Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Controlled Synthesis of 2D-2D Conductive Metal-Organic Frameworks/g-C₃N₄ Heterojunctions for Efficient Photocatalytic Hydrogen Evolution

Xiaoyu Chu,^{a,b,*} Bing-Bing Luan,^a Ao-Xiang Huang,^a Yongkuo Zhao,^a Hongxia Guo,^a Yang Ning,^a Haojian Cheng,^b Guiling Zhang,^{a,*} Feng-Ming Zhang^{a,*}

^a Heilongjiang Provincial Key Laboratory of CO₂ Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 52 Xue Fu Road, Harbin, Heilongjiang 150080, P. R. China

^b Yongkang Jiaxiao Electric Welding Automation Equipment Co. Ltd, Jinhua, Zhejiang P. R. China

1. Experimental details

1.1 Photoelectrochemical and electrochemical measurements

The Mott-Schottky plot (M-S), transient photocurrent spectra (I-T) and electrochemical impedance spectra (EIS) were recorded on the CHI660E electrochemical workstation with a standard three-electrode system with the photocatalyst-coated ITO as the working electrode, Pt plate as the counter electrode, and a saturated calomel electrode as a reference electrode. The test samples (2 mg) were added to 1ml ethanol and 10 μ L Nation, and then sonicated for a while. The working electrodes were prepared by dropping the suspension (200 μ L) onto an ITO glass substrate electrode surface and dried at room temperature. The electrochemical test process selects 0.25 M Na₂SO₄ solution as the electrolyte solution and A 300 W Xenon lamp with a 420 nm cut-off filter as the light source.

1.2 Photocatalytic performance measurements

A sealed system that is composed of a quartz tube and a sealed system was charged with Ni-CAT-1/g-C₃N₄ nanosheet (10 mg), 100 μ L H₂PtCl₆ solution (3 wt%) as a co-catalyst, 100 mg of sodium ascorbate (SA) as the holes sacrificial agent and 50 mL PBS buffer solution and then mixture was sonicated for 5 min. The whole photocatalytic test is controlled at 10°C and irradiated with a 300 W Xe lamp (>420 nm) to achieve photocatalytic hydrogen production. The hydrogen evolution is detected by a gas chromatograph (GC7920, thermal conductivity detector (TCD), Ar carrier gas).

20 - C	Element	Weight(%)	Atomic(%)
	СК	64.50	69.24
-	NK	24.18	22.26
-	οк	10.25	8.26
/e/	Ni K	1.07	0.24
පී 10- -	Total	100	100
5 - 0 5 - Ni - Ni - N	N	<u> </u>	
0	5	10	15 keV

2. Supplementary Figures and Tables

Figure S1 EDS spectra and element content of Ni-CAT-1/g-C₃N₄ composites.

Figure S2 The PXRD patterns of a series of Ni-CAT-1/g-C₃N₄ composites.

Figure S3 XPS survey spectrum of Ni-CAT-1/g-C $_3N_4$ composites.

Figure S4 Tauc plots of g-C₃N₄.

Figure S5 Tauc's plots of Ni-CAT-1.

Figure S6 Mott-Schottky plot of Ni-CAT-1.

Figure S7 PXRD patterns of Ni-CAT-1/g-C₃N₄ composites before and after photocatalysis.

Figure S8 XPS survey spectrum of Ni-CAT-1/g- C_3N_4 composites before and after photocatalysis.

	0 °C 1	Co- catalyst		HER	
Catalyst	agent		Light source	(mmol g ⁻¹ h ⁻¹)	Refs
PAN/g-C ₃ N ₄	TEOA	Pt	300 W Xe lamp ($\lambda > 400 \text{ nm}$)	0.37	1
g-C ₃ N ₄ /PDI	AA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	1.65	2
5N-PTEtOH/g-C ₃ N ₄	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	2.424	3
PCzF/g-C ₃ N ₄	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	0.628	4
C ₃ N ₄ -PEDOT	TEA	Pt	high energy Xe lamp $(\lambda > 400 \text{ nm})$	0.327	5
1NP-3Mg-CN	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	1.496	6
BP/A-CN	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	0.86	7
Zr-MOF/g-C3N4	AA	Pt	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	1.252	8
TAPT/CN	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	1.98	9
CCN	TEOA	Pt	300 W Xe lamp ($\lambda \ge 400 \text{ nm}$)	1.224	10
UCNs	TEOA	Pt	300 W Xe lamp ($\lambda \ge 400 \text{ nm}$)	2.59	11
$W_{18}O_{49}/g$ - C_3N_4	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	0.912	12
5PPFBT/CN-OH	TEOA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	2.662	13
Ni-CAT-1/g-C ₃ N ₄	SA	Pt	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	2.76	This work

Table S1 Comparison of Photocatalytic Hydrogen Evolution Performance with Literature Reports

References:

- 1 F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou and Y. Zheng, ACS Appl. Mater. Interfaces, 2014, 6, 7171–7179.
- 2 H. Miao, J. Yang, Y. Sheng, W. Li and Y. Zhu, *Solar RRL*, 2021, 5, 2000453.
- 3 Q. Zhao, Y. Li, K. Hu, X. Guo, Y. Qu, Z. Li, F. Yang, H. Liu, C. Qin and L. Jing, ACS Sustainable Chem. Eng., 2021, 9, 7306–7317.
- 4 J. Chen, C.-L. Dong, D. Zhao, Y.-C. Huang, X. Wang, L. Samad, L. Dang, M. Shearer, S. Shen and L. Guo, *Advanced Materials*, 2017, **29**, 1606198.

- 5 Z. Xing, Z. Chen, X. Zong and L. Wang, Chem. Commun., 2014, 50, 6762–6764.
- 6 X. Guo, K. Hu, M. Chu, Y. Li, J. Bian, Y. Qu, X. Chu, F. Yang, Q. Zhao, C. Qin and L. Jing, *ChemSusChem*, 2020, **13**, 3707–3717.
- 7 M. H. Suhag, H. Katsumata, I. Tateishi, M. Furukawa and S. Kaneco, *Langmuir*, 2023, **39**, 13121–13131.
- 8 H. Xing, J. Shi, W. Yang, Y. Li, R. Wu and J. Wu, New J. Chem., 2023, 47, 21685–21691.
- 9 C.-C. Li, I. Ullah, G. Wang and A.-W. Xu, Catal. Sci. Technol., 2023, 13, 5456–5461.
- 10 E. Liu, X. Lin, Y. Hong, L. Yang, B. Luo, W. Shi and J. Shi, Renewable Energy, 2021, 178, 757–765.
- 11 L. Wang, Y. Hong, E. Liu, X. Duan, X. Lin and J. Shi, Carbon, 2020, 163, 234–243.
- 12 A. Li, Z. Peng and X. Fu, Solid State Sciences, 2020, 106, 106298.
- 13 X. Pang, Y. Li, X. Wu, B. Zhang, M. Hao, Y. Zhu, Y. Zhang, C. Qin, H. Zhan and C. Qin, *Journal of Colloid and Interface Science*, 2023, **652**, 1405–1416.