89.059(5) \\ & 76.936(5) \end{aligned}$
V, \AA^{3}	3240.74(13)	3189.9(5)	6256.2(11)	3952.2(7)	1994.7(3)	3302.3(3)	3661.1(6)
$D_{\mathrm{c}}, \mathrm{g} \mathrm{cm}^{-3}$	1.661	1.695	1.713	1.693	1.761	1.651	1.528
$\theta_{\text {max }}$, deg.	28.296	28.314	67.956	25.350	29.602	28.723	67.922
$\begin{aligned} & I_{\mathrm{lkl}}(\text { meas } / \mathrm{uniq}) / \\ & R_{\mathrm{int}} \end{aligned}$	$\begin{gathered} 32946 / 7920 \\ 0.0814 \end{gathered}$	$\begin{gathered} 31466 / 7926 \\ 0.1040 \end{gathered}$	$\begin{gathered} 37249 / 5655 / \\ 0.1019 \end{gathered}$	$\begin{gathered} 39717 / 7239 \text { / } \\ 0.1702 \end{gathered}$	$\begin{gathered} 38678 / 10991 / \\ 0.0550 \end{gathered}$	$\begin{gathered} 56995 / 16786 / \\ 0.0760 \end{gathered}$	$\begin{gathered} 35506 / 12953 / \\ 0.0557 \end{gathered}$
GooF	0.821	0.790	0.932	0.661	0.817	0.823	1.005
$I_{\text {hkl }}\left(I>2 \sigma_{I}\right) / N \mathrm{~s}$	$3628 / 523$	3054 / 479	4066 / 599	2278 / 663	4993 / 715	7403 / 1054	7674 / 937
$R_{1} / w R_{2}\left(I>2 \sigma_{I}\right)$	0.0443 / 0.0790	0.0502 / 0.0739	0.0408 / 0.0999	0.0401 / 0.0451	0.0403 / 0.0895	0.0411 / 0.0885	0.0652 / 0.181
CCDC	2298179	2298176	2298180	2308668	2298178	2298181	2298177

2. Selected bond lengths and angles

Table S2. Selected bond lengths $\left(\AA\right.$) and angles (deg) in discussed compounds, where $\mathrm{L}=(\mathrm{Cp}) \mathrm{Fe}(\mathrm{CpNN}), \mathrm{L}^{*}=(\mathrm{Cp}) \mathrm{Fe}(\mathrm{CpIN})_{0.5}(\mathrm{CpNN})_{0.5}$, $\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{CpFe}(\mathrm{CpImOH})^{+}$

