Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Titanium-Oxide Cluster with Rutile Unit Doped Divalent Lead Ions

for Efficient Photocatalytic Applications

Amir Said[#],^a Guanjie Chen[#],^a Guanyun Zhang, ^{*a} Dexin Wang,^a Yanshu Liu,^a Fangfang Gao,^a Guo Wang,^b Chen-Ho Tung^a and Yifeng Wang^{*a}

Email: guanyzhang@sdu.edu.cn; yifeng@sdu.edu.cn.

Fig. S1 Powder X-ray diffraction and simulated XRD pattern of Ti₁₂Pb₂.

Discussion: The phase stability of $Ti_{12}Pb_2$ was confirmed by powder XRD analysis. It can be seen from the PXRD spectra that the experimentally obtained PXRD data are consistent with the simulated spectra obtained from the crystal structure of $Ti_{12}Pb_2$.

Fig. S2 Thermal decomposition analysis of crystalline Ti₁₂Pb₂.

Discussion: Thermogravimetric analysis (TGA) of the crystalline sample revealed that the $Ti_{12}Pb_2$ cluster structure could be preserved upto 430 °C, although some disordered ligand molecules might be lost before the cluster decomposition.

Fig. S3 Core structural of (A) $Ti_{12}Pb_2$ and (B) Ti_{14} . Color scheme: green polyhedral, TiO₅N; purple, Pb; blue, Ti; red, O; and cyan, N. The ligands are omitted for clarity.

Fig. S4 Ball-and-stick view of the Ti₁₂O₁₈ framework. Color scheme: blue, Ti; and red, O.

Fig. S5 Calculations of the direct and indirect bandgap energies values based on solid-state UV-vis diffuse reflectance spectra of $Ti_{12}Pb_2$ and Ti_{14} .

Discussion : The Kubelka–Munk function for calculation of the bandgap:

$$(\alpha h v)^{1/n} = A(h v - E_a)$$

Here, α is the absorption coefficient, *h* is the Planck constant; *v* is frequency; A is constant; and *Eg* is the bandgap value of the semiconductor.

The index n is directly related to the type of semiconductor:

For direct bandgap: n = 1/2; for indirect bandgap: n = 2.

Fig. S6 The Mott–Schottky plot of Ti_{14} at different frequencies (the inset is the diagram of the HOMO–LUMO energy level).

Figure S7. The density of state (DOS) plots of Ti₁₂Pb₂.

Fig. S8 ¹H NMR spectra of CO₂ cycloaddition to epoxide before and after the catalytic reaction.

Discussion: The ¹H NMR spectra were measured using an Avance–400 MHz NMR spectrometer (Bruker, Switzerland) at room temperature using chloroform–d as the deuterated solvent. The ¹H NMR spectra show that the epoxide at 2.45, 2.75 and 2.91 ppm were observed before the reaction (Figure S8A). After the reaction, the peaks of epoxide at 2.45, 2.75 and 2.91 ppm probably diminished along with the production of new broad peaks of cyclic carbonate at 4.07, 4.53 and 4.70 ppm (Figure S8B). It shows that epoxide conversion into cyclic carbonate approached near completion after 24 h under simulated light irradiation in CO₂ atm at 20 °C.

Fig. S9 (A) The PXRD patterns, (B) FTIR analysis, and (C) Raman analysis of the $Ti_{12}Pb_2$ as-synthesized and recycled after photocatalytic CO₂ cycloaddition to epoxide.