Compound		$\mathrm{M}-\mathrm{O}_{\mathrm{NO}}$	$\mathrm{M}-\mathrm{O}_{\mathrm{hfac}}$	$\angle \mathrm{MO}_{\mathrm{NO}} \mathrm{N}$	$\mathrm{Fe}-\mathrm{C}_{\mathrm{Cp}}$	$\mathrm{N}-\mathrm{O}$	$\angle \mathrm{O}_{\mathrm{NO}} \mathrm{MO}_{\mathrm{NO}}$	$\angle \mathrm{Cp}-\mathrm{NN}$	$\angle \mathrm{hfac}-\mathrm{hfac}$	$\angle \mathrm{Cp}-\mathrm{hfac}$	Cp...hfac centroids
$\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$		$\begin{gathered} \hline 2.171(2)- \\ 2.176(2) \end{gathered}$	$\begin{gathered} 2.127(2)- \\ 2.156(2) \end{gathered}$	$\begin{aligned} & \hline 135.5(1)- \\ & 136.5(1) \\ & \hline \end{aligned}$	$\begin{gathered} 1.982(5)- \\ 2.045(3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.297(2)- \\ 1.292(2) \end{gathered}$	164.87(7)	2.2	16.3	-	-
$\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$		$\begin{gathered} 2.123(2)- \\ 2.169(2) \\ \hline \end{gathered}$	$\begin{gathered} 2.034(2)- \\ 2.072(2) \\ \hline \end{gathered}$	$\begin{gathered} 132.5(2)- \\ 135.5(2) \end{gathered}$	$\begin{gathered} 1.977(8)- \\ 2.052(4) \\ \hline \end{gathered}$	$\begin{gathered} 1.296(3)- \\ 1.290(3) \\ \hline \end{gathered}$	167.31(8)	1.2	13.9	-	-
$\left\{\left[\mathrm{Cu}(\mathrm{hfac})_{2}\right]_{3} \mathrm{~L}_{2}\right\}$	$\begin{aligned} & \mathrm{CuO}_{6} \\ & \mathrm{CuO}_{5} \end{aligned}$	$\begin{aligned} & 2.666(2) \\ & 1.942(2) \end{aligned}$	$\begin{gathered} \hline 1.915(2)- \\ 1.993(2) \\ 2.201(2) \end{gathered}$	$\begin{aligned} & 152.4(1) \\ & 120.5(1) \end{aligned}$	$\begin{gathered} 2.009(4)- \\ 2.034(4) \end{gathered}$	$\begin{gathered} 1.267(2)- \\ 1.308(2) \end{gathered}$	180.00	24.0	$\begin{gathered} 180 \\ 85.9 \end{gathered}$	16.8	3.49
[$\left.\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right]$	$\mathrm{Zn1}$ Zn 2	$\begin{aligned} & 1.986(2) \\ & 1.976(2) \end{aligned}$	$\begin{aligned} & 1.989(2)- \\ & 2.071(2) \end{aligned}$	$\begin{aligned} & 117.8(1), \\ & 118.6(1) \end{aligned}$	$\begin{gathered} 2.014(4)- \\ 2.055(3) \end{gathered}$	$\begin{gathered} 1.323(3)- \\ 1.264(3) \\ 1.320(3)- \\ 1.264(3) \end{gathered}$	-	$\begin{aligned} & 17.7 \\ & 28.4 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 53.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 18.1 \end{aligned}$	$\begin{aligned} & 3.52 \\ & 3.63 \end{aligned}$
$\begin{gathered} {\left[\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right]} \\ \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{14} \end{gathered}$	Zn 1 Zn 2	$\begin{aligned} & 1.969(4) \\ & 1.981(4) \end{aligned}$	$\begin{aligned} & 1.987(4)- \\ & 2.067(4) \end{aligned}$	$\begin{aligned} & 117.8(3), \\ & 120.8(3) \end{aligned}$	$\begin{gathered} 2.013(6)- \\ 2.059(6) \end{gathered}$	$\begin{gathered} 1.334(5)- \\ 1.261(6) \\ 1.329(5)- \\ 1.269(5) \end{gathered}$	-	$\begin{aligned} & 23.4 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 49.5 \\ & 56.9 \end{aligned}$	$\begin{aligned} & 17.8 \\ & 21.2 \end{aligned}$	3.67 3.66
$\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$		$\begin{gathered} \hline 2.095(2)- \\ 2.184(2) \end{gathered}$	$\begin{gathered} 2.048(2)- \\ 2.084(2) \\ \hline \end{gathered}$	$\begin{aligned} & 119.9(1), \\ & 134.9(1) \end{aligned}$	$\begin{aligned} & 1.98(2)- \\ & 2.058(4) \end{aligned}$	$\begin{gathered} 1.349(2)- \\ 1.301(5) \end{gathered}$	-	19.1	89.1	-	-
$\left(\mathrm{H}_{2} \mathrm{~L}^{\prime}\right)\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$		-	$\begin{gathered} 2.052(3)- \\ 2.081(3) \end{gathered}$	-	$\begin{gathered} 2.004(5)- \\ 2.046(5) \end{gathered}$	1.368(4)	-	11.2	-	-	-

3. Ferrocenyl-substituted nitronyl nitroxide L, their reduced derivatives $L^{*}, H_{2} L^{++}$and nitronyl ketone $\mathbf{L}^{\text {d }}$

L

L*

L'

L^{d}

Scheme S1. Ferrocenyl-substituted nitronyl nitroxide L, its reduced derivatives imino nitroxide L* and hydroxy-imidazolinium cation $\mathrm{H}_{2} \mathrm{~L}^{+}$, and model diamagnetic analog nitronyl ketone L^{d}.