Catalyst	Reaction conditions	Time, h	Conv., %	Yield, %	No. of substrate	References
Ti ₁₂ Pb ₂	Catalyst (23 µmol); TBAB (0.5 mmol); epoxide (3 mmol); 1 atm CO ₂ ; 20 °C; simulated solar light.	24 h	100	>99	6	This work
Ti ₁₂ Pb ₂	Catalyst (23 µmol); TBAB (0.5 mmol); epoxide (3 mmol); 1 atm CO ₂ ; 80 °C; simulated solar light.	4 h	100	>99	6	This work
Zn-NTTA	Catalyst (5 µmol); TBAB (0.3 mmol); epoxide (20 mmol); 10 bar CO ₂ ; 100 °C.	8 h	-	98.2	4	ACS Appl. Mater. Interfaces, 2016 , 8, 31746-56.
Al-N ₄ -C	Catalyst (20 mmol); TBAB (0.8 mmol); epoxide (0.67 mmol); DMF; 1 bar CO ₂ ; visible light.	60 h	-	80	5	<i>Adv. Mater.</i> , 2021 , <i>33</i> , 2103186.
MOF-801 (D)	Catalyst (0.6 mol%); TBAB (0.5 mol%); epoxide (19.2 mmol); 0.1 MPa CO ₂ ; 80 °C.	15 h	92.4	92.4	5	J. Mate. Chem. A, 2022 , 10, 10051–10061.
V ₈ -1	Catalyst (2 mol %); TBAB (0.5 mmol, 2.5 mol %); epoxide (28 mmol); CO ₂ (0.5 Mpa); 70 °C.	16 h	-	>99	6	J. Am. Chem. Soc., 2019 , 141, 19487–19497.
Ni-TCPE1	Catalyst (10 µmol; based on Ni); epoxide (20 mmol); TBAB (0.3 mmol); CO ₂ (1 MPa), 100 °C.	12 h	-	>99	4	J. Am. Chem. Soc., 2015 , 137, 15066–15069.
Mn-MOF	Catalyst (10 mg); TBAB (0.028 mmol); epoxide (1.429 mmol); 1 bar CO ₂ ; visible-light; 80 °C.	24 h	-	90	6	ACS Omega, 2022 , 7, 9958- 9963.
PMo ₁₂ @Zr-Fc MOFs	catalyst (5 mg, 10.26 wt%); TBAB (0.25 mmol); epoxide (12.5 mmol); 1 atm CO ₂ ; 80 °C; 900 rpm.	8 h	80	86.77	1	Appl. Catal. B, 2021 , <i>296</i> , 120329.
CoPc/TiO ₂	Catalyst (100 mg); TBAB (0.1 mmol); epoxide (1.0 mmol); 1 bar CO ₂ ; solvent (CH ₃ CN+MeOH); 20 W white cold LED, 25 °C.	24 h	96.7	94	7	ACS Sustain. Chem. Eng., 2018, 6, 7799–7809.
Bi-PCN-224	Catalyst (30 mg); TBAB (0.5 mmol); epoxide (4.5 mmol); 1 bar CO ₂ ; 300 W Xenon lamp.	6 h	>99	-	1	ACS Catal., 2021 , 11, 1988-1994.

	Table S1 Com	parison of	various cat	alysts used	for the CO_2 c	cycloaddition to ep	ooxide.
--	--------------	------------	-------------	-------------	------------------	---------------------	---------

$\begin{aligned} &\{Cu_4[(C_{57}H_{32}N_{12})\\ &(COO)_8]\}_n \end{aligned}$	Catalyst (0.2 mol%); TBAB (0.65 g, 10 mol %); CO ₂ (1 atm); r.t.	48 h	-	96	4	J. Am. Chem. Soc., 2016 , 138, 2142–2145.
$Au_{19}Ag_4(S-Adm)_{15}$	Catalyst (5 mg); TBAB (10 mol%); epoxide (0.3 mmol); 3 ml solvent; 60 °C.	24 h	-	78	3	Angew. Chem. Int. Ed., 2021 , 60, 10573–10576.
IHEP-9	Catalyst (0.05 mmol); TBAB (0.5 mmol); epoxide (1 mmol); 1 bar CO ₂ ; visible-light; r.t.	12 h	-	>99	5	Inorg. Chem., 2021 , 60, 651-659.
Zr-MOF	Catalyst (30 mg); TBAB (0.5 mmol); epoxide (4.5 mmol); 1 bar CO ₂ ; Xe lamp; r.t.	6 h	>99	-	5	ACS Catal. 2021, 11, 1988.
$Ti_{18}Bi_4 \\$	Catalyst (100 mg); TBAB (0.5 mmol); epoxide (3.0 mmol); 1 bar CO ₂ ; Xe lamp, r.t.	14 h	100	>99	6	ACS Catal., 2022 , 12, 8202–8213.
BiNbO4/r-GO	Catalyst (50 mg); TBAB (9 mg); epoxide (100 µl); CO ₂ (1.48 MPa); 353 K.	24 h	-	65	1	ACS Sustain. Chem. Engin., 2020 , 8, 12072-12079.
NUC-38Yb	Catalyst (0.5 mol %); TBAB (4 mol%); epoxide (20 mmol); CO ₂ (1 atm); 60 °C.	10 h	-	96	8	ACS Catal., 2021 , 11, 14916–14925.