4. Fragments of crystal structures

b

c

Figure S1-1. Crystallographically independent parts of chains $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}(\mathrm{a}),\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}(\mathrm{~b})$ and molecule $\left\{\left[\mathrm{Cu}(\mathrm{hfac})_{2}\right]_{3} \mathrm{~L}_{2}\right\}$ (c). Colour legend: N - blue, O - red, H - white, C - grey, F - green, Cu cyan, Fe - dark orange, Mn - green, Co - violet. Principle ellipsoids for non-hydrogen atoms are given with 50% probability level.

Figure S1-2. Crystallographically independent parts of $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right]$ (d) and $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$ (e), structure of molecules in $\left[\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right]$ (f) and $\left[\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right] \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{14}$ (g). Colour legend: N - blue, O red, H - white, C - grey, F - green, Fe - dark orange, Co - violet, Zn - smoky. Principle ellipsoids for non-hydrogen atoms are given with 50% probability level.

5. Crystal structure of binuclear $\left\{\mathbf{L}\left[\mathbf{C o}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ and complex salt $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$

Figure S2. Short intermolecular contacts in crystal structures of $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ (a) and $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$ (b). Colour legend: N - blue, O - red, Fe - dark orange, Co - violet, carbon skeleton grey; H atoms, $\mathrm{CH}_{3}-$ and CF_{3}-groups are omitted for clarity; short contacts $\mathrm{O}_{\mathrm{NO}} \ldots \mathrm{N}$ in $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ are highlighted in yellow (a), H -bonds in $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$ are coloured in cyan (b).

In the reaction of L with $\mathrm{Co}(\mathrm{hfac})_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ along with the chain-polymer complex $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$, the formation of binuclear $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ and complex salt $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$ were observed (Fig. S2).

According to SC XRD data, the molecule of the binuclear $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ complex is centrosymmetric and in the crystal structure the superposition of nitronyl and imino nitroxides is observed (Fig. S2a). Uncoordinated O_{NO} atom of the paramagnetic ligand occupies the position with the weight $1 / 2$ in the centrosymmetric molecule. In $\left\{\mathrm{L}\left[\mathrm{Co}(\mathrm{hfac})_{2}\right]_{2} \mathrm{~L}^{*}\right\}$ two O_{NO} atoms of the paramagnetic ligands L and L^{*} act as bridges, linking two $\mathrm{Co}(\mathrm{hfac})_{2}$ fragments with ciscoordinated hfac ligands. In this case, the $\mathrm{Co}-\mathrm{O}_{\mathrm{NO}}$ bonds and corresponding $\angle \mathrm{CoO}_{\mathrm{NO}} \mathrm{N}$ angles are different (2.095(2) and $2.184(2) \AA$ and $119.9(1)$ and $134.9(1)^{\circ}$, respectively). The $\mathrm{N}-\mathrm{O}_{\mathrm{Co}}$ bond length is equal to $1.349(2) \AA$ and is typical for this kind of bridging coordination of the nitroxide group (average $1.35(2) \AA$). ${ }^{1}$ Nitronyl nitroxide fragment and the associated Cp ring in the paramagnetic ligands are non-coplanar; their planes are rotated at an angle of 19.1°. There are some short $\mathrm{O}_{\mathrm{NO}} \cdots \mathrm{N}$ contacts between neighboring molecules of the complexes (3.172(5) \AA).

Co-O distances in the $\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]^{-}$complex anion of $\mathrm{H}_{2} \mathrm{~L}^{\prime}\left[\mathrm{Co}(\mathrm{hfac})_{3}\right]$ consist of 2.052(3)-2.081(3) \AA are indicative of Co^{2+} charge state. Thus, ferrocenyl derivative remains in
its protonated state $\mathrm{H}_{2} \mathrm{~L}^{++}$. $\mathrm{Fe}-\mathrm{C}_{\mathrm{CP}}$ distances in $\mathrm{H}_{2} \mathrm{~L}^{++}$are typical for the discussed series of compounds (Table S2). While N-O bond length in $\mathrm{H}_{2} \mathrm{~L}^{{ }^{+}}(1.368(4) \AA$) is substantially longer than the one in nitronyl nitroxide $\mathrm{L}\left(\sim 1.32 \AA\right.$). It should be noted, that NOH -group in $\mathrm{H}_{2} \mathrm{~L}^{+}$is remarkably out of $\left\{\mathrm{CN}_{2}\right\}$ plane, which is common for diamagnetic hydroxylamines. Bond lengths $\mathrm{C}-\mathrm{N}$ are nearly equal (1.317(5)-1.328(6)) in the $\left\{\mathrm{CN}_{2} \mathrm{O}\right\}$ fragment due to conjugation effect. Hydrogen atoms of $\mathrm{H}_{2} \mathrm{~L}^{+}$form hydrogen bonds to $\mathrm{O}_{\text {hfac }}$ atoms linking ions into ribbons (Fig. S2b).

6. Comparison of trans- and cis-chains

Figure S3. Fragments of chains in trans- $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (a), cis- $\left[\mathrm{Mn}(\mathrm{hfac})_{2}(\mathrm{NN}-\mathrm{Naph})\right]_{n}$ (b), ${ }^{2}$ and cis- $\left[\mathrm{Mn}(\mathrm{hfac})_{2}(\mathrm{NN}-\mathrm{Ph} 3 \mathrm{OPh})\right]_{n}$ (c). ${ }^{3}$ Colour legend: N - blue, O - red, Fe - dark orange, $\mathrm{Mn}-$ green, carbon skeleton - grey; H atoms, CH_{3} - and CF_{3}-groups are omitted for clarity; intrachain contacts $\mathrm{C} \cdots \mathrm{C}$ are shown in yellow.

7. Powder X-ray Diffraction patterns

Figure S4. Comparison of the experimental powder diffraction pattern (black lines) with that simulated from the single crystal structure (red lines) of $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}(\mathrm{a}),\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (b), $\left\{\left[\mathrm{Cu}(\mathrm{hfac})_{2}\right]_{3} \mathrm{~L}_{2}\right\}$ (c), and $\left[\mathrm{Zn}(\mathrm{hfac})_{2} \mathrm{~L}\right]$ (d) at 296 K .

8. Magnetic susceptibility measurements

Figure S5. Zero field cooled (o) and field cooled (•) magnetization at 150 Oe for $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ complex.

Figure S6. Field dependences of magnetization for $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (a: - \bullet - at 2 K , solid line only guide) and for $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}(\mathrm{~b}:-\boldsymbol{\Delta}$ - initial magnetization curve from 0 to 67.0 kOe at $2 \mathrm{~K},-\bullet$ - hysteresis loop from -90.0 to 90.0 kOe at 2 K , and - - magnetization curve from -90.0 to 90.0 kOe at 20 K ; solid lines only guide).

In the case of the chain-polymer complex $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$, there is no hysteresis in the field dependences of the magnetization curves, and the initial magnetization curve coincides with the subsequent ones (Fig. 6a, black circles). The magnetization of $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ at 2 K increases stepwise to $\sim 0.65 N \mu_{\mathrm{B}}$ in the low magnetic field region, then gradually increases to $\sim 0.77 N \mu_{\mathrm{B}}$ when the magnetic field is increased to 45 kOe . Above 45 kOe , the magnetization increases more sharply (Fig. 6b, red triangles), but saturation cannot be achieved on MPMSXL and PPMS systems $\mathrm{H}^{\max }{ }_{\text {MPMS }}=70 \mathrm{kOe}$ and $\mathrm{H}^{\max }{ }_{\text {PPMS }}=90 \mathrm{kOe}$). Therefore, hysteresis curves were measured on the PPMS device (Fig. 6b, black circles) by achieving full saturation of $\sim 2.0 N \mu \mathrm{~B}$ at 20 K (Fig. 6b, empty blue squares) and then lowering the temperature to 2 K while maintaining the field value at 90 kOe .

Figure S7. $\ln \left(\chi^{\prime} T\right) v s .1 / T$ for $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ under zero DC field (solid red line corresponds to a linear fitting).

For Ising one-dimensional ordered spin systems, the value of χ^{\prime} 'T, where χ^{\prime} is the real part of the magnetic susceptibility, increases exponentially as the temperature decreases, according to the expression $\chi^{\prime} T=C_{\text {eff }} \cdot \exp \left[\Delta_{\xi}\left(k_{\mathrm{B}} \cdot T\right)\right]$, where $C_{\text {eff }}$ is the effective Curie constant of the repeating fragment ($C_{\text {eff }}=1$ for $S_{\text {eff }}=1$), and Δ_{ξ} is the energy required to create a domain wall within the chain, reflecting the degree of correlation between spins. ${ }^{4}$ The susceptibility was measured in a magnetic field with amplitude of 3.5 Oe , oscillating at a frequency of 1.0 Hz , in the absence of DC magnetic field in the temperature range of $2-90 \mathrm{~K}$. The linear dependence of $\ln \left(\chi^{\prime} T\right)$ in coordinates $\ln \left(\chi^{\prime} T\right)$ vs. $1 / T$ in the range of $60-90 \mathrm{~K}$ confirms the one-dimensional ordering in $\left[\operatorname{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$, and the optimal parameters for the linear approximation of the data were: $\Delta_{\xi}=$ $171(4) \mathrm{cm}^{-1}, C_{\text {eff }}=1.66(14) \mathrm{cm}^{3} \mathrm{~K} \cdot \mathrm{~mol}^{-1}$. At temperatures below 40 K , the curve saturates, which is characteristic of the presence of defects (finite-size effect). The strong correlation between spins in the chain suggests that $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ is a single-chain magnet with a high energy barrier for magnetization reversal.

Figure S8. Temperature dependencies of χ^{\prime} (in-phase) and $\chi^{\prime \prime}$ (out-of-phase) components of the AC magnetic susceptibility for $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (under zero DC field with the ac field of 3.5 Oe and the frequency varies in range $0.01-1488 \mathrm{~Hz}$; solid lines only guide).

Figure S9. Frequency dependencies of χ^{\prime} (in-phase) and $\chi^{\prime \prime}$ (out-of-phase) components of the AC magnetic susceptibility (under zero DC field with the ac field of 3.5 Oe and the frequency varies in range $0.01-1488 \mathrm{~Hz}$) at different temperatures for $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (a, the solid lines represent fitting using a single generalized Debye model) and $\left[\mathrm{Mn}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ (b, solid lines only guide).

Magnetic modeling

Experimental curve $\chi T(T)$ for $\left[\mathrm{Co}(\mathrm{hfac})_{2} \mathrm{~L}\right]_{n}$ was fitted using the branch chain model with the following spin Hamiltonian:
$\widehat{H}=\sum\left\{-2 J\left[S_{C o, i(z)}\left(S_{R, i(z)}+S_{R, i-1(z)}\right)\right]+J_{a} L_{C o, i(z)} S_{C o, i(z)}+D L_{C o, i(z)}^{2}-\mu_{B} H\left(g_{C o} S_{C o, i(z)}+\right.\right.$ gRSR,iz+kLCo,iz) ,
where J - intrachain exchange parameter; $g_{\mathrm{R}}=2$ (fixed), $g_{\mathrm{Co}}-g$-factors of the radical and Co^{2+} ion; D - single-ion anisotropy parameter of Co^{2+} and k - orbital reduction factor. ${ }^{5}$
The fitting was performed using the following equation:

$$
\begin{aligned}
& \chi T=\frac{N \mu_{B}^{2}}{k_{B}} \frac{\left[u^{2} a+2 u c+\frac{(u a+c)^{2}}{b}+d\right]}{a+b} \\
& a=\left[2 e^{z} \cosh (3 y)+1\right] \cosh (6 x)+\left[2 e^{z} \cosh (y)+1\right] \cosh (2 x) \\
& b=2\left[e^{z}(\cosh (3 y)+\cosh (y)+1]\right. \\
& c=\left\{e^{z}\left[e^{-3 y}(3 v-k)+e^{3 y}(3 v+k)\right]+3 v\right\} \sinh (6 x) \\
& +\left\{e^{z}\left[e^{-y}(v-k)+e^{-y}(v+k)\right]+v\right\} \sinh (2 x) \\
& d=\left\{e^{z}\left[e^{-3 y}(3 v-k)^{2}+e^{3 y}(3 v+k)^{2}\right]+(3 v)^{2}\right\}(1+\cosh (6 x) \\
& +\left\{e^{z}\left[e^{-y}(v-k)^{2}+e^{y}(v+k)^{2}\right]+v^{2}\right\}(1+\cos \square(2 x)) \\
& u=\frac{g_{R}}{2} ; v=\frac{g_{C o}}{2} \\
& x=\frac{J}{2 k_{B} T} ; y=\frac{-J_{a}}{2 k_{B} T} ; z=\frac{-D}{k_{B} T} ;
\end{aligned}
$$

Frequency dependences of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase ($\chi^{\prime \prime}$) AC magnetic susceptibilities were analyzed using the generalized Debye model:
$\chi^{\prime}(\omega)=\chi_{S}+\left(\chi_{T}-\chi_{S}\right) \frac{1+(\omega \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)}{1+2(\omega \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)+(\omega \tau)^{2-2 \alpha}}$
$\chi^{\prime \prime}(\omega)=\chi_{T}-\chi_{S} \frac{(\omega \tau)^{1-\alpha} \cos \left(\frac{\pi \alpha}{2}\right)}{1+2(\omega \tau)^{1-\alpha} \sin \left(\frac{\pi \alpha}{2}\right)+(\omega \tau)^{2-2 \alpha}}$
where χ_{T} - adiabatic susceptibility, χ_{S} - isothermal susceptibility, τ - relaxation time and $\alpha-$ parameter that describes width of a relaxation time distribution.

9. Quantum chemical calculations

Figure S10. Isolated $L^{d}-C o-L^{d}$ fragment with two diamagnetic ligands L^{d} (Scheme $1 S$) being used to evaluate D-tensor by ab initio CASSCF quantum chemical calculations. Directions of the D-tensor main axes are shown by the corresponding arrows. The calculated values of the D-tensor are $D=-116 \mathrm{~cm}^{-1}$ and $E / D=0.21$.

Table 3 shows the energies of the six lower Kramers doublets for the L^{d}-Co-L ${ }^{d}$ complex, calculated using $\operatorname{CASSCF}(7.5)$. According to these calculations, the description of the magnetic properties of the L^{d}-Co-L ${ }^{\text {d }}$ complex up to temperatures T of about 250 K can be limited by two lower doublets (and then the D-tensor approximation can be used).

Table S3. Energies of the six lower Kramers doublets for the $L^{d}-C o-L^{d}$

Kramers doublet number	0	1	2	3	4	5
Kramers doublet energy / cm	0.00	248	598	945	1794	1918

10. References

1 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, The Cambridge Structural Database, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2016, 72, 171-179.
2 R. A. A. Cassaro, S. G. Reis, T. S. Araujo, P. M. Lahti, M. A. Novak and M. G. F. Vaz, A Single-Chain Magnet with a Very High Blocking Temperature and a Strong Coercive Field, Inorg. Chem., 2015, 54, 9381-9383.
3 X. Y. Qin, G. Xiong, D. Liao, Y. Ma, P. Gao, X. L. Sun and P. Liu, Synthesis, crystal structure, and magnetism of [Mn(hfac) $\left.{ }_{2} \mathrm{NIT}(\mathrm{Ph}-\mathrm{m}-\mathrm{OPh})\right]$, J. Coord. Chem., 2012, 65, 2683-2691.
4 B. Sieklucka and D. Pinkowicz, Molecular Magnetic Materials: Concepts and Applications, John Wiley and Sons, Weinheim, Germany, 2017.
5 P. J. Van Koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J. P. Renard, M. Drillon and P. Legoll, Magnetism of A-copper(II) bimetallic chain compounds (A = iron, cobalt, nickel): one- and three-dimensional behaviors, Inorg. Chem., 1990, 29, 3325-3331.